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ABSTRACT 
Microbial biotransformations of various anabolic steroids are reviewed. Studies on oxidation, reduction, and 

carbon bond cleavage are highlighted. Various anabolic steroid substrates, their metabolites and the 

microorganisms used for the biotransformations are compiled covering the literature from the period 1984−2018. 
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1. Introduction 

Microorganisms have been used extensively for the 

hydroxylation of steroids since their enzymes catalyze 

reactions with high regio- and stereospecifity. Their ability 

to oxidize steroidal compounds has immense synthetic and 

commercial importance. This was realized for the first time 

in 1952 when Murray and Peterson of Upjohn Company 

patented the process of 11α-hydroxylation of progesterone 

by a Rhizopus species [1]. Since then, steroids subjected to 

microbial biotransformations have proliferated in order to 

obtain new steroidal derivatives for evaluation as drugs 

and hormones.  

The importance of anabolic steroids lies in their 

therapeutic use in medicine to stimulate muscle growth in 

patients with AIDS [2] and treat severe burn injury, trauma 

and chronic infections [3]. There are many reviews on 

microbial biotransformation of steroids [4−8]. However, 

no reviews on the microbial biotransformation of anabolic 

steroids have been recently reported in the literature. 

The areas which are now receiving attention in 

microbial biotechnology are: application of newer 

concepts of genetic engineering of microorganisms with 

improved characteristics such as the production of 

artificial insulin by the genetic modification 

of Escherichia coli  [9], solubility enhancement for 

carrying out biotransformation of substrates that are 

insoluble in water by using different media, including 

aqueous, aqueous: organic and organic solvents, gas: solid 

systems, supercritical fluids and ionic liquids [10], 

immobilization of enzymes or whole cells in a suitable 

matrix for economic utilization [10], development of a 

continuous process for better and economic product 

recovery such as the microbial production of vanillin 

which has been successfully used in the food industry [11]; 

and manipulation of culture media for improvement in 

product yields by use of cyclodextrin [7].  

In this review, our interest lies in the preparation of novel 

steroids that are difficult to synthesize by chemical means. 

Microbial transformations of twenty-two  anabolic steroids 

(androstenediol (1), androstenedione (2), 4-chloro-17α-

methyl testosterone (3), 4-chlorotestosterone (4), 4-
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chlorotestosterone acetate (5), dehydroepiandrosterone (6), 1-

dehydro-17α-methyltestosterone (7), 1-dehydrotestosterone 

(8), ethylestrenol (9), 17α-ethyl-19-nortestosterone (10), 

mestanolone (11), mesterolone (12), methandienone (13), 4-

methoxytestosterone (14), methyltestosterone (15), 4-

methyltestosterone (16), 17-methyl-1-testosterone (17), 

nandrolone (18), nor androstenedione (19), oxandrolone (20), 

oxymetholone (21) and testosterone (22)) (Figures–1 and –2) 

are reviewed here.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Androstenediol (1): R1 = OH, R2 = H              Androstenedione (2): R1 = R2 = R4 = R5 = C=O, R3 = H 

Dehydroepiandrosterone (6): R1 = R2             4-Chloro-17α-methyltestosterone (3): R1 = R2 = C=O, 

                                                 = C=O                                                                          R3 = Cl, R4 = OH, 

                                                                                                                                      R5 = CH3                                                                   

                                                                               4-Chlorotestosterone (4): R1 = R2 = C=O, R3 = Cl, 

                                                                                                                             R4 = OH, R5 = H 

                                                                               4-Chlorotestosterone acetate (5): R1 = R2 = C=O, 

                                                                                                                                     R3 = Cl,  

                                                                                                                                     R4 = OCOCH3, 

                                                                                                                                     R5 = H 

                                                                               4-Methoxytestosterone (14): R1 = R2 = C=O,  

                                                                                                                                   R3 = OCH3, R4 = OH, 

                                                                                                                                   R5 = H 

                                                                               Methyltestosterone (15): R1 = R2 = C=O, R3 =H,  

                                                                                                                            R4 = OH, R5 = CH3 

                                                                               4-Methyltestosterone (16): R1 = R2 = C=O, R3 =CH3,  

                                                                                                                                R4 = OH, R5 = H 

                                                                               Testosterone (22): R1 = R2 = C=O, R3 = R5 = H,  

                                                                                                                 R4 = OH                                                                                                                         
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1-Dehydro-17α-methyltestosterone (7): R1 = OH,         Ethylestrenol  (9): R1 = R2 = H, R3 = OH,                 

