Yield Stability and Quality of Wheat (Triticum spp.) and Barley (Hordeum Vulgare) Populations Evolving under Different Microenvironments: A review





Evolutionary populations, Wheat (Triticum spp.), Barley (Hordeum vulgare), Plant breeding, Yield, qualities, stability


Climate change, human population growth, human health and food security, safety, and sovereignty all demand that the role of biodiversity in plant breeding be revisited. From a biological standpoint, it is possible that populations of diverse plants developed by evolutionary plant breeding will be able to handle the majority of these major issues. Water stress and soil nutrient deficiency may have a negative impact on wheat (Triticum spp.) and barley (Hordeum vulgare) yields and qualities. Drought-tolerant wheat cultivars with high yield and quality potential and improved grain protein content must be developed if food security is to be maintained. Wheat and barley (Triticum spp. and Hordeum vulgare, respectively) are the focus of this research, which aims to examine the stability of evolutionary populations (EPs) in the face of stressful and changeable settings. It's also important to look at how evolved populations stack up against improved varieties in terms of yield and its components. There has not been much progress in making wheat and barley more resistant to drought, especially in Jordan, where the problem is felt the most.


Download data is not yet available.

Author Biographies

Amal Al-Khatib, National Agriculture Research Center-NARC, Jordan

Field Crops Directorate, National Agriculture Research Center-NARC, Jordan

Omar Kafawin , School of Agriculture, University of Jordan, Amman, Jordan

 Department of horticulture and crops, School of Agriculture, University of Jordan, Amman, Jordan

Stefania Grando , Ascoli Piceno, Italy

Consultant, Ascoli Piceno, Italy


Abtew, A., Subramanian, S., Cheseto, X., Kreiter, S., Garzia, G., & Martin, T. (2015). Repellency of Plant Extracts against the Legume Flower Thrips Megalurothrips sjostedti (Thysanoptera: Thripidae). Insects, 6(3), 608-625. https://doi.org/10.3390/insects6030608. DOI: https://doi.org/10.3390/insects6030608

Abu-Elenein, J., Al-Sayaydeh, R., Akkeh, Z., Al-Ajlouni, Z., Al-Bawalize, A., & Hasan, S. et al. (2021). Agronomic performance and flowering behavior in response to photoperiod and vernalization in barley (Hordeum vulgare L.) Genotypes with contrasting drought tolerance behavior. Environmental And Experimental Botany, 192, 104661. https://doi.org/10.1016/j.envexpbot.2021.104661. DOI: https://doi.org/10.1016/j.envexpbot.2021.104661

Ahmar, S., Gill, R., Jung, K., Faheem, A., Qasim, M., Mubeen, M., & Zhou, W. (2020). Conventional and Molecular Techniques from Simple Breeding to Speed Breeding in Crop Plants: Recent Advances and Future Outlook. International Journal of Molecular Sciences, 21(7), 2590. https://doi.org/10.3390/ijms21072590. DOI: https://doi.org/10.3390/ijms21072590

Ajay, B., Bera, S., Singh, A., Kumar, N., Gangadhar, K., & Kona, P. (2020). Evaluation of Genotype × Environment Interaction and Yield Stability Analysis in Peanut Under Phosphorus Stress Condition Using Stability Parameters of AMMI Model. Agricultural Research, 9(4), 477-486. https://doi.org/10.1007/s40003-020-00458-3. DOI: https://doi.org/10.1007/s40003-020-00458-3

Al-Abdallat, A., Karadsheh, A., Haddad, N., Akash, M., Ceccarelli, S., & Baum, M. et al. (2017). Assessment of genetic diversity and yield performance in Jordanian barley (Hordeum vulgare L.) landraces grown under Rainfed conditions. BMC Plant Biology, 17(1). https://doi.org/10.1186/s12870-017-1140-1. DOI: https://doi.org/10.1186/s12870-017-1140-1

Al-Ghzawi, A. L. A., Al-Ajlouni, Z. I., Sane, K. O. A., Bsoul, E. Y., Musallam, I., Khalaf, Y. B., & Al-Saqqar, H. (2019). Yield stability and adaptation of four spring barley (Hordeum vulgare L.) cultivars under rainfed conditions. Research on Crops, 20(1), 10-18. DOI: https://doi.org/10.31830/2348-7542.2019.002

Ali, N., & Akmal, M. (2022). Wheat Growth, Yield, and Quality Under Water Deficit and Reduced Nitrogen Supply. A Review. Gesunde Pflanzen. https://doi.org/10.1007/s10343-021-00615-w. DOI: https://doi.org/10.1007/s10343-021-00615-w

