Review Article Olive Fruit Fly Bacterocera Oleae Infestation of Olives: Effect on Quality and Detection in Olive Oil

Authors

DOI:

https://doi.org/10.35516/jjas.v19i1.1236

Keywords:

Olive fruit fly, olive oil quality, insect ‎residues in oil, olive fruit fly control

Abstract

Bacterocera oleae ‎ is the most common olive fruit pest in Jordan. The high incidence of olive fruit infestation with fruit fly in its stages of larvae and pupa is a common problem in olive oil production. Although not detected by simple means, it is believed to impart a “Grubby” taste that is detected only by experts and results in lowering the value of the oil from infested fruits. The effect of damage caused by B. oleae ‎ depends on the degree of infestation which is manifested in the presence of exit holes (EH) produced by the full-grown larvae which destroy the fruit skin and expose it to oxygen and other destructive factors like fungi. This results in the acceleration of hydrolytic and oxidative types of rancidity which can be estimated by measuring oil acidity (FFA) and peroxide value (PV). This review covers the literature related to the effect of olive fruit fly infestation on the quality of olive fruits and oil and the methods used in its control and detection.

Downloads

Download data is not yet available.

Author Biographies

Ayed Amr, University of Jordan, Amman, Jordan11942.

Professors, Departments of Nutrition and Food Technology and Horticulture and Agronomy respectively, College of Agriculture, University of Jordan, Amman, Jordan11942.

Monther Sadder, University of Jordan, Amman, Jordan11942.

Professors, Departments of Nutrition and Food Technology and Horticulture and Agronomy respectively, College of Agriculture, University of Jordan, Amman, Jordan11942.

Nawal Sakarneh, University of Jordan, Amman, Jordan11942

 Graduate Student, Departments of Nutrition and Food Technology, College of Agriculture, University of Jordan, Amman, Jordan11942

References

Amvrazi, E and Albanis, T. (2008). Multiclass pesticide determination in olives and their processing factors in olive oil: comparison of different olive oil extraction systems. Journal of agricultural and food chemistry, 56(14), 5700-5709.‏ DOI: https://doi.org/10.1021/jf703783u

Baker, R., Herbert, R., Howse, P., Jones, O., Francke, W., and Reith, W. (1980). Identification and synthesis of the major sex pheromone of the olive fly (Dacus oleae). Journal of the Chemical Society, Chemical Communications, (2), 52-53.‏ DOI: https://doi.org/10.1039/c39800000052

Bendini, A., Cerretani, L., Cichelli, A. and Lercker, G. (2008). Come l’infestazione da Bactrocera oleae può causare variazioni nel profilo aromatico di oli vergini da olive. Rivista Italiana di Sostanze Grasse, 86, 167-177.‏

Beyaz, A., Gila, D. M. M., Ortega, J. G.,and García, J. G. (2019). Olive fly sting detection based on computer vision. Postharvest Biology and Technology, 150, 129-136.‏ DOI: https://doi.org/10.1016/j.postharvbio.2019.01.003

Bhat, A. and Rao, G. (2020). Polymerase chain reaction. In Characterization of Plant Viruses (pp. 323-345). Humana, New York, NY.‏ DOI: https://doi.org/10.1007/978-1-0716-0334-5_35

Brown, S. M., Abbott, S., and Guarino, P. A. (1982). Screening procedure for uric acid as an indicator of infestation in spices. Journal of the Association of Official Analytical Chemists, 65(2), 270-272.‏ DOI: https://doi.org/10.1093/jaoac/65.2.270

Bueno, A. and Jones, O. (2002). Alternative methods for controlling the olive fly, Bactrocera oleae, involve semiochemicals. Foods, 25 (9), 147-156.

Burks, C. S., Dowell, F. and Xie, F. (2000). Measuring fig quality using near-infrared spectroscopy. Journal of stored products Research, 36(3), 289-296.‏ DOI: https://doi.org/10.1016/S0022-474X(99)00050-8

Cherfaoui, M., Cecchi, T., Keciri, S., and Boudriche, L. (2018). Volatile compounds of Algerian extra-virgin olive oils: Effects of cultivar and ripening stage. International Journal of Food Properties, 21(1), 36-49.‏ DOI: https://doi.org/10.1080/10942912.2018.1437627

Joint FAO/WHO Codex Alimentarius Commission. (2022). Pesticide residues in food and feed. (CAC) Food and Agriculture Organization of the United Nations. Rome, Italy. https://www.fao.org/fao-who-codexalimentarius/codex-home/es. Retrieved 11/2021.