                                                                 R2 = CH3                                         R4 = C2H5  

1-Dehydrotestosterone (8): R1 = OH, R2 = H                 17α-Ethyl-19-nortestosterone (10): R1 = R2=                                                                

Methandienone (13): R1 = OH, R2 = H                                                                                  C=O,          

                                                                                                                                              R3 = OH, 

                                                                                                                                              R4 = C2H5 

Nandrolone (18): R1 = R2 = C=O, 

R3 = OH, R4 = H 

Norandrostenedione (19): R1 = R2 = R3 = R4 = 

C=O 

Fig. 1: Anabolic steroid substrates used in this review. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2: Anabolic steroid substrates used in this review. 
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Studies on oxidation, reduction and carbon–carbon 

bond cleavage are compiled; including the microorganism 

used, the product obtained and the reference as well 

(Tables 1–3). 

This review attempts to present the situation during the 

period from 1984 to 2018. 

 

2. Results and Discussion 

Large scale experiments showed that microbial oxidations 

of various anabolic steroids 1–22 by different 

microorganisms were predominant, including regio-selective 

hydroxylations at C–6, C–7, C–11, C–12, C–14, C–15 

positions on steroidal skeletons with high stereospecifity, 

dehydrogenations between carbons 1–2, 4–5, regiospecific 

keto formations at C–3, C–7 C–11, C–17, and Baeyer-

Villiger lactonizations at C–17 (Table-1). On the other hand, 

reductions of some anabolic steroids such as 2, 4, 6, 8, 12, 19, 

21 and 22 were also obtained in smaller numbers of 

metabolites as compared to oxidations, including reductions 

of ketones to alcohols and hydrogenations of olefinic carbons 

between carbons 4–5 and 6–7 (Table–2). Carbon-carbon 

bond cleavages, especially decarboxylations at C–17, have 

been performed on dianabol (13) and 17-methyl-1-

testosterone (17) by Rhizopus stolonifer, and Oxymetholone 

(21) by Fusarium lini (Table–3). Structures of metabolites 

were deduced through comparative spectroscopic studies 

with substrates 1–22. 

 

2.1. Oxidation 

Most studies of microbial oxidations on anabolic 

steroids describe the hydroxylation process. The 6α-, 7α-, 

11α- and 15α-hydroxylations are now extensively 

achieved by microbial transformations with high yields 

and minimum costs. For instance, the biotransformation of 

mestanolone (11) by Rhizopus stolonifer yielded two 

metabolites with 11.4% and 18.0% yields [25]. Other 

hydroxylations that seem to have an attention in industries 

are 9α-, 7β-, 11β-, 15β- and 16β-hydroxylations. On the 

other hand, the rest of oxidation studies involved Baeyer-

Villiger lactonizations, keto formations, and 

dehydrogenations. Kolek, et al. reported one step Baeyer-

Villiger lactonization of androstenediol (1) by Penicillium 

camemberti to yield a single metabolite (testolactone) [12]. 

Similarly, Al-Aboudi, et al. produced testolactone from 

testosterone (22) by the plant pathogen fungus, Rhizopus 

stolonifer [34], while 22 was subjected to dehydrogenation 

easily by Fusarium lini to form 1-dehydrotestosterone 

with a high regiosepecifity [34]. Oxidation studies on 

microbial transformations of substrates 1-22 that included 

microorganisms, metabolites and references are compiled 

(Table 1). In this review, the most useful microorganisms 

subjected to the oxidation of anabolic steroids are fungi. 

Fungi are an extremely diverse group of organisms. 

Among them, plant pathogen fungi are causing diseases 

associated with roots such as wilts and rots. The plant 

pathogen fungus Rhizopus stolonifer had the largest 

contribution in the oxidation of anabolic steroids followed 

by Fusarium culmorum and the entomopathogenic fungus 

Beauveria bassiana, respectively. 
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Table 1. Oxidation 

Substrate Microorganism Product % Yield * Reference 

Androstenediol (1) Penicillium camemberti Testolactone   [12] 

 Mortierella isabellina (i) 3,7α,17-Trihydroxyandrost- 

    5-ene  

(ii) 3,7,17-Trihydroxyandrost- 

     5-ene  

(iii) 3,17-Dihydroxyandrost-5- 

      en-7-one  

 [13] 

Androstenedione (2) Paecilomyces victoriae (i) 7α-Hydroxyandrostenedione 

      

(ii) 7α-Hydroxy-17α-methyl 

      testosterone  

 [14] 

 Phycomyces blakesleeanus  14α-Hydroxytestosterone   [15] 

4-Chloro-17α-

methyltestosterone (3) 

Fusarium culmorum 

 

