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ABSTRACT

Increased intake of dietary fructose is markedly associated with multiple negative health outcomes and burdens.
Insulin resistance (IR) and type 2 diabetes mellitus (T2DM) are the most common complications that present with
conjugated cellular-biochemical abnormalities. This article explains the involvement of increased dietary fructose
intake in the occurrence of IR and T2DM and addresses basic metabolic mechanisms. PubMed, Medline, Science
Direct, ADI, and WHO databases were searched through June 2021. Current research predicts that over 350 million
people may have diabetes by 2030. IR acts as an influencer promoter of T2DM development. IR can occur as a
result of high fructose intake. Fructose metabolism results in de novo lipogenesis, while its decreasing effect of
peroxisome proliferator-activated receptor (PPAR) activity elevates the levels of inflammatory cytokines, resulting
in down-regulation of insulin receptor substrate-1 phosphorylation. Fructose stimulates oxidative stress by
activating nicotinamide adenine dinucleotide phosphate oxidase and synthesis of advanced glycation end-products.
Fructose also stimulates purine-induced uric acid synthesis and leptin resistance, which contributes to abnormal
insulin action. It is crucial to understand the mechanisms of fructose-induced IR via induction of oxidative stress,
inflammation, leptin resistance, and uric acid production. This helps prevent and control variable diseases, T2DM
being the most.
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INTRODUCTION
Recent data indicate that over 218 million
individuals suffer from Type 2 diabetes mellitus (T2DM)
worldwide, while over 350 million people are predicted
to be diabetics by 2030 (Saeedi et al., 2019). T2DM is a
progressive, chronic disorder that is characterized by
insulin resistance (IR) as a primary condition that results
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in partial pancreatic cell failure (Zatterale et al., 2020;
Ahmad et al., 2020a). High fructose intake induces IR and
its metabolic abnormalities (Hu et al., 2017). Fructose is
a simple sugar derived from sucrose that is a major staple
food worldwide and consists of 50% fructose and 50%
glucose (Lozano et al., 2016). Gut sucrase hydrolyzes
dietary sucrose releasing free fructose and glucose to be
readily absorbed later (Veedfald et al., 2019).
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Around 50-75% of fructose metabolism occurs in
the liver and minorly in the kidneys and adipocytes
(Zwarts et al, 2019). After ATP
phosphorylation step catalyzed by fructokinase to

consuming

fructose-1-phosphate, fructose absorption occurs via
particular intestinal transporters. Fructose absorption or
cell uptake requires glucose transporter-5, glucose
transporter-2, and supposedly solute carrier family 2,
which are predominantly found in the liver, intestinal
epithelium, kidney proximal tubule, adipocytes, and
vascular endothelium (Eberhart et al., 2020; Koepsell,
2020). Fructose is minorly metabolized by the hexokinase
pathway due to its higher Michaelis constant (Km) values
than glucose (Sharma et al., 2020), while both hexokinase
and phosphofructokinase excessive
phosphorylation (Huang et al., 2016; Buziau et al., 2020).

Low concentrations of fructose significantly diminish the

prevent

levels of ATP in vascular endothelial cells and human
proximal tubular cells, which inhibit protein synthesis,
initiate inflammatory protein production and response,
activate endothelial dysfunction, and promote oxidative
stress (Mai and Yan, 2019; Simons et al., 2020). Fructose
is considered a lipogenic nutrient, as it stimulates
triglyceride synthesis and activates hepatic fat cell
deposition (Federico et al., 2021). This process is
mediated by increased levels of fatty acyl-coenzyme A
and di-acylglycerol, resulting in greater hepatic
triglycerides production and apolipoprotein B levels (Al-
Jawadi et al., 2020; Federico et al., 2021).