Allard, R., & Hansche, P. (1964). Some Parameters Of Population Variability And Their Implications In Plant Breeding. Advances In Agronomy, 281-325. https://doi.org/10.1016/s0065-2113(08)60027-9. DOI: https://doi.org/10.1016/S0065-2113(08)60027-9

Altieri, M. (2002). Agroecology: the science of natural resource management for poor farmers in marginal environments. Agriculture, Ecosystems & Environment, 93(1-3), 1-24. https://doi.org/10.1016/s0167-8809(02)00085-3. DOI: https://doi.org/10.1016/S0167-8809(02)00085-3

Araus, J., Slafer, G., Royo, C., & Serret, M. (2008). Breeding for Yield Potential and Stress Adaptation in Cereals. Critical Reviews In Plant Sciences, 27(6), 377-412. https://doi.org/10.1080/07352680802467736. DOI: https://doi.org/10.1080/07352680802467736

Arenas-Corraliza, M., Rolo, V., López-Díaz, M., & Moreno, G. (2019). Wheat and barley can increase grain yield in shade through acclimation of physiological and morphological traits in Mediterranean conditions. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-46027-9. DOI: https://doi.org/10.1038/s41598-019-46027-9

Atkinson, M. D., Kettlewell, P. S., Poulton, P. R., & Hollins, P. D. (2008). Grain quality in the Broadbalk wheat experiment and the winter North Atlantic oscillation. The Journal of Agricultural Science, 146(5), 541-549. DOI: https://doi.org/10.1017/S0021859608007958

Belete, F., Dechassa, N., Molla, A., & Tana, T. (2018). Effect of nitrogen fertilizer rates on grain yield and nitrogen uptake and use efficiency of bread wheat (Triticum aestivum L.) varieties on the Vertisols of central highlands of Ethiopia. Agriculture & Food Security, 7(1). https://doi.org/10.1186/s40066-018-0231-z. DOI: https://doi.org/10.1186/s40066-018-0231-z

Bennett, M.D., and J.B. Smith, 1976. Nuclear DNA amounts in angiosperms. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 274: 227-274. DOI: https://doi.org/10.1098/rstb.1976.0044

Bhandari, R., Gnawali, S., Nyaupane, S., Kharel, S., Poudel, M., & Panth, P. (2021). Effect of drought & irrigated environmental condition on yield & yield attributing characteristic of bread wheat-a review. Reviews in food and agriculture, 2(2), 59-62. Https://doi.org/10.26480/rfna.02.2021.59.62. DOI: https://doi.org/10.26480/rfna.02.2021.59.62

Blum, A. (2005) Drought resistance, water use efficiency, and yield potential—Are they compatible, dissonant, or mutually exclusive? Australian Journal of Agricultural Research, 56, 1159-1168. http://dx.doi.org/10.1071/AR05069. DOI: https://doi.org/10.1071/AR05069

Borla, O., Motta, E., Saiz, A., & Fritz, R. (2004). Quality parameters and baking performance of commercial gluten flours. LWT - Food Science and Technology, 37(7), 723-729. https://doi.org/10.1016/j.lwt.2004.02.013. DOI: https://doi.org/10.1016/j.lwt.2004.02.013

Bruns, H. (2019). Grain Sorghum Yield Components as Influenced by Hybrid, Seeding Date, and Irrigation. Agrosystems, Geosciences & Environment, 2(1), 1-4. https://doi.org/10.2134/age2018.08.0030. DOI: https://doi.org/10.2134/age2018.08.0030

Caligari, P., & Forster, B. (2015). Plant Breeding and Crop Improvement. Els, 1-11. https://doi.org/10.1002/9780470015902.a0002024.pub3. DOI: https://doi.org/10.1002/9780470015902.a0002024.pub3

Cann, D., Schillinger, W., Hunt, J., Porker, K., & Harris, F. (2020). Agroecological Advantages of Early-Sown Winter Wheat in Semi-Arid Environments: A Comparative Case Study from Southern Australia and Pacific Northwest United States. Frontiers In Plant Science, 11. https://doi.org/10.3389/fpls.2020.00568. DOI: https://doi.org/10.3389/fpls.2020.00568

Ceccarelli, S. (1996). Adaptation to low/high input cultivation. Euphytica, 92(1-2), 203-214. https://doi.org/10.1007/bf00022846. DOI: https://doi.org/10.1007/BF00022846

Ceccarelli, S., Grando, S., Salimi, M., & Razavi, K. (2022). Evolutionary Populations for Sustainable Food Security and Food Sovereignty. Seeds For Diversity and Inclusion, 121-136. https://doi.org/10.1007/978-3-030-89405-4_8. DOI: https://doi.org/10.1007/978-3-030-89405-4_8

Cerda-Mejía, L., Mejía, V. R. C., & Chasi, G. A. S. (2017, January). Study of the functional properties of the corn flour proteins (Zea mays), barley (Hordeum vulgare), quinoa (Chenopodium quinoa), potato (Solanum tuberosum), and wheat (Triticum aestivum) national and imported intended for use in baking and noodles. In Proceedings of MOL2NET 2016, International Conference on Multidisciplinary Sciences, 2nd edition. Basel, Switzerland: MDPI (p. 3896).