Da Silva Malheiro, R. M. (2015). Olive Fruit Fly (Bactrocera oleae Rossi): Olive Tree Interactions: Study of Physical and Chemical Aspects. Unpuplished Master Dissertation, Universidade do Porto (Portugal).

Daane, K. M., and Johnson, M. W. (2010). Olive fruit fly: managing an ancient pest in modern times. Annual review of entomology, 55, 151-169.‏ DOI: https://doi.org/10.1146/annurev.ento.54.110807.090553

Deutscher, A. T., Chapman, T. A., Shuttleworth, L. A., Riegler, M., and Reynolds, O. (2019). Tephritid-microbial interactions to enhance fruit fly performance in sterile insect technique programs. BMC microbiology, 19(1), 1-14.‏ DOI: https://doi.org/10.1186/s12866-019-1650-0

Díaz-Fleischer, F., Pinero, J. C., and Shelly, T. E. (2014). Interactions between tephritid fruit fly physiological state and stimuli from baits and traps: looking for the pied piper of Hamelin to lure pestiferous fruit flies. In Trapping and the detection, control, and regulation of tephritid fruit flies (pp. 145-172). Springer, Dordrecht.‏ DOI: https://doi.org/10.1007/978-94-017-9193-9_5

Dimou, I., Rempoulakis, P. and Economopoulos, A. .(2010).Olive fruit fly [Bactrocera (Dacus) oleae (Rossi)(Diptera: Tephritidae)] adult rearing diet without antibiotics. Journal of Applied Entomology, 134 (1), 72-79. DOI: https://doi.org/10.1111/j.1439-0418.2009.01433.x

Dogan, H., and Subramanyam, B. (2017). Analysis for the extraneous matter. In Food Analysis (pp. 599-614). Springer, Cham.‏ DOI: https://doi.org/10.1007/978-3-319-45776-5_34

Dominiak, B. C., and Ekman, J. H. (2013). The rise and demise of control options for fruit fly in Australia. Crop Protection, 51, 57-67.‏ DOI: https://doi.org/10.1016/j.cropro.2013.04.006

Jordan Department of Statistics (DOS).(2019). Food balance sheets/self sufficiency ratio. DOS, Amman/ Jordan. http://jorinfo.dos.gov.jo/Databank/pxweb/en/FoodBalanceSheet/FoodBalanceSheet__Self-Sufficiency-Ratio/L_Tab12-OliveProduct.px/table/tableViewLayout. Retrieved 2/11/2021.from

Ekramirad, N., Adedeji, A. A.,and Alimardani, R. (2016). A review of non-destructive methods for detection of insect infestation in fruits and vegetables.‏

European Commission. (1991). Regulation No. 2568/91/EEC, July 11. Official Journal of the European Communities, L248, 1–83.

European Commission. (2009). EU. Pesticides database, Regulation No 1107/2009.

Farré, M. and Barceló, D. (2013). Analysis of emerging contaminants in food. TrAC Trends in Analytical Chemistry, 43, 240-253. DOI: https://doi.org/10.1016/j.trac.2012.12.003

Freihat, N. M., Shannag, H. K., and Alkelani, M. A. (2021). Effects of supplementary irrigation on the performance of ‘Nabali’and ‘Grossa de Spain’olives under semi-arid conditions in Jordan. Scientia Horticulturae, 275, 109696.‏ DOI: https://doi.org/10.1016/j.scienta.2020.109696

García-Vico, L., Belaj, A., Sánchez-Ortiz, A., Martínez-Rivas, J. M., Pérez, A. G. and Sanz, C. (2017). Volatile compound profiling by HS-SPME/GC-MS-FID of a core olive cultivar collection as a tool for aroma improvement of virgin olive oil. Molecules, 22 (1), 141. DOI: https://doi.org/10.3390/molecules22010141

Glare, T., Caradus, J., Gelernter, W., Jackson, T., Keyhani, N., Köhl, J., and Stewart, A. (2012). Have biopesticides come of age?. Trends in biotechnology, 30(5), 250-258.‏ DOI: https://doi.org/10.1016/j.tibtech.2012.01.003