Fructose stimulates the production of excess uric acid
(Zhang et al., 2017). Since ATP is extensively consumed
during fructose metabolism, AMP molecules accumulate,
stimulating AMP deaminase leading to uric acid
production and an abnormally elevated serum uric acid
level (Iskender et al., 2021). This article describes and
discusses some noteworthy mechanisms by which
fructose promotes and accelerates the occurrence of IR

and T2DM as serious metabolic consequences.
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LITERATURE SEARCH

An up-to-date literature search was conducted on the
link between dietary fructose intake, IR, and T2DM,
focusing on the basic biochemical mechanisms. The
search was limited to the most recent English publications
covering the last 5 years (2016-2021). Relevant articles
were principally identified through an online search of
PubMed, Medline, Science Direct, ADI, WHO databases,
and PsycINFO. Google Scholar and other databases were
also used. Included articles were mainly in vivo and in
vitro original experimental, clinical, intervention, and
cross-sectional researches. Some research in animals and
review articles were also consulted. For further search
accuracy, the reference lists of works were checked for
additional publications from the major databases.

FRUCTOSE-INDUCED LIPOGENIC POSTURE

The high-fructose-diet (>60% fructose) is known to
increase hepatic cell lipids. When this diet is provided
sustainably, it induces hepatic abnormality, extrahepatic
IR, and steatosis (Higgins et al., 2018). Fructose increases
de novo lipogenesis by increasing hepatic triglyceride
(TG) formation and limiting the oxidation of fatty acids
(Beysen et al., 2018). This occurs by elevation of hepatic
concentrations of Acetyl-CoA, which leads to posterior
multiplied Malonyl CoA overproduction as lipogenesis
intermediate by which acetyl CoA is added to fatty acids
of long-chains. This process inhibits the oxidation of fatty
acid via the prevention of its entry into the mitochondria
(Geidl-Flueck et al., 2021).

Independently of insulin, fructose activates sterol
regulatory element-binding proteins, which stimulates de
novo lipogenesis involved genes (Gugliucci, 2016). The
secreted very-low-density lipoprotein-TG is donated into
the systemic circulation to elevate the levels of circulatory
fatty acids (Garcia-Arroyo et al., 2019; Todoric et al.,
2020). As apolipoprotein B-100 is substantial for TG-
very-low-density intracellular

lipoprotein assembly,

apolipoprotein B-100 decomposition is minimized when
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This

apolipoprotein B in the hepatic-endoplasmic reticulum

hepatic lipid is increased. accumulates

and causes endoplasmic reticulum stress that can promote

sterol regulatory element-binding proteins and

carbohydrate  response  element-binding  protein

activation; a matter which contributes to de novo
lipogenesis by the activation of fatty acid synthase, acyl
coenzyme-A carboxylase, and stearoyl coenzyme-A
desaturase-1 lipogenic genes expression which enhances
2020). The boosted

sterol regulatory element-binding proteins-c expression

the lipogenic status (Unsal et al.,

by fructose supplementation leads to hepatic insulin
signaling suppression resulting in glucose intolerance and
hepatomegaly, while excessive fructose intake enhances
the elevation of hexose-phosphate levels in the liver,
which promotes carbohydrate response element-binding
protein activation, resulting in hypertriglyceridemia and
hyperinsulinemia (Lehti et al., 2018; Jones et al., 2020).
In adipocytes, signaling abnormalities stimulate TG
stores lipolysis and non-esterified fatty acids efflux into
the bloodstream, which augments the problem (Xie et al.,
2020).

concentrations of non-esterified fatty acids negatively

Extrahepatic tissue exposure to massive
reduces insulin sensitivity, as the intramyocellular lipid
content increases; this reduces the circulating lipids
uptake and stimulates the stored TG hydrolysis, which
raises free fatty acid levels in the blood, reduces glucose
uptake by muscles, and increases liver glucose production
(Morigny etal., 2021; Selen et al., 2021). As a result, high
levels of blood glucose are shown with severe lipo-
toxicity in conjugation with pancreatic cell death. To
compensate for this, the pancreatic cells keep increasing
in mass and insulin secretion, resulting in unbeneficial
hyperinsulinemia that ends by hyperglycemia, pancreatic
islet cell loss, and T2 D (Jung and Bu, 2020; Ahn et al.,
2020).