Chadalavada, K., Guna, K., Ranjitha Kumari, B., & Senthil Kumar, T. (2022). Drought stress in sorghum: impact on grain quality. Climate Change and Crop Stress, 113-134. https://doi.org/10.1016/b978-0-12-816091-6.00003-1. DOI: https://doi.org/10.1016/B978-0-12-816091-6.00003-1

Cherubin, M., Carvalho, J., Cerri, C., Nogueira, L., Souza, G., & Cantarella, H. (2021). Land Use and Management Effects on Sustainable Sugarcane-Derived Bioenergy. Land, 10(1), 72. https://doi.org/10.3390/land10010072. DOI: https://doi.org/10.3390/land10010072

Christian, M., Shimelis, H., Laing, M., Tsilo, T., & Mathew, I. (2021). Breeding for silicon-use efficiency, protein content and drought tolerance in bread wheat (Triticum aestivum L.): a review. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 72(1), 17-29. https://doi.org/10.1080/09064710.2021.1984564. DOI: https://doi.org/10.1080/09064710.2021.1984564

Dawson, I., Russell, J., Powell, W., Steffenson, B., Thomas, W., & Waugh, R. (2015). Barley: a translational model for adaptation to climate change. New Phytologist, 206(3), 913-931. https://doi.org/10.1111/nph.13266. DOI: https://doi.org/10.1111/nph.13266

de Ponti, T., Rijk, B., & van Ittersum, M. (2012). The crop yield gap between organic and conventional agriculture. Agricultural Systems, 108, 1-9. https://doi.org/10.1016/j.agsy.2011.12.004. DOI: https://doi.org/10.1016/j.agsy.2011.12.004

de Ruiter, C., Jones, D., Sargeant, A., & de Haan, A. (1999). Temperature Effect on the Rates of Isometric Force Development and Relaxation in the Fresh and Fatigued Human Adductor Pollicis Muscle. Experimental Physiology, 84(6), 1137-1150. https://doi.org/10.1111/j.1469-445x.1999.01895.x. DOI: https://doi.org/10.1111/j.1469-445X.1999.01895.x

De Ruiter, J. (1999). Yield and quality of malting barley (Hordeum vulgareL. ‘Valetta') in response to irrigation and nitrogen fertilization. New Zealand Journal of Crop and Horticultural Science, 27(4), 307-317. https://doi.org/10.1080/01140671.1999.9514110. DOI: https://doi.org/10.1080/01140671.1999.9514110

Dijkman, T., Birkved, M., Saxe, H., Wenzel, H., & Hauschild, M. (2017). Environmental impacts of barley cultivation under current and future climatic conditions. Journal of Cleaner Production, 140, 644-653. https://doi.org/10.1016/j.jclepro.2016.05.154. DOI: https://doi.org/10.1016/j.jclepro.2016.05.154

Ding, Z., Kheir, A., Ali, M. G., Ali, O. A., Abdelaal, A. I., Lin, X. E., ... & He, Z. (2020). The integrated effect of salinity, organic amendments, phosphorus fertilizers, and deficit irrigation on soil properties, phosphorus fractionation and wheat productivity. Scientific reports, 10(1), 1-13. DOI: https://doi.org/10.1038/s41598-020-59650-8

Doll, H., HOLMHolm, U., & SOSGAARDSosgaard, B. (1995). Effect of crop density on competition by wheat and barley with Agrostemma githago and other weeds. Weed Research, 35(5), 391-396. https://doi.org/10.1111/j.1365-3180.1995.tb01635.x. DOI: https://doi.org/10.1111/j.1365-3180.1995.tb01635.x

Estelle, S. B., Simon, G., Nicolas, S., & Véronique, C. (2014). Evaluation of evolution and diversity of maize open-pollinated varieties cultivated under contrasted environmental and farmers’ selection pressures: a phenotypical approach. Open Journal of Genetics, 2014.

Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A, Zohaib A, Nasim W, Adkins S, Saud S, Ihsan MZ. (2017). Crop production under drought and heat stress: plant responses and management options. Front Plant Science 8:1–16. doi:10.3389/fpls.2017.01147. DOI: https://doi.org/10.3389/fpls.2017.01147

FAO (Food and Agriculture Organization), (2017). FishStatJ: a tool for fishery statistics analysis, Version 2.12.5. http://www.fao.org/fishery/statistics/software/fishstatj/en, Accessed date: 24 April 2017.

Fatima, Z., Ahmed, M., Hussain, M., Abbas, G., Ul-Allah, S., & Ahmad, S. et al. (2020). The fingerprints of climate warming on cereal crops phenology and adaptation options. Scientific Reports, 10(1). https://doi.org/10.1038/s41598-020-74740-3. DOI: https://doi.org/10.1038/s41598-020-74740-3

Feng, S., & Fu, Q. (2013). Expansion of global drylands under a warming climate. Atmospheric Chemistry And Physics, 13(19), 10081-10094. https://doi.org/10.5194/acp-13-10081-2013. DOI: https://doi.org/10.5194/acp-13-10081-2013

Ferrio, J. P., Voltas, J., Buxó, R., Rovira, N., Aguilera, M., Bort, J., ... & Araus, J. L. (2008). Sustainability of the early Mediterranean agriculture. In M. El Moujabber, M. Shatanawi, G. Trisorio Liuzzi, M. Ouessar, P. Laureano et R. Rodriguez (éds.), Water culture and water conflict in the Mediterranean area, Proceedings of MELIA Workshop Water Culture and Water Conflict (Nabeul-Médenine, 22-25 November 2007), Options Méditerranéennes, Série A (No. 83, pp. 17-23).

Ghaed-Rahimi L, Heidari B, Dadkhodaie A. (2017). Construction and efficiency of selection indices in wheat (Triticum aestivum L.) under drought stress and well-irrigated conditions. Plant Breed Biotechnol. 5:78–87. doi:10.9787/PBB.2017.5.2.078. DOI: https://doi.org/10.9787/PBB.2017.5.2.78

Godfray, H., Beddington, J., Crute, I., Haddad, L., Lawrence, D., & Muir, J. et al. (2010). Food Security: The Challenge of Feeding 9 Billion People. Science, 327(5967), 812-818. https://doi.org/10.1126/science.1185383. DOI: https://doi.org/10.1126/science.1185383

Gokulraj N, Ravichandran V, Boominathan P, Soundararajan R. (2018). Response of silicon on membrane stability, plant water status and yield of rice genotypes under drought. International Journal of Agricultural Science, 10:6615–6618. https://www.bioinfopublication.org/jouarchive.php?opt=&jouid=BPJ0000217.

Hailu Gebre-Mariam., Tanner, D., & Mengistu Hulluka. (1991). Wheat research in Ethiopia. Institute of Agricultural Research.

Haque, M., Yamamoto, S., Malik, A., & Sauerborn, R. (2012). Households' perception of climate change and human health risks: A community perspective. Environmental Health, 11(1). https://doi.org/10.1186/1476-069x-11-1. DOI: https://doi.org/10.1186/1476-069X-11-1

Harlan, H. V. & Martini, M. L. (1929). A composite hybrid mixture. Journal of the American Society of Agronomy 21, 487–490. DOI: https://doi.org/10.2134/agronj1929.00021962002100040014x

Hatfield, J., & Beres, B. (2019). Yield Gaps in Wheat: Path to Enhancing Productivity. Frontiers In Plant Science, 10. https://doi.org/10.3389/fpls.2019.01603. DOI: https://doi.org/10.3389/fpls.2019.01603

Hurry, V., Druart, N., Cavaco, A., Gardeström, P., & Strand, Å. (2002). Photosynthesis at Low Temperatures. Plant Cold Hardiness, 161-179. https://doi.org/10.1007/978-1-4615-0711-6_12. DOI: https://doi.org/10.1007/978-1-4615-0711-6_12

Jackson VML, Rubaihayo P, Wasswa P, Hashim AT. )2019(. Inheritance of silicon uptake ability in rice blast resistant varieties. Asian Journal of Research in Crop Science. 4:1–6. doi:10.9734/ajrcs/2019/v4i230066. DOI: https://doi.org/10.9734/ajrcs/2019/v4i230066

Jandong, E., Uguru, M., & Okechukwu, E. (2019). Genotype environment interaction and stability analysis of soybean genotypes for yield and yield components across two locations in Nigeria. African Journal Of Agricultural Research, 14(34), 1897-1903. https://doi.org/10.5897/ajar2019.14265. DOI: https://doi.org/10.5897/AJAR2019.14265

Jones, R. (2021). Global Plant Virus Disease Pandemics and Epidemics. Plants, 10(2), 233. https://doi.org/10.3390/plants10020233. DOI: https://doi.org/10.3390/plants10020233

Kafawin, O., Saoub, H., Ceccarelli, S., Shakhatreh, Y., Yasin, A., Grando, S., & Khazaleh, A. (2005). Participatory barley breeding for improving production in stress environments. Dirasat. Agricultural Sciences, 32, 57-63.