Gonella, E., Orrù, B., Marasco, R., Daffonchio, D., and Alma, A. (2020). Disruption of Host-Symbiont Associations for the Symbiotic Control and Management of Pentatomid Agricultural Pests-A Review. Frontiers in Microbiology, 11.‏ DOI: https://doi.org/10.3389/fmicb.2020.547031

Green, M. R., and Sambrook, J. (2021). A guide to cloning the products of polymerase chain reactions. Cold Spring Harbor Protocols, 2021(9), pdb-top101345.‏ DOI: https://doi.org/10.1101/pdb.top101345

Gucci, R., Caruso, G., Canale, A., Loni, A., Raspi, A., Urbani, S., Taticchi, A., Esposto, S. and Servili, M. (2012). Qualitative changes of olive oils obtained from fruits damaged by Bactrocera oleae (Rossi). HortScience, 47 (2), 301-306. DOI: https://doi.org/10.21273/HORTSCI.47.2.301

Hakme, E., Lozano, A., Ferrer, C., Díaz-Galiano, F. and Fernandez-Alba, A. (2018). Analysis of pesticide residues in olive oil and other vegetable oils. TrAC Trends in Analytical Chemistry, 100, 167-179. DOI: https://doi.org/10.1016/j.trac.2017.12.016

Haniotakis, G., Kozyrakis, E. and Bonatsos, C. (1986). Control of the olive fruit fly, Dacus oleae Gmel.(Dipt., Tephritidae) by mass trapping: A pilot scale feasibility study. Journal of Applied Entomology, 101 (1‐5), 343-352. DOI: https://doi.org/10.1111/j.1439-0418.1986.tb00868.x

Hsu, J., Haymer, D., Wu, W., and Feng, H. (2006). Mutations in the acetylcholinesterase gene of Bactrocera dorsalis are associated with resistance to organophosphorus insecticides. Insect Biochemistry and Molecular Biology, 36 (5), 396-402. DOI: https://doi.org/10.1016/j.ibmb.2006.02.002

IOOC. International Olive Council ( IOC). (2021). Jordan and IOC strengthen collaboration. IOC. Madrid/ Spain. (https://www.internationaloliveoil.org/jordan- andiocstrengthen%E2%80%8E%E2%80%8E%E2%80%8Ecollaboration%E2%80%8E). Retrieved 20/11/ 2021 ‎.

Jackson, E. S., and Haff, R. P. (2006). X-ray detection and sorting of olives damaged by fruit fly. In 2006 ASAE Annual Meeting (p. 1). American Society of Agricultural and Biological Engineers.‏ DOI: https://doi.org/10.13031/2013.21488

JSMO (Jordan Standards and Metrology Organisation). (2012).Fats and oils-Olive oil and olive pomace oil, Jordan, Amman.

Kadri, K. (2019).Polymerase chain reaction (PCR): principles and application. In Synthetic Biology-New Interdisciplinary Science.IntechOpen. DOI: https://doi.org/10.5772/intechopen.86491

Katsoyannos, B. I. and Kouloussis, N. A. (2001). Captures of the olive fruit fly Bactrocera oleae on spheres of different colors. Entomologia Experimentalis et Applicata, 100 (2), 165-172. DOI: https://doi.org/10.1046/j.1570-7458.2001.00860.x

Klepzig, K., Adams, A., Handelsman, J. and Raffa, K. (2009). Symbioses: a key driver of insect physiological processes, ecological interactions, evolutionary diversification, and impacts on humans. Environmental Entomology, 38 (1), 67-77. DOI: https://doi.org/10.1603/022.038.0109

Kokkari, A. I., Milonas, P. G., Anastasaki, E., Floros, G. D., Kouloussis, N. A., and Koveos, D. S. (2021). Determination of volatile substances in olives and their effect on reproduction of the olive fruit fly. Journal of Applied Entomology. DOI: https://doi.org/10.1111/jen.12929

Marchand, P. A. (2017). Basic and low-risk substances under European Union pesticide regulations: a new choice for biorational portfolios of small and medium-sized enterprises. Journal of Plant Protection Research, 57(4).‏ DOI: https://doi.org/10.1515/jppr-2017-0056

Mariotti, E., and Mascini, M. (2001). Determination of extra virgin olive oil acidity by FIA-titration. Food Chemistry, 73(2), 235-238.‏ DOI: https://doi.org/10.1016/S0308-8146(00)00323-X

Mavragani-Tsipidou, P. (2002). Genetic and cytogenetic analysis of the olive fruit fly Bactrocera oleae (Diptera: Tephritidae). Genetica, 116(1), 45-57.‏ DOI: https://doi.org/10.1023/A:1020907624816

Ministry of Planning in Jordan (MOP). (2002). Report on export strategies for Jordanian olive oil, Jordan, Amman.