Hepatic and myocytic intracellular IR mechanism
usually occurs via the induction of novel-protein kinase-

C by its activator, the diacylglycerol (Kang and Chiang,
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2020). Novel-protein kinase C activation causes a severe
depletion in insulin receptor substrate 1 (IRS1) level of
phosphorylation and its tyrosine, which results in a
reduction of glucose transporter activity to end by reduced
intracellular glucose uptake. Additionally, diacylglycerol
raised levels also activate kinases of serine/threonine,
such as inhibitory kinase and nuclear factor-B (Gupta et
al., 2021). Accordingly, fructose-induced IR and its
conjugated hyperlipidemia interfere with insulin
signaling and activate the pro-inflammatory floods that
lead to aggravated IR. Figure 1 presents the biochemical

mechanisms of fructose-induced insulin resistance.

o ILIE). ®
o m,

@
VLDL-TG l

: NFkB
<@ - 3
| ENDOTHELIAL DYSFUNCTION |
s poromcry

lI

!

INSULIN RESISTANCE

Figurel. Biochemical mechanisms of fructose-
induced insulin resistance
[Abbreviations: VLDL: very-low density lipoprotein;
TG: triglyceride; ROS: reactive oxygen species; JNK: c-
Jun N-terminal kinase; NFkB: nuclear factor kappa B;
TNF-a: tumor necrosis factor-alpha]

FRUCTOSE-INDUCED INSULIN
RESISTANCE: THE ROLE OF INFLAMMATORY
SIGNALING

Low-grade inflammation is considered a basic
metabolic abnormality observed in IR (Mansyur et al.,
2020). Increased fructose-induced adipose tissue mass
strongly contributes to tumor necrosis factor-o over-
release (Caputo et al., 2017). Tumor necrosis factor-o-
mRNA expression is observed increasingly in hepatic
tissues, while inflammatory pathways activation that is
done by fructose feeding influences the secretion of
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lipoproteins out of hepatic and intestinal tissues (Cigliano
et al., 2018). In the liver and intestine, high levels of
tumor necrosis factor-o result in decreased insulin
receptors intracellular tyrosine phosphorylation, protein
kinase B, and IRS-1signaling pathway which elucidates
in decreased insulin sensitivity leading to the accretion
and increase of apolipoprotein B-containing chylomicron
particle production (Qu et al., 2018; Alipourfard et al.,
2019).

The nuclear factor of kappa light polypeptide gene
enhancer in B-cells kinase and nuclear factor kappa light
chain enhancer of activated B cells are inflammatory
markers that are activated by tumor necrosis factor-o and
6, both the
phosphorylation IRS-1 in opposition to the normal

interleukin as can down-regulate
healthy status where insulin attaches to its receptor
resulting in receptors auto-phosphorylation of IRS on
tyrosine residues which activate several variables of
second messenger proteins as intracellular signaling
cascade complex that involves protein kinase B that
results in positive stimulation of the glucose uptake into
the cells (Hong et al., 2017; Rai et al., 2019; Sanvee et
al., 2019).

Activation of protein kinase C (PKC) minimizes
insulin-stimulated glucose- uptake, which elevates
tyrosine phosphorylation level (phosphatidylinositol 3-
kinases (PI 3-kinase)) activity of insulin receptor
(Ganesan et al., 2018). Thus, inappropriate activation of
PKC promotes phosphorylation of IRS-1serine/threonine,
resulting in the prevention of protein phosphorylation for
tyrosine that is necessarily essential for normal
intracellular insulin-signaling- pathway (Gassaway et al.,
2018).

PKC is primarily associated with lipid-induced IR too.
The incidence of hepatic IR is correlated to the increased
de novo lipogenesis as a yield of diacylglycerol and novel
PKC (Katsuyama et al., 2019; Ali et al., 2020). Chronic
high fructose consumption down-regulates the gene of the

insulin receptor, which abnormalizes insulin at the
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intracellular level of myocytes and hepatocytes by IRS-1
weak phosphorylation and phosphatidylinositol 3-kinase
decreased activity, which is considered as a second
possible IR molecular mechanism (Marunaka, 2018;
Oyabambi et al., 2020). Conclusively, the mechanisms
that lay behind fructose-induced IR are reduction in the
of
phosphorylation, or both.

