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ABSTRACT

Wheat is a major staple crop that is largely affected by different abiotic stresses that include heat, drought, and

salinity. The main objective of this study was to identify wheat NAC transcription factors that are related to the

NAC-a subfamily, which is involved in mediating stress tolerance in different plant species. Furthermore, in silico

gene expression analysis was conducted to detect differential changes in wheat NAC-a subfamily members in

different organs, developmental stages, and under various abiotic stress. Herein, using phylogenetic analysis for

488 NAC transcription factors, 41 proteins were identified as wheat NAC-a subfamily members. In silico gene

expression analysis found that NAC-related wheat transcription factors are expressed exclusively at the anthesis

stage till dough development with high expression levels detected in flag leaves. The in-silico gene expression

analysis identified SNACI1-related members, which had high expression levels under drought, cold, and heat

stresses. The identified stress-induced wheat NAC-a subfamily members can be utilized in the future to develop

climate-smart wheat cultivars with improved tolerance against abiotic stresses.

Keywords: Abiotic stress, In silico gene expression, Phylogenetic analysis, Wheat.

INTRODUCTION

Bread wheat, Triticum aestivum L., is an
allohexaploid plant that contains three homeologous
genomes (2n=6x=42, AABBDD). It’s considered a staple
food for around 35% of the world population and globally
it is classified as the second most important crop with a
total estimated production of about 610 million tons

(FAOSTAT, 2019). Wheat cultivation faces many
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challenges that are associated with multiple biotic and
abiotic stresses (Ortiz et al., 2008). Poor water
management and limited resources besides global
warming and climate change are predicted to affect wheat
productivity in many parts across the globe.

Plants are frequently exposed to different abiotic
high
temperature, floods, salinity, heavy metals toxicity,

stress conditions including cold, drought,

pathogens, and herbivores (Mahajan & Tuteja 2005).

Plants can overcome such adverse conditions by
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developing numerous biochemical and physiological
strategies that are induced by key regulatory genes. To
minimize the adverse effects caused by these stresses,
plants induced the expression of different stress-
responsive genes (Tardieu et al., 2010). These genes can
be categorized into two groups: the first one includes
genes related to cell metabolism and stress tolerance and
the last one is composed of regulatory genes that encode
protein phosphatases or kinases and transcription factors
(Singh et al., 2015). Transduction and perception of the
stress signals in response to abiotic stresses lead to the
expression of a large number of stress-related genes and
eventually lead to different metabolic and physiological
responses (Zhu et al., 2002). The ability to enhance crops'
tolerance to salinity and drought stress, especially at the
most sensitive stage of production during growth, can
have a huge impact on the productivity of wheat.

In response to abiotic stresses, plant transcription
factors play essential roles in regulating multiple gene
expression pathways involved in their adaptation to
different stresses (Hussain et al., 2011). Transcription
factors are defined as proteins that bind to specific
regulatory elements found in the promoters of targeted
genes to induce or repress their expression (Riechmann et
al., 2000). In plants, transcription factors are classified
into several families depending on their DNA binding
domain structures (Hussain et al., 2011). More than 50
transcription factor families were identified, 12 of them
were found to be specific for plants (Romani et al., 2020).

One of them is the NAC gene-family, which its
members are distinguished by their highly conserved N-
terminal DNA-binding domain and variable C-terminal
domains needed for transcription activation or repression
and protein-protein interactions (Ohbayashi et al., 2018).
The abbreviation of NAC came from the initials of NAM
from petunia (No Apical Meristem), the Arabidopsis
Thaliana Activation Factor 1/2 (ATAF1/ATAF2), and the
CUp Shaped Cotyledon (CUC) from Arabidopsis. NAC

genes were found to have major roles in plant
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development such as the development of shoot apical
meristem, development of roots and flowers, senescence,
tiller number, cell wall, and wood formation, and the
tolerance against different biotic and abiotic stresses
(Puranik et al., 2012).