Moscetti, R., Haff, R. P., Stella, E., Contini, M., Monarca, D., Cecchini, M., and Massantini, R. (2015). Feasibility of NIR spectroscopy to detect olive fruit infested by Bactrocera oleae. Postharvest Biology and Technology, 99, 58-62.‏ DOI: https://doi.org/10.1016/j.postharvbio.2014.07.015

Mraicha, F., Ksantini, M., Zouch, O., Ayadi, M., Sayadi, S., and Bouaziz, M. (2010). Effect of olive fruit fly infestation on the quality of olive oil from Chemlali cultivar during ripening. Food and Chemical Toxicology, 48(11), 3235-3241.‏ DOI: https://doi.org/10.1016/j.fct.2010.08.031

Nardi, F., Carapelli, A., Vontas, J. G., Dallai, R., Roderick, G. K., and Frati, F. (2006). Geographical distribution and evolutionary history of organophosphate-resistant Ace alleles in the olive fly (Bactrocera oleae). Insect biochemistry and molecular biology, 36(7), 593-602.‏ DOI: https://doi.org/10.1016/j.ibmb.2006.05.002

Neuenschwander, P. and Michelakis, S. (1978).The infestation of Dacus oleae (Gmel.)(Diptera, Tephritidae) at harvest time and its influence on yield and quality of olive oil in Crete. Zeitschrift für angewandte Entomologie, 86 (1‐4), 420-433. DOI: https://doi.org/10.1111/j.1439-0418.1978.tb01948.x

Ofuoku, A., Egho, E. and Enujeke, E. (2009).Integrated pest management (IPM) adoption among farmers in Central Agro-ecological Zone of Delta State, Nigeria. African Journal of Agricultural Research, 3 (1-2), 29-33.

Parsa, S., Morse, S., Bonifacio, A., Chancellor, T. C., Condori, B., Crespo-Pérez, V., Hobbs, S. L., Kroschel, J., Ba, M. N. and Rebaudo, F. (2014). Obstacles to integrated pest management adoption in developing countries. Proceedings of the National Academy of Sciences, 111 (10) 3889-3894. DOI: https://doi.org/10.1073/pnas.1312693111

Pereira, J. A., Alves, M. R., Casal, S. and Oliveira, B. (2004). Effect of olive fruit fly infestation on the quality of olive oil from cultivars Cobrançosa, Madural, and Verdeal Transmontana. Italian Journal of Food Science. 16:3, p. 355-365.

Pereira, J. A., Casal, S., Bento, A., and Oliveira, M.. (2002). Influence of olive storage period on oil quality of three portuguese cultivars of Olea europea, cobrançosa, madural, and verdeal transmontana. Journal of Agricultural and Food Chemistry, 50 (22), 6335-6340. DOI: https://doi.org/10.1021/jf011661y

Sagri, E., Reczko, M., Tsoumani, K. T., Gregoriou, M.-E., Harokopos, V., Mavridou, A.-M., Tastsoglou, S., Athanasiadis, K., Ragoussis, J. and Mathiopoulos, K. (2014). The molecular biology of the olive fly comes of age. BMC Genetics, 15 (2), 1-15. DOI: https://doi.org/10.1186/1471-2156-15-S2-S8

Shariff, S., Ibrahim, N. J., Md-Zain, B. M., Idris, A. B., Suhana, Y., Roff, M. N., and Iatrou, K. (2014). Multiplex PCR in the determination of Opiinae parasitoids of fruit flies, Bactrocera sp., infesting star fruit and guava. Journal of Insect Science, 14(1).‏ DOI: https://doi.org/10.1093/jis/14.1.7

Sinno, M., Bézier, A., Vinale, F., Giron, D., Laudonia, S., Garonna, A. P., and Pennacchio, F. (2020). Symbiosis disruption in the olive fruit fly, Bactrocera oleae (Rossi), as a potential tool for sustainable control. Pest Management Science, 76(9), 3199-3207.‏ DOI: https://doi.org/10.1002/ps.5875