number insulin ~ receptors or  decreased

As insulin sensitivity reduction is majorly due to
reduced mitochondrial fatty acid oxidation and increased
hepatic diacylglycerol accumulation, which abnormally
activates PKC resulting in insulin signaling inhibition
(Rehman et al., 2020). This suggests that fructose
modulates the stimulation of de novo lipogenesis via co-
activating the peroxisome proliferator-activated receptor
(PPAR) and nuclear respiratory factor. PPAR has a key
role in controlling the encoding genes of dehydrogenase
transcription, which are long-chain- acyl-coenzyme A
and -medium-chain- acyl-coenzyme-A (Rehman et al.,
2020). Diminished PPAR the

mitochondrial oxidation of fatty acid, where the hepatic

activity  settles
accumulation then induces oxidative stress with observed
increased activity of pro-inflammatory nuclear Factor-B
transcription (Gong et al., 2021).

FRUCTOSE-INDUCED INSULIN ESISTANCE:
THE ROLE OF OXIDATIVE STRESS

Insulin resistance is related to free radicals generated
by increased oxidative stress; likewise, the use of fructose
enhances oxidative stress, as it increases inflammatory
markers production and hydrogen peroxide output
(Abolghasemi et al., 2020, Ahmad et al., 2020a & b;
Farah et al., 2020). As convincing evidence, when
fructose-fed rats are treated with antioxidants, a reduced
reactive oxygen species production is detected with IR
avoidance (Ahmad et al., 2020a and b). Since oxidative
stress and inflammation are linked to insulin resistance
through shared pathways, like c-Jun NH2-terminal
kinase-1, both stimuli are crucial to consider when

consuming fructose (Lawan et al., 2018; Maguifia et al.,



Jordan Journal of Agricultural Sciences, Volume 17, No.4 2021

2020). The excessive production of reactive oxygen

species is also based on nicotinamide adenine
dinucleotide phosphate oxidase activation; and the former
results in raised oxidative stress response, as
demonstrated by increased plasma reactive oxygen
species levels and urinary thiobarbituric acid reactive
substances (Jeong et al., 2018; Aguilar et al., 2020; Kim
et al., 2020).

The polyol pathway is a major contributor to fructose-
enhanced oxidative stress. In fructose metabolism,
fructose-3-phosphate is converted to oxoaldehyde, which
reacts with monoacids to form advanced glycation end
products (Qais et al., 2019). Schiff base adducts are
formed by the interaction of D-fructose with the N-
terminal amino-acid of proteins and/or -amino groups (Do
Koo et al., 2019). The result of this reaction is known as
a Heyns rearrangement (using carbon 2 instead of carbon
1 of the hexose), then glycation products are formed, and
then rearranged, dehydrated, and condensed to form
advanced glycation products (Rodrigues et al., 2017).
Massive amounts of advanced glycation end products
expose cells to oxidative stress and decrease antioxidant
cellular defenses resulting in the generation of oxidant
species and elevating levels of oxidative stress that
directly contributed to IR and T2DM incidence (Ahmad
etal., 2020 a & b; Farah et al., 2020).

FRUCTOSE-INSULIN RESISTANCE: THE
ROLE OF LEPTIN

Leptin is a well-notarized adipose-released hormone.
It has both; central and peripheral effects on the
biochemical and physiological behavior of the body
against nutrients intake (Qais et al., 2019). Leptin
receptors and their performance play an essential role in
different metabolic abnormalities that include severe
obesity, aggravative hepatic steatosis, and intensive IR
(Gugliucci, 2017; Deo et al., 2020; Ahmad et al., 2020a).