Kausch, A., Deresienski, A., Hague, J., Tilelli, M., Dellaporta, S., Nelson, K., & Li, Y. (2013). Hybrid Plant Systems for Breeding and Gene Confinement in Bioenergy Crops. New and Future Developments In Catalysis, 141-171. https://doi.org/10.1016/b978-0-444-53878-9.00007-2. DOI: https://doi.org/10.1016/B978-0-444-53878-9.00007-2

KC, S., & Lutz, W. (2017). The human core of the shared socioeconomic pathways: Population scenarios by age, sex and level of education for all countries to 2100. Global Environmental Change, 42, 181-192. https://doi.org/10.1016/j.gloenvcha.2014.06.004. DOI: https://doi.org/10.1016/j.gloenvcha.2014.06.004

Khayatnezhad, M., Zaeifizadeh, M., & Gholamin, R. (2010). Investigation and selection index for drought stress. Australian Journal of Basic and Applied Sciences, 4(10), 4815-4822.

Kloppenburg, J. (2010). Impeding Dispossession, Enabling Repossession: Biological Open Source and the Recovery of Seed Sovereignty. Journal of Agrarian Change, 10(3), 367-388. https://doi.org/10.1111/j.1471-0366.2010.00275.x. DOI: https://doi.org/10.1111/j.1471-0366.2010.00275.x

Knežević, D., Radosavac, A., & Zelenika, M. (2015). Variability of grain weight per spike in wheat grown in different ecological conditions. Acta Agriculturae Serbica, 20(39), 85-95. https://doi.org/10.5937/aaser1539085k. DOI: https://doi.org/10.5937/AASer1539085K

Krupal, S., Rathod, S., & Kamble, B. (2018). Stability analysis for yield and quality traits in wheat (Triticum aestivum L.). Electronic Journal of Plant Breeding, 9(1), 160. https://doi.org/10.5958/0975-928x.2018.00019.4. DOI: https://doi.org/10.5958/0975-928X.2018.00019.4

Lauer, J., & Partridge, J. (1990). Planting Date and Nitrogen Rate Effects on Spring Malting Barley. Agronomy Journal, 82(6), 1083-1088. https://doi.org/10.2134/agronj1990.00021962008200060011x. DOI: https://doi.org/10.2134/agronj1990.00021962008200060011x

Lemaux PG, Qualset CO (2001) Advances in technology for wheat breeding. Israel Journal of Plant Sciences, 49: S-105—S-115. DOI: https://doi.org/10.1560/M5H4-3Q93-CHRK-75NA

Lemessa, A., & Gemechu, A. (2016). Analysis of factors affecting smallholder farmers’ access to formal credit in Jibat District, West Shoa Zone, Ethiopia. International Journal of African and Asian Studies, 25, 43-53.

Li, Y., Guan, K., Schnitkey, G., DeLucia, E., & Peng, B. (2019). Excessive rainfall leads to maize yield loss of a comparable magnitude to extreme drought in the United States. Global Change Biology, 25(7), 2325-2337. https://doi.org/10.1111/gcb.14628. DOI: https://doi.org/10.1111/gcb.14628

Liliane, T. N., & Charles, M. S. (2020). Factors affecting yield of crops. Agronomy-Climate Change & Food Security; IntechOpen: London, UK, 9.

Mafongoya, P., Musokwa, M., Mwadzingeni, L., & Phophi, M. (2022). Climate Change Impacts on Food and Nutrition Security on Smallholder Farmers in Southern Africa. Food Security for African Smallholder Farmers, 233-249. https://doi.org/10.1007/978-981-16-6771-8_14. DOI: https://doi.org/10.1007/978-981-16-6771-8_14

Mansour, E., Moustafa, E., El-Naggar, N., Abdelsalam, A., & Igartua, E. (2018). Grain yield stability of high-yielding barley genotypes under Egyptian conditions for enhancing resilience to climate change. Crop and Pasture Science, 69(7), 681. https://doi.org/10.1071/cp18144. DOI: https://doi.org/10.1071/CP18144