Tahoun, I. F., Yamani, R. N.,and Shehata, A. B. (2019). Preparation of matrix reference material for quality assurance and control of pesticide analysis in olive oil. Accreditation and Quality Assurance, 24 (4), 297-304. DOI: https://doi.org/10.1007/s00769-019-01380-0

Tamendjari, A., Angerosa, F. and Bellal, M. (2004). Influence of Bacterocera Oleae infestation on olive oil quality during ripping of chemical olives. Italian Journal of Food Science, 16 (3).

Tamendjari, A., Angerosa, F., Mettouchi, S. and Bellal, M. (2009). The effect of fly attack (Bactrocera oleae) on the quality and phenolic content of Chemlal olive oil. Grasasy aceites, 60 (5), 509-515. DOI: https://doi.org/10.3989/gya.032209

Thomas, D. B. and Mangan, R. L. (2005). Nontarget impact of spinosad GF-120 bait sprays for control of the Mexican fruit fly (Diptera: Tephritidae) in Texas citrus. Journal of economic entomology, 98 (6), 1950-1956. DOI: https://doi.org/10.1093/jee/98.6.1950

Topuz, H. and Durmusoglu, E . (2008). The effect of early harvest on infestation rate of Bactrocera oleae (Gmelin)(Diptera: Tephritidae) as well as yield, acidity, and fatty acid composition of olive oil. Journal of Plant Diseases and Protection, 115 (4), 186-191. DOI: https://doi.org/10.1007/BF03356256

Torres-Vila, L., Rodriguez-Molina, M. and Martinez, J. (2003). Olive fly damage and olive storage effects on paste microflora and virgin olive oil acidity. Grasas y aceites, 54 (3), 285-294. DOI: https://doi.org/10.3989/gya.2003.v54.i3.244

Torrini, G., Mazza, G., Benvenuti, C., Simoncini, S., Landi, S., Frosinini, R., and Roversi, P. F. (2020). Entomopathogenic nematodes as potential biocontrol agents against Bactrocera oleae (Diptera: Tephritidae). Biocontrol Science and Technology, 30(9), 909-919.‏ DOI: https://doi.org/10.1080/09583157.2020.1775177

Uchôa, M. A. (2012). Fruit flies (Diptera: Tephritoidea): biology, host plants, natural enemies, and the implications to their natural control. Integrated Pest Management and Pest Control: Current and Future Tactics. InTech, Rijeka, Croatia, 271-300.‏

Xing, J., Guyer, D., Ariana, D., and Lu, R. (2008). Determining optimal wavebands using genetic algorithm for detection of internal insect infestation in tart cherry. Sensing and Instrumentation for Food Quality and Safety, 2(3), 161-167.‏ DOI: https://doi.org/10.1007/s11694-008-9047-z

Yokoyama, V. (2015). Olive fruit fly (Diptera: Tephritidae) in California table olives, USA: invasion, distribution, and management implications. Journal of Integrated Pest Management, 6 (1). DOI: https://doi.org/10.1093/jipm/pmv014

Younes, N., Al-Sadeq, D. W., Al-Jighefee, H., Younes, S., Al-Jamal, O., Daas, H. I., and Nasrallah, G. K. (2020). Challenges in laboratory diagnosis of the novel coronavirus SARS-CoV-2. Viruses, 12(6), 582.‏ DOI: https://doi.org/10.3390/v12060582

Zelasco, S., Carbone, F., Lombardo, L., and Salimonti, A. (2021). Olive tree genetics, genomics, and transcriptomics for the olive oil quality improvement. In Olives and Olive Oil in Health and Disease Prevention (pp. 27-49). Academic Press.‏ DOI: https://doi.org/10.1016/B978-0-12-819528-4.00017-1

Downloads

Published

01-03-2023

How to Cite

Amr, A., Sadder, M., & Sakarneh, N. (2023). Review Article Olive Fruit Fly Bacterocera Oleae Infestation of Olives: Effect on Quality and Detection in Olive Oil. Jordan Journal of Agricultural Sciences, 19(1), 81–94. https://doi.org/10.35516/jjas.v19i1.1236

Issue

Section

Review