Acute fructose feeding decreases leptin secretion,
while glucose metabolism regulates leptin release; this

phenomenon is likely to be associated with weak insulin
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response to fructose consumption (Sanchez-Lozada et al.,
2019). On the other hand, chronic fructose feeding that
extends at least four weeks induces hyperleptinemia and
exhibits leptin resistance with lowered insulin sensitivity,
hepatic steatosis, and high levels of circulating TG in
humans and animals (Zhang et al., 2017). These
conflicting responses display a difference between acute
and chronic fructose intake, where chronic consumption
of fructose develops leptin resistance and hyperleptinemia
due to the increased mass of adipose tissue, which
promotes leptin resistance and its over release (Baena et
al., 2016). The proposed biomolecular pathway of leptin
resistance involves the suppressor signaling molecule of
cytokine signaling 3, as fructose intake induces the
of this the

phosphorylation pathway of serine/threonine, which

expressions suppressor and impairs
results in leptin resistance (Sigala et al., 2020). Also,

fructose prompts protein tyrosine phosphatase-1B
expression, exhibits c-Jun NH2-terminal Kinase signaling
pathway impairment, and intracellular mitogen-activated
protein kinase signaling inhibition that increases forkhead
box protein Ol expression due to suppressor signaling
molecule of cytokine signaling 3 hyper-expression
(Lanaspa et al., 2018).

Leptin induces oxidative metabolic reactions of
fatty acids by the induction of PPAR activation via the
AMP-activated protein kinase action (Sangiiesa et al.,
2018). Consecutively, a decrease in PPAR activation
occurs, which stimulates impaired oxidation of fatty acids
that strongly contributes to hepatic TG accumulation,
while contrarily, the activation of PPAR _reversed leptin
resistance conditions. Activation of protein phosphatase-
2A is another consequence that contributes to leptin
signaling impairment and further metabolic diseases
(Bartley et al., 2019).

FRUCTOSE-INDUCED HYPERURICEMIA
Fructose raises uric acid in humans and rodents (Liu
et al., 2021). After fructose ingestion, fructokinase

phosphorylates fructose in hepatocytes, while ATP serves



Fructose-Induced Insulin Resistance: ....

Lina Nasser Tamimi, et al.

as a phosphate donor. ADP is generated and then
metabolized into a variety of purine substrates.
Meanwhile, the gradual depletion of phosphate during
these reactions activates AMP deaminase, and the
combination of the increased substrate via fructose and
AMP deaminase enzyme activation upregulates urate
development (Figure 2). Finally, the resultant
accumulative uric acid fragment production introduces its
prooxidant behavior extensively (Xu et al., 2019;
Bernardes et al., 2017; Furuhashi, 2020). Uric acid is a
prooxidant that produces reactive oxygen species through
a variety of mechanisms, including interactions with
peroxy-nitrite and oxidized lipids (Egea et al., 2020).
These reactive oxygen species elevate the oxidative stress
level and stimulate the activating conditions that promote
IR (Kurajoh et al., 2021).

Uric acid high levels promote severe endothelial
dysfunction, which leads to a crucial decrease in reduced
endothelial nitric oxide bioavailability. This is due to
endothelial nitric oxide synthase deficiency, which
develops insulin resistance and hypertriglyceridemia
(Mehmood et al., 2020). Therefore, high fructose intake
may cause a rapid increase in serum uric acid, which
lessens endothelial nitric oxide bioavailability and
inhibits insulin-mediated nitric oxide release leading to
slow rates of glucose delivery to skeletal muscles (Hotta
et al., 2020; Oyabambi et al., 2020).
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Figure 2. The pathway of fructose-induced
hyperuricemia

CONCLUSIONS

Taken together, the present article addresses the
possible detrimental effects of high fructose intake,
including the fructose-stimulated molecular mechanisms
with conjugated biochemical pathways. Fructose
markedly stimulates de novo lipogenesis that results in
hyperlipidemia and the activation of particular
intracellular signaling pathways that promotes oxidative
stress. Inflammation induction through the production of
inflammatory cytokines is substantially conjugated with
abnormal intracellular signaling pathways and insulin-
receptor binding mechanisms. Uric acid hyperproduction
and leptin resistance due to high leptin release play a key
role in the development of IR and T2DM at the molecular
stage by their reactive role in oxidative stress and pro-
inflammation status induction. However, further
investigation is needed to gain an in-depth understanding
of the inhibition or disruption of fructose metabolism that
can prevent its complications and potentially lead to
innovative solutions for the prevention and treatment of
chronic fructose-induced disorders, which may change
the healthcare landscape of fructose-induced IR and
T2DM.
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