(i) 6β-Hydroxy-4-chloro-17α- 

     methyltestosterone  

(ii) 15α-Hydroxy-4-chloro-17α- 

       methyltestosterone  

 [16] 

4-Chlorotestosterone (4)  Fusarium culmorum 

 

(i) 6β-Hydroxy-4- 

    chloroandrostenedione  

(ii) 15α-Hydroxy-4- 

     chloroandrostenedione  

(iii) 3β,15α -Dihydroxy-4- 

      chloro- 4-androstene-17-one 

(iv) 3β,15α-Dihydroxy-4α- 

      chloro-5α-androstan-17-one 

 [16] 

4-Chlorotestosterone acetate 

(5) 

Fusarium culmorum 3β,15α-Dihydroxy-4α-chloro-5α-

androstan-17-one  

 [17] 

Dehydroepiandrosterone 

(DHEA) (6) 

Rhizopus stolonifer (i) 17β-Hydroxyandrost-4-ene-3- 

    one  

(ii) 3β,11β-Dihydroxyandrost-4- 

     ene-17-one  

(iii) 3β,7α-Dihydroxyandrost-5- 

      ene-17-one  

(iv) 3β,7α,17β-Trihydroxyandrost- 

      5-ene 

(v) 11β-Hydroxyandrost-4,6- 

     diene-3,17-dione 

 [18, 19] 
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Substrate Microorganism Product % Yield * Reference 

 Macrophomina phaseolina (i) Androstane-3,17-dione  

(ii) Androst-4-ene-3,17-dione  

(iii) Androst-4-ene-17β-ol-3-one 

(iv) Androst-4,6-diene-17β-ol-  

      3-one  

(v) Androst-4-ene-3β-ol- 

      6,17-dione  

(vi) Androst-4-ene-3β,7β,17β-triol 

(vii) Androst-5-ene- 

       3β,7α,17β-triol  

 [20] 

 Mucor piriformis (i) 3β-Hydroxyandrost-5-ene-7,17- 

     dione  

(ii) 3β,17β-Dihydroxyandrost-5- 

     en-7-one  

(iii) 3β,7α-Dihydroxyandrost-5- 

     en-17-one  

(iv) 3β,7α,17β-Trihydroxyandrost- 

      5-ene  

 [21] 

 Penicillium 

griseopurpureum Smith 

(i) Androst-4-ene-3,17-dione  

(ii) 17a-Oxa-D-homo-androst- 

      4-ene-3,17-dione  

      (testololactone)  

(iii) 15α-Hydroxyandrost-4- 

      en-3,17-dione  

(iv) 15α-Hydroxy-17a-oxa- 

      D-homo-androst -4-ene-3,17- 

      dione  

(v) 14α-Hydroxyandrost-4- 

      en-3,17-dione  

(vi) 7α-Hydroxyandrost-4-en- 

      3,17-dione  

 [22] 

 Penicillium glabrum 

(Wehmer) 

(i) Androst-4-ene-3,17-dione  

(ii) 17a-Oxa-D-homo-androst- 

      4-ene-3,17-dione  

      (testololactone)  

(iii) 3β-Hydroxy-17a-oxa- 

      D-homo-androst-5-en-17-one  

 (iv) 3β-Hydroxy-17a-oxa- 

      D-homo-5α-androstan-17-one 

 [22] 

 Beauveria bassiana (i) 5-Androsten-3β,11α,17β-triol 

(ii) 7α-Hydroxy  

     dehydroepiandrosterone  

 [23] 

1-Dehydro-17α-

methyltestosterone (7)  

Beauveria bassiana 11α-Hydroxy-1-dehydro-17α-

methyltestosterone  

 [23] 
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Substrate Microorganism Product % Yield * Reference 

1-Dehydrotestosterone (8) Beauveria bassiana (i) 11α-Hydroxy-1- 

    dehydrotestosterone 

(ii) 11α-Hydroxyandrost-1,4- 

      diene-3,17-dione 

(iii) 11α-Hydroxytestosterone 

(iv) 11α-Hydroxyandrost-4-ene- 

      3,17-dione 

 [23] 

Ethylestrenol (9) Rhizopus stolonifer (i) 17α-Ethyl-3β,17β- 

     dihydroxy-19-norandrost-4-ene 

(ii) 17α-Ethyl-17β-hydroxy- 

     19-norandrost-4-en-3-one 

 [24] 

17α-Ethyl-19-nortestosterone 

(10) 

Fusarium culmorum (i) 6β-Hydroxy-17α-ethyl-19- 

     nortestosterone  

(ii) 15α-Hydroxy-17α-ethyl-19- 

      nortestosterone 

(iii) 11α-Hydroxy-17α-ethyl-19- 

       Nortestosterone 

 [16] 