Shen et al. (2009) classified NAC proteins into eight
distinctive subfamilies (NAC-a to NAC-h) that can be
further divided into smaller subgroups according to their
phylogeny. Each subfamily includes members that might
have distinct functions when compared with other
subfamilies. For example, membrane-associated NAC
transcription factors involved in cell division or ER stress
responses were grouped into the NAC-b subfamily. The
NAC-a subfamily includes members that play a major
role in stress responses and tolerance against abiotic
stresses (Puranik et al., 2012). For instance, the
overexpression of three stress-related NAC proteins
(ANACO019, ANACO055, and ANAC072) the

Arabidopsis plant improved tolerance against drought

in

tolerance (Li et al., 2012). Two Arabidopsis mutant lines
for atafl-1 and atafl-2 genes showed higher drought
tolerance responses when compared with wild-type plants
indicating that they act as repressors (Lu et al., 2007). In
wheat, the NAC family contains 488 members, whereas
the phylogenetic trees of NAC domains indicated that
wheat NACs divided into eight groups similar to rice and
barley (Borrill et al., 2017). Recently, several members of
the wheat NAC family were implemented in abiotic stress
responses that highlighted their pivotal role in inducing
tolerance against drought and other stresses. For instance,
a drought-responsive allele of TaSNAC8-6A (NAM-A1)
was found to improve wheat drought tolerance at the
seedling stage and thus represent a valuable genetic
resource for the improvement of drought-tolerant
germplasm for wheat production (Mao et al., 2020).
Transgenic wheat lines overexpressing the TaSNAC8-6A
(NAM-A1) gene exhibited enhanced drought tolerance
through induction of auxin and drought-response

pathways by stimulating lateral root development and
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improving water-use efficiency. TaNAC2, a wheat
transcription factor was responsive to drought, salt, cold,
and abscisic acid treatment and improved tolerance
against these stresses in Arabidopsis plants (Mao et al.,
2011), which were simultaneously demonstrated by
enhanced expression of abiotic stress-response genes and
several physiological indices. Another wheat NAC
member, TaNAC29, located on chromosome 2BS, was
found to improve drought and stress tolerance in
transgenic overexpression Arabidopsis plants (Huang et
al., 2015).

This highlights the importance of NAC genes in
breeding activity to produce climate-smart wheat varieties
with
including drought. This study aimed to identify abiotic

improved resilience against abiotic stresses
stress-responsive NAC genes that belong to the NAC-a
subfamily using a comprehensive phylogenetic analysis
and their expression profiling was analyzed using the
Genevestigator software. The identified members and
their expression profile can be used in future research to
develop new climate-smart wheat plants with improved
tolerance against multiple stresses including drought and

high salt stress.

MATERIALS AND METHODS

PHYLOGENETIC ANALYSIS

To identify NAC members in the wheat plant, the
Plant

(http://plants.ensembl.org/Triticum_aestivum/Info/Index

Ensemble database
) and the first version and release of the wheat genome at
IWGSC (International Wheat Genome Sequencing
Consortium; the first reference genome of wheat IWGSC
Ref Seqvl1.0:
https://www.wheatgenome.org/News2/RefSeq-v1.0-

URGTI) was used to retrieve protein sequences of all NAC
genes as described previously (Borril, et al., 2017). Using
this approach, 488 unique wheat NAC proteins were
retrieved and their final sequences were validated and

crossed checked for further analysis.
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To identify NAC-family stress-related members
belonging to the NAC-a subfamily, a phylogenetic
analysis was performed by using the 488-wheat retrieved
amino acids sequences with a set of reference NAC
proteins from different plant species that was retrieved
NCBI GenBank and represent members with known
functions belonging to different NAC subfamily members
using the MEGAG6 software (Tamura et al., 2013). The
amino acid sequences of the NAC members were aligned
using the embedded Muscle algorithm and the output was
used to build a phylogenetic tree by calculating distance
matrices for neighbor-joining (NJ) analysis with the
Kimura two-parameter model and a bootstrapping
analysis with 1000 replicates to test the robustness of
internal branches. A separate phylogenetic tree that
includes NAC-a gene subfamily and their reference
proteins was constructed using MEGAG6 software with the

same parameters described above.