Mather, K. and Jinks, J.L. (1982) Introduction to Biometrical Genetics. Chapman and Hall Ltd., London. DOI: https://doi.org/10.1007/978-1-4899-3406-2

Mauromicale, G., Occhipinti, A., & Mauro, R. (2010). Selection of shade-adapted subterranean clover species for cover cropping in orchards. Agronomy for Sustainable Development, 30(2), 473-480. https://doi.org/10.1051/agro/2009035. DOI: https://doi.org/10.1051/agro/2009035

Mayer, K.F., Waugh, R., Brown, J.W., Schulman, A., Langridge, P., Platzer, M., et al. (2012) A Physical, Genetic and Functional Sequence Assembly of the Barley Genome. Nature, 491, 711-716. DOI: https://doi.org/10.1038/nature11543

Mazoyer, M. A. (2006). History of world agriculture/M. Mazoyer, L. Roudart. London: Earthscan. DOI: https://doi.org/10.4324/9781849773812

McLarnon E, McQueen-Mason S, Lenk I, Hartley SE. (2017). Evidence for active uptake and deposition of Si-based defenses in tall fescue. Frontiers in Plant Science. 8:1–11. doi:10.3389/fpls.2017.01199 DOI: https://doi.org/10.3389/fpls.2017.01199

Mombo, S., Dumat, C., Shahid, M., & Schreck, E. (2016). A socio-scientific analysis of the environmental and health benefits as well as potential risks of cassava production and consumption. Environmental Science and Pollution Research, 24(6), 5207-5221. https://doi.org/10.1007/s11356-016-8190-z. DOI: https://doi.org/10.1007/s11356-016-8190-z

Moral, L., Rharrabti, Y., Villegas, D., & Royo, C. (2003). Evaluation of Grain Yield and Its Components in Durum Wheat under Mediterranean Conditions. Agronomy Journal, 95(2), 266-274. https://doi.org/10.2134/agronj2003.2660. DOI: https://doi.org/10.2134/agronj2003.2660

Mwadzingeni L, Shimelis H, Tesfay S, Tsilo TJ. (2016b). Screening of bread wheat genotypes for drought tolerance using phenotypic and proline analysis. Front Plant Science. 7:1276. doi:10. 3389/fpls.2016.01276. DOI: https://doi.org/10.3389/fpls.2016.01276

Nazari, L., & Pakniyat, H. (2010). Assessment of Drought Tolerance in Barley Genotypes. Journal of Applied Sciences, 10(2), 151-156. https://doi.org/10.3923/jas.2010.151.156. DOI: https://doi.org/10.3923/jas.2010.151.156

Nelson, G. C., Rosegrant, M. W., Palazzo, A., Gray, I., Ingersoll, C., Robertson, R. D., ... & You, L. (2010). Food security, farming, and climate change to 2050: challenges to 2050 and beyond. IFPRI Issue Brief.

Nicholson, S. E., Funk, C., & Finkd, A. H. (2018). Rainfall over the African Continent from the 19th through the 21st Century. Global and Planetary Change, 165, 114-127. https://doi.org/10.1016/j.gloplacha.2017.12.014. DOI: https://doi.org/10.1016/j.gloplacha.2017.12.014

Pandey, P., Irulappan, V., Bagavathiannan, M., & Senthil-Kumar, M. (2017). Impact of Combined Abiotic and Biotic Stresses on Plant Growth and Avenues for Crop Improvement by Exploiting Physio-morphological Traits. Frontiers In Plant Science, 8. https://doi.org/10.3389/fpls.2017.00537. DOI: https://doi.org/10.3389/fpls.2017.00537

Pecl, G., Araújo, M., Bell, J., Blanchard, J., Bonebrake, T., & Chen, I. et al. (2017). Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being. Science, 355(6332). https://doi.org/10.1126/science.aai9214. DOI: https://doi.org/10.1126/science.aai9214

Peng, J., Sun, D., & Nevo, E. (2011). Domestication evolution, genetics and genomics in wheat. Molecular Breeding, 28(3), 281-301. https://doi.org/10.1007/s11032-011-9608-4. DOI: https://doi.org/10.1007/s11032-011-9608-4

Pour, S., Wahab, A., & Shahid, S. (2020). Spatiotemporal changes in aridity and the shift of drylands in Iran. Atmospheric Research, 233, 104704. https://doi.org/10.1016/j.atmosres.2019.104704. DOI: https://doi.org/10.1016/j.atmosres.2019.104704

