Progress in the Design and Development of Phosphoinositide-3-Kinase (PI3Kα) Inhibitors

Dima A. Sabbah

Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Jordan.

DOI: https://doi.org/10.35516/jjps.v16i2.1489

ABSTRACT

Background: The phosphatidylinositol 3-kinase (PI3K α) has been spotlighted as a potential oncogene and therapeutic target for anticancer drug design.

Objective: Target compounds were designed employing ligand- and structure-based drug design approaches to address the effect of the compounds' backbones and functionalities on their biological activity.

Methods: Synthesis of the targeted compounds, biological evaluation tests against human cancer cell lines, and molecular docking studies.

Results: Fortunately, 20 novel series of diverse scaffolds were prepared and characterized by means of FT-IR, ¹H and ¹³C NMR, HRMS, and elemental analysis. In addition, the identity of one core nucleus was successfully interpreted with the aid of X-ray crystallography. Biological activity of prepared compounds was investigated *in vitro* against human cancer cell lines. Results that these compounds inhibit cell proliferation and induce apoptosis through an increase in caspase-3 activity and a decrease in DNA cellular content. Furthermore, ligand-based pharmacophore modeling showed that the newly synthesized analogues match PI3K α inhibitors fingerprint and the molecular docking studies against PI3K α revealed that the analogues fit PI3K α kinase catalytic domain and form H-bonding with key binding residues.

Conclusion: The harvested series exhibited a potential PI3Ka inhibitory activity in human cancer cell lines.