IN SILICO GENE EXPRESSION ANALYSIS
in the

Genevestigator software (Zimmermann et al., 2004;

For silico gene expression analysis,
https://www.genevestigator.com/gv/plant.jsp/) was used
to analyze the expression profile of the 41 selected NAC-
a gene subfamily in response to drought, osmotic, and salt
stress conditions of selected RNAseq data as described
previously (Allimuthu et al., 2020). Furthermore, the
same software was used to analyze the expression profile

in different plant organs and developmental stages.

RESULTS AND DISCUSSION

The phylogenetic relationships and the functional
relatedness of the NAC gene super-family in wheat were
analyzed. Phylogenetic analysis was performed by using
the 488-wheat retrieved NAC amino acid sequences from
selected plant species (Fig. 1). The phylogenetic analysis
grouped the 488 T. aestivum NAC proteins (TaNAC) into
several sub-groups with the selected reference NAC

proteins from other plant species. The first sub-group
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includes 50 TaNAC proteins that are closely related to
ANACO046, which is involved in the regulation of
senescence and chlorophyll degradation (Oda-Yamamizo
et al., 2016). A second sub-group included six members
that were closely related to two reference NAC domains,
including ANACO058-related and ANACO038-related and
that is predicted to function in RNAi-mediated pathways
in the Arabidopsis plant (Hisako et al., 2003). Sub-group-
3 included six members that are highly related to
ANACO054, which is known as cup-shaped cotyledon
(CUC) and involved in meristem identity in Arabidopsis
plant (Lee et al.,, 2015). Sub-group-4 included 13
members that were clustered with ANACO074, which is
known as KIR1 and it's involved in regulating the
programmed cell death of stigmatic tissue in the
Arabidopsis plant (He et al., 2018). Sub-group-5 included
18 members that were closely related to ANACO022,
which is involved in shoot apical meristem formation and
auxin-mediated lateral root formation (He et al., 2005).
Sub-group-6 included 21 members that are related to
ANACO043, also known as NTSI1, and involved in
secondary wall thickening in Arabidopsis (Zhong et al.,
2015). Sub-group-7 included 6 members that are closely
related to ANACO033 (SMB) with a major role in root cap
development in plants (Fendrych et al., 2014). Sub-group-
8 included 10 members related to ANACO007, which is
also involved in secondary wall thickening in xylem
tissue (Zhou et al., 2014). Sub-group-9 included 20
members that are closely related to ANACO072 (VDN2),
which is also involved in secondary cell wall growth
(Zhou et al., 2014). Sub-group-10 included five members
that are closely related to ANACO11, which contains a
transmembrane motif and potential function in ROS
production during drought-induced leaf senescence
(Ooka et al., 2003). Sub-group-11 included 14 members
that are closely related to ANACO053 with unknown
functions to date. Sub-group-12 included 12 members that
are closely related to ANACO083 and Os08g44820, where
ANACO083 is involved in inhibiting xylem vessel
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formation (Hu et al., 2010). Sub-group-13 included 18
members that are closely related to ANACO082, also
known as VND-INTERACTING 1 (VNI1), which might
be involved as a ribosomal stress response mediator that
causes growth defects in Arabidopsis (Ohbayashi et al.,
2017). Sub-group-14 included three members that were
closely related to ANACO016, which are involved in
mediating abiotic-stress responses in plants is associated
with NAP1 (Abdelrahman et al., 2017). Sub-group-15
included 19 members that were closely related to
ANACO094, which are involved in mediating resistance
against viruses in plants (Ooka et al., 2003). Sub-group-
16 included 11 members that were closely related to
ANACO042, which is a NAC transcription factor induced
by hydrogen peroxide (H>O,) and has a role in delaying
senescence (Saga et al., 2012). Sub-group-17 included 15
members that were closely related to ANACO036 and
0s03g04070, which are involved in leaf and inflorescence
stem morphogenesis and its mRNA has a cell-to-cell
mobile activity (Kato et al., 2010). Sub-group-18
included nine members that were closely related to
ANACO034, which is known as Long Vegetative Phase
One and involved in leaf morphogenesis (Hu et al., 2010).
Sub-group-19 included 11 members that were closely
related to ANACO090, which is involved in delaying
senescence (Hu et al., 2010). Sub-group-20 included six
members that were closely related to ANACO052, which is
also known as the SUPPRESSOR OF GENE
SILENCING 1, which is a NAC protein that physically
associates with the histone H3K4 demethylase JMJ14 to
repress the transcription of flowering time genes (Ning et
al., 2015). Sub-group-21 included 10 members that were
closely related to ANACO060, a transmembrane protein
involved in ABA-mediated sugar metabolism
Arabidopsis (Li et al., 2014). Sub-group-22 included 15
members that were closely related to ANACO067, a
transmembrane protein involved in regulating cell
division in Arabidopsis (Ooka et al., 2003). Sub-group-23
included 11 TaNACs that were not affiliated with any