Powell, L., Chriqui, J., Khan, T., Wada, R., & Chaloupka, F. (2012). Assessing the potential effectiveness of food and beverage taxes and subsidies for improving public health: a systematic review of prices, demand and body weight outcomes. Obesity Reviews, 14(2), 110-128. https://doi.org/10.1111/obr.12002. DOI: https://doi.org/10.1111/obr.12002

Pramanik, P., Bhattacharya, P., Chakrabarti, B., & Ghosh, T. (2019). Improved Soil Environment Under Conservation Agriculture. Sustainable Management of Soil and Environment, 169-192. https://doi.org/10.1007/978-981-13-8832-3_5. DOI: https://doi.org/10.1007/978-981-13-8832-3_5

Prasanna YL, Rajeswari VR, Rao PR, Umamahesh V, Prasad MS. (2018). Influence of silicon solubilizers on growth and yield of rice genotypes. Andhra Pradesh Journal of Agricultural Sciences. 6:1090–1095. https://sasapjas.org/wp-ontent/uploads/2019/08/234.pdf.

Ramirez-Contreras, N., Fontanilla-Díaz, C., Pardo, L., Delgado, T., Munar-Florez, D., & Wicke, B. (2022). Integral analysis of environmental and economic performance of combined agricultural intensification & bioenergy production in the Orinoquia region. Journal of Environmental Management, 303, 114137. https://doi.org/10.1016/j.jenvman.2021.114137. DOI: https://doi.org/10.1016/j.jenvman.2021.114137

Rao BN, Pozniak CJ, Hucl PJ, Briggs C. (2010). Baking quality of emmer-derived durum wheat breeding lines. Journal of Cereal Science, doi: 10.1016/j.jcs.2010.01.004. DOI: https://doi.org/10.1016/j.jcs.2010.01.004

Rothstein, D., & Zak, D. (2001). Photosynthetic adaptation and acclimation to exploit seasonal periods of direct irradiance in three temperate, deciduous-forest herbs. Functional Ecology, 15(6), 722-731. https://doi.org/10.1046/j.0269-8463.2001.00584.x. DOI: https://doi.org/10.1046/j.0269-8463.2001.00584.x

Roudart, L., & Mazoyer, M. (2015). The Origins and Propagation of Agriculture: The Formation of the Contemporary Diet. A Place-Based Perspective of Food in Society, 9-35. https://doi.org/10.1057/9781137408372_2. DOI: https://doi.org/10.1057/9781137408372_2

Samson, J., Berteaux, D., McGill, B., & Humphries, M. (2011). Geographic disparities and moral hazards in the predicted impacts of climate change on human populations. Global Ecology and Biogeography, 20(4), 532-544. https://doi.org/10.1111/j.1466-8238.2010.00632.x. DOI: https://doi.org/10.1111/j.1466-8238.2010.00632.x

Sattar, A., Sher, A., Ijaz, M., Ul-Allah, S., Rizwan, M., & Hussain, M. et al. (2020). Terminal drought and heat stress alter physiological and biochemical attributes in flag leaf of bread wheat. PLOS ONE, 15(5), e0232974. https://doi.org/10.1371/journal.pone.0232974. DOI: https://doi.org/10.1371/journal.pone.0232974

Shavrukov Y, Kurishbayev A, Jatayev S, Shvidchenko V, Zotova L, Koekemoer F, de Groot S, Soole K, Langridge P. (2017). Early flowering as a drought escape mechanism in plants: how can it aid wheat production? Front Plant Science. 8:1–8. doi:10. 3389/fpls.2017.01950. DOI: https://doi.org/10.3389/fpls.2017.01950

Slewinski, T. (2012). Non-structural carbohydrate partitioning in grass stems: a target to increase yield stability, stress tolerance, and biofuel production. Journal of Experimental Botany, 63(13), 4647-4670. https://doi.org/10.1093/jxb/ers124. DOI: https://doi.org/10.1093/jxb/ers124

Solh, M., & van Ginkel, M. (2014). Drought preparedness and drought mitigation in the developing world׳s drylands. Weather and Climate Extremes, 3, 62-66. https://doi.org/10.1016/j.wace.2014.03.003. DOI: https://doi.org/10.1016/j.wace.2014.03.003

Sreenivasulu, N., Graner, A., & Wobus, U. (2008). Barley Genomics: An Overview. International Journal of Plant Genomics, 2008, 1-13. https://doi.org/10.1155/2008/486258. DOI: https://doi.org/10.1155/2008/486258

Suneson, C. (1969). Evolutionary Plant Breeding 1. Crop Science, 9(2), 119-121. https://doi.org/10.2135/cropsci1969.0011183x000900020001x. DOI: https://doi.org/10.2135/cropsci1969.0011183X000900020001x