Mestanolone (11) Rhizopus stolonifer  (i) 11α-Hydroxymestanolone  

    (11α,17β-dihydroxy-17α- 

     methyl-5α-androstan-3-one) 

(ii) 6α-Hydroxymestanolone  

    (6α,17β-dihydroxy-17α- 

     methyl-5α-androstan-3-one) 

11.4 % [25] 

 Macrophomina phaseolina (i) 17β-Hydroxy-17α- 

     methyl-5α-andros-1-en-3,11-  

     dione 

(ii) 14α,17β-Dihydroxy-17α- 

     methyl-5α-androstan-3,11-  

     dione 

(iii) 17β-Hydroxy-17α- 

       methyl-5α-andros-1,14-dien- 

       3,11- dione 

(iv) 17β-Hydroxy-17α- 

       methyl-5α-androstan- 

       3,11- dione 

(v) 11α-Hydroxymestanolone  

    (11α,17β-dihydroxy-17α- 

     methyl-5α-androstan-3-one) 

 

0.9 % 

 

 

1.6 % 

 

 

0.3 % 

 

 

0.78 % 

 

 

5.6 % 

[26] 
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Substrate Microorganism Product % Yield * Reference 

 Cunninghamella 

blakesleeana 

(i) 9α,11β-Dihydroxymestanolone  

    (9α,11β,17β-trihydroxy-17α- 

     methyl-5α-androstan-3-one) 

(ii) 2β,11α-Dihydroxymestanolone  

    (2β,11α,17β-trihydroxy-17α- 

     methyl-5α-androstan-3-one) 

0.7 % 

 

 

0.92 % 

[26] 

Mesterolone (12) Cunninghamella 

blakesleeana 

 

(i) 1α-Methyl-1β,11β,17β- 

     trihydroxy-5α-androstan-3-one 

(ii) 1α-Methyl-7α,11β,17β- 

      trihydroxy-5α-androstan-3-one 

(iii) 1α-Methyl-1β,6α,17β- 

      trihydroxy-5α-androstan-3-one 

(iv) 1α-Methyl-1β,11α,17β- 

      trihydroxy-5α-androstan-3-one 

(v) 1α-methyl-11α,17β-dihydroxy- 

     5α-androstan-3-one 

(vi) 1α-methyl-6α,17β-dihydroxy- 

      5α-androstan-3-one 

(vii) 1α-methyl-7α,17βdihydroxy- 

       5α-androstan-3-one 

 [26] 

 Macrophomina phaseolina 1α-Methyl,17β-hydroxy-5α-androstan-

3,6-dione 

 [26] 

 Cephalosporium 

aphidicola 

(i) (1α, 5α)-1-Methylandrostane- 

     3,17-dione 

(ii) (1α, 5α, 15α)-15-Hydroxy-1- 

      methylandrostane-3,17-dione 

 [27] 

 Fusarium lini (i) (5α)-1-Methylandrost-1-en- 

     3,17-dione 

(ii) (1α, 5α, 6α, 17β)-6,17- 

     Dihydroxy-1-methylandrostan- 

     3-one 

(iii) (1α, 5α, 15α, 17β)-15,17- 

      Dihydroxy-1-methylandrostan- 

      3-one 

(iv) (5α, 15α, 17β)-15,17- 

      Dihydroxy-1-methylandrost-1- 

      en-3-one 

 [27] 
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Substrate Microorganism Product % Yield * Reference 

 Rhizopus stolonifer (i) (1α, 5α)-1-Methylandrostane- 

     3,17-dione 

(ii) (5α)-1-Methylandrost-1-en- 

     3,17-dione 

(iii) (1α, 5α, 6α, 17β)-6,17- 

     Dihydroxy-1-methylandrostan- 

     3-one 

(iv) (1α, 5α, 7α, 17β)-7,17- 

      Dihydroxy-1-methylandrostan- 

      3-one 

(v) (1α, 5α, 11α, 17β)-11,17- 

      Dihydroxy-1-methylandrostan- 

      3-one 

(vi) (5α, 15α, 17β)-15,17- 

      Dihydroxy-1-methylandrost-1- 

      en-3-one 

 [27] 

Methandienone 

(methandrostenolone, 

dianabol) (13) 

Rhizopus stolonifer 11α,17β-Dihydroxy-androsta-1,4-

diene-3-one 

 [25] 

 Cunninghamella elegans 

 

(i) 6β,17β-Dihydroxy-17α- 

     methylandrost-1,4-dien-3-one 

(ii) 15α,17β-Dihydroxy-17α- 

      methylandrost-1,4-dien-3-one 

(iii) 11α,17β-Dihydroxy-17α- 

      methylandrost-1,4-dien-3-one 

(iv) 6β,12β,17β-Trihydroxy-17α- 

      methylandrost-1,4-dien-3-one 

(v) 6β,15α,17β-Trihydroxy-17α- 

     methylandrost-1,4-dien-3-one 

 [28] 

 Macrophomina phaseolina (i) 17β-Hydroxy-17α- 

     methylandrost-1,4-dien-3,6-  

      dione 

(ii) 7β,17β-Dihydroxy-17α- 

      methylandrost-1,4-dien-3-one 

(iii) 15β,17β-Dihydroxy-17α- 

       methylandrost-1,4-dien-3-one 

(iv) 17β-Hydroxy-17α- 

       methylandrost-1,4-dien-3,11- 

       dione 

(v) 11β,17β-Dihydroxy-17α- 

      methylandrost-1,4-dien-3-one 

 [28] 

4-Methoxytestosterone (14) Fusarium culmorum 6β-Hydroxy-4-

methoxyandrostenedione 

 [16] 
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Substrate Microorganism Product % Yield * Reference 

Methyltestosterone (15) Mucor racemosus (i) 7α-Hydroxymethyltestosterone 

(ii)15α-Hydroxymethyl 

      testosterone 

(iii)12α,15α-Dihydroxymethyl 

      testosterone 

35.0 % 

21.0 % 

 

22.0 % 

[29] 

 Fusarium culmorum 

 

(i) 6β-Hydroxy-17α- 

     methyltestosterone  

(ii) 15α-Hydroxy-17α- 

      methyltestosterone 

(iii) 12β-Hydroxy-17α- 

       methyltestosterone  

 [16] 

 Beauveria bassiana 11α-Hydroxy-17α-methyl testosterone  [23] 

4-Methyltestosterone (16) Fusarium culmorum 

 

(i) 6β-Hydroxy-4- 

     methylandrostenedione  

(ii) 6β-Hydroxy-4- 

     methyltestosterone 

 [16] 

17-Methyl-1-testosterone (17) Rhizopus stolonifer (i) Methandrostenolone (17β- 

     hydroxy-17α-methylandrost- 

     1,4-diene-3-one) 

(ii) 11α,17β-Dihydroxy-androsta- 

      1,4-diene-3-one 

 

 

 

18.0 % 

[25] 

Nandrolone (19-

Nortestosterone) (18) 

Rhizopus stolonifer (i) 19-Norndrost-4-en-3,17-dione 

(ii) 6α,17β-Dihydroxy- 

     19-norndrost-1,4-dien-3-one 

 [24] 

 Beauveria bassiana 11α -Hydroxy-19-nortestosterone  [23] 

 Cunninghamella 

echinulata 

(i) 10β,12β,17β-trihydroxy-19- 

     nor-4-androsten-3-one 

(ii) 10β,16α,17β-trihydroxy-19- 

      nor-4-androsten-3-one 

(iii) 6β,10β,17β-trihydroxy-19- 

       nor-4-androsten-3-one 

(iv) 10β,17β-dihydroxy-19-nor-4- 

       androsten-3-one 

(v) 6β,17β-dihydroxy-19-nor-4- 

      androsten-3-one 

 [30] 

 Cunninghamella 

blakesleeana 

(i) 6β,10β,17β-trihydroxy-19- 

       nor-4-androsten-3-one 

(ii) 10β,17β-dihydroxy-19-nor-4- 

       androsten-3-one 

(iii) 10β-hydroxy-19-nor-4- 

       androsten-3,17-dione 

(iv) 16β,17β-dihydroxy-19-nor-4- 

       androsten-3-one 

 [30] 
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Substrate Microorganism Product % Yield * Reference 

Norandrostenedione (19) Fusarium culmorum (i) 6β-Hydroxy-19-nortestosterone 

(ii) 6β-Hydroxy-19- 

      norandrostenedione 

 [16] 

 Corynespora 

melonis 

9α-Hydroxy-19-norandrostenedione  [31] 

 Nocardia restrictus 9α-Hydroxy-19-norandrostenedione  [31] 

Oxandrolone (20) Rhizopus stolonifer (i) 11α-Hydroxyoxandrolone  

    (11α,17β-Dihydroxy-17α- 

     methyl-2-oxa-5α-androstan-3- 

     one) 

(ii) 6α-Hydroxyoxandrolone  

    (6α,17β-Dihydroxy-17α- 

     methyl-2-oxa-5α-