in
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reference  NAC protein. Sub-group-24 included 18
members that were closely related to ANAC064 that have
no clear function to date. Sub-group-25 included 62
members that were not affiliated with any reference NAC
protein. Sub-group-26 included 21 members that were
closely related to ANACO008, which is an encoded
suppressor of gamma response 1 (SOG1) and involved
responses to DNA damage (Hu et al., 2010). Sub-group-
27 included eight members that were closely related to
ANACO073, a secondary wall-associated NAC protein (Hu
et al., 2010). Sub-group-28 included 17 members that
were closely related to ANACO075, a flowering time
repressor (Fujiwara et al., 2016). Sub-group-28 included
3 members that were not affiliated with any reference
NAC protein. Sub-group-29 included three wheat-
specific members (TraesCS2B02G376900.1;
TraesCS4A02G065000.1 and TraesCS4D02G24200).

Lk

FIGURE 1. Phylogenetic analysis of 488 wheat
NAC proteins and selected reference proteins
from different plant species. The position of
TaNAC sub-family A in the tree is indicated by
red colour.

Based on NAC subfamilies calcifications by Shen et
al. (2009), the NAC-a subfamily was identified and was
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found to include seven subgroups based on their
clustering with reference NAC proteins (Fig. 2): sub-
group-1 included eight members that are closely related
to ANACO025 (NAM), which is involved in stress-
responses and promoting senescence (Hu et al., 2010) and
this group also included the NAM-B1l, a major gene
involved in leaf senescence and protein content in wheat
(Uauy et al., 2006). Sub-group-2 included three members
that are closely related to ANAC029 (NAP1) that is
known to be involved in abiotic stress responses (Ooka et
al., 2003). Sub-group-3 included 12 members that are
closely related to Os03g0327800 (OsNACO047) that has a
potential function in abiotic stress-responses (Mito et al.,
2011).  Sub-group-4  included three = TaNACs
(TraesCS3A02G162900,TraesCS3B02G 194000,
TraesCS3D02G170000) that were not affiliated with any
reference NAC protein and seems to be specific to wheat.
Sub-group-5 included nine TaNACs that were closely
related to the Arabidopsis ATAF1 and two stress-related
rice transcription factors (Os11g0184900 and SNAC?2),
which are involved in mediating abiotic stress responses
in plants (Hu et al., 2008; Wu et al., 2009). Sub-group-6
included three members that were related to OsNAC4,
which is known to promote drought tolerance in rice
plants (Kaneda et al., 2009). Sub-group 7 included eight
members that are closely related to SNACI, a stress-
responsive NAC in rice (Hu et al., 2006).
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FIGURE 2. Phylogenetic analysis of wheat TaNAC-a
sub-family proteins and selected reference stress-
related proteins from different plant species.
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The in-silico gene expression analysis for 41 members
of the TaNAC-a subfamily was carried out with RNA-seq
data associated with anatomy, development, and abiotic
stresses (Fig. 3-5). Three members related to ANACO016
were included as checks for comparison. The expression
analysis in seven anatomical parts, showed a clear
induction of NAM-related members in the flag leaf of
wheat plants (Fig. 3). This is consistent with data reported
in Borrill et al. (2017), who observed an increased
expression of NAM-related members in wheat flag leaf at
senescence. Similarly, other members showed a high
level of expression in flag leaf that might highlight their
potential role during the flowering and grain-filling
period. The three specific members (sub-group-4),
showed no expression in the seven anatomical parts when

compared with other members (Fig. 3).
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Dataset: 7 anatomical pars from data selection: TA_mRNASeq_WHEAT_GL-4
Showing 44 measure(s) of 44 gene(s) on selection: Whole NAC-Subcalde
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FIGURE 3. In silico gene expression analysis of 41 TaNAC-a sub-family genes in seven anatomical parts by using

Genevestigator. ANACO016-related members
TraesCS5D02G279100) were used for comparison.

The expression patterns were also analyzed at six
different development stages of wheat and as shown in
Fig. 4. The three specific members (sub-group-4), showed
no expression at any stage confirming their low
expression patterns in the wheat plants. Inconsistent with
their role in promoting senescence in wheat plants (Borrill
et al., 2019), the NAM-related members showed higher
expression levels at the late stages starting from anthesis

with increasing levels at the dough developmental stage.

(TraesCS5A02G271500,

-347-

TraesCS5B02G271800 and

Except for NAM-related and sub-group-4 members, the
expression of the remaining members was detected at the
seedling stage. At the anthesis stage, three members
belonging to sub-group-5 and closely related to SNAC2
(TraesCS1A02G263700, TraesCS1B02G274300, and
TraesCS1D02G263800), were found to be expressed at
high levels, which might indicate a potential during
heading for these members.
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Dataset: 6 developmental stages from data selection: TA_mRNASeq_WHEAT_GL-4
Showing 44 measure(s) of 44 gene(s) on selection: Whole NAC-Subcalde
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FIGURE 4. In silico gene expression analysis of 41 TaNAC-a sub-family genes in seven anatomical parts by using

Genevestigator. ANACO016-related members
TraesCS5D02G279100) were used for comparison.

To analyze the expression patterns of the 44 selected
stress-related genes (41 TaNAC-a subfamily and three
ANACO16-related) under abiotic stress conditions, eight
RNA-seq experiments were used. As shown in Fig. 5, the
SNACI-related members (TraesCS5A02G468300,
TraesCS5B02G480900, and TraesCS5D02G481200)
were induced at high levels in response to different
stresses including, cold, heat, and drought. This is
consistent with previous reports that showed inducible
expression in response to different abiotic stresses in rice
(Hu et al., 2006) and barley (Al-Abdallat et al., 2014)
plants. Members that were related to OsNAC4, showed
also high levels of induction in response to drought and
cold stress (Kaneda et al., 2009). Under drought stress, the

three members belong to sub-group-5 and are closely

(TraesCS5A02G271500, TraesCS5B02G271800 and
related to SNAC2 (TraesCS1A02G263700,
TraesCS1B02G274300, and TraesCS1D02G263800),
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were found to be expressed at high levels, however, no
induction was observed in response to cold and heat
stresses. This is not in general agreement with their rice
orthologue, which showed inducible expression in
response to cold and heat stresses (Hu et al., 2008).
Excluding the SNAC2-related members, the remaining
six TaNACs of sub-group 5 were found to be highly
expressed in response to cold treatment (Fig. 5).
Interestingly, the NAM-related members showed reduced
expression levels in the flag leaf in response to heat stress,
which highlights a potential role of heat stress on
senescence, and future studies are needed to uncover their
role under heat stress. Another member that showed

reduced expression in response to heat and drought was
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TraesCS2A02G102000, which might indicate a potential
role in the wheat plant. Several NAC proteins were found
to act as negative regulators of drought response in plants
(Sakuraba et al., 2015; Kim et al., 2018).

Dataset: 34 parturbations from data selection: TA_MRNASeq_WHEAT_GL-0
Showing 44 measure(s) of 44 gena(s) on selection: The Sub Clade A Membars
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Figure 5. In silico gene expression analysis of 41 TaNAC-a sub-family genes in eight selected abiotic stress
experiments by using Genevestigator. ANACO016-related members (TraesCS5A02G271500,
TraesCS5B02G271800 and TraesCS5D02G279100)
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CONCLUSION

In conclusion, the presented data of this study
identified 41 members of TaNACs that belong to the
TaNAC-a subfamily, with a putative role in stress
tolerance mechanisms in wheat. The differential
expression of these members highlights the presence of
divergent functions under different stress conditions and
developmental stages. Future studies should be carried
out using transgenic and mutant lines to elucidate their
role in wheat tolerance against different abiotic stresses.
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