Suneson, C. A. (1956). An evolutionary plant breeding method. Agronomy Journal, 48(4), 188–191. https://doi.org/10.2134/agronj1956.00021962004800040012x. DOI: https://doi.org/10.2134/agronj1956.00021962004800040012x

Taketa, S., Linde-Laursen, I., & Künzel, G. (2003). Cytogenetic diversity. Developments in Plant Genetics and Breeding, 97-119. https://doi.org/10.1016/s0168-7972(03)80008-7. DOI: https://doi.org/10.1016/S0168-7972(03)80008-7

Thomas, C., Cameron, A., Green, R., Bakkenes, M., Beaumont, L., & Collingham, Y. (2004). Extinction risk from climate change. Nature, 427(6970), 145-148. https://doi.org/10.1038/nature02121. DOI: https://doi.org/10.1038/nature02121

United Nations Department of Economic and Social Affairs. (2019). 2019 Revision of world population prospects.

Verma, A., Singh, J., Kumar, V., Kharab, A., & Singh, G. (2017). Rank based stability measures to select stable and adapted dual purpose barley (Hordeum vulgare L) genotypes. Journal of Experimental Biology and Agricultural Sciences, 5(4), 456-462. https://doi.org/10.18006/2017.5(4).456.462. DOI: https://doi.org/10.18006/2017.5(4).456.462

von Bothmer, R., & Komatsuda, T. (2010). Barley Origin and Related Species. Barley, 14-62. https://doi.org/10.1002/9780470958636.ch2. DOI: https://doi.org/10.1002/9780470958636.ch2

Waddington, S., Li, X., Dixon, J., Hyman, G., & de Vicente, M. (2010). Getting the focus right: production constraints for six major food crops in Asian and African farming systems. Food Security, 2(1), 27-48. https://doi.org/10.1007/s12571-010-0053-8. DOI: https://doi.org/10.1007/s12571-010-0053-8

Wang, S., Zhou, S., Wang, L., Liu, X., Ma, Y., & Tong, L. (2022). Effect of an Environment Friendly Heat and Relative Humidity Approach on γ-Aminobutyric Acid Accumulation in Different Highland Barley Cultivars. Foods, 11(5), 691. https://doi.org/10.3390/foods11050691. DOI: https://doi.org/10.3390/foods11050691

Weih, M., Karley, A., Newton, A., Kiær, L., Scherber, C., & Rubiales, D. (2021). Grain Yield Stability of Cereal-Legume Intercrops Is Greater Than Sole Crops in More Productive Conditions. Agriculture, 11(3), 255. https://doi.org/10.3390/agriculture11030255. DOI: https://doi.org/10.3390/agriculture11030255

Worku T, Khare D, Tripathi SK. (2018). Spatiotemporal trend analysis of rainfall and temperature and its implication on crop production. Journal of Water and Climate Change. 10:799–817. doi:10. 2166/wcc.2018.064. DOI: https://doi.org/10.2166/wcc.2018.064

Yamlahi, A. E., Berny, E., Hammoumi, A., & Ouhssine, M. (2013). Effect of barley (Hordeum vulgare L.) flour incorporation on the baking quality of wheat (Triticum aestivum L.) flour. Journal of Chemical and Pharmaceutical Research, 5(2), 162-170.

Yan, S., Wu, Y., Fan, J., Zhang, F., Qiang, S., & Zheng, J. (2019). Effects of water and fertilizer management on grain filling characteristics, grain weight and productivity of drip-fertigated winter wheat. Agricultural Water Management, 213, 983-995. https://doi.org/10.1016/j.agwat.2018.12.019. DOI: https://doi.org/10.1016/j.agwat.2018.12.019

Zargar SM, Mahajan R, Bhat JA, Nazir M, Deshmukh R. (2019). Role of silicon in plant stress tolerance: opportunities to achieve a sustainable cropping system. 3 Biotech. 9:73. doi:10.1007/s13205-019-1613-z. DOI: https://doi.org/10.1007/s13205-019-1613-z

Zhou, M. (2009). Barley Production and Consumption. Advanced Topics In Science And Technology In China, 1-17. https://doi.org/10.1007/978-3-642-01279-2_1. DOI: https://doi.org/10.1007/978-3-642-01279-2_1




How to Cite

Al-Khatib, A. ., Kafawin , O. ., & Grando , S. . (2023). Yield Stability and Quality of Wheat (Triticum spp.) and Barley (Hordeum Vulgare) Populations Evolving under Different Microenvironments: A review. Jordan Journal of Agricultural Sciences, 19(1), 89–104. https://doi.org/10.35516/jjas.v19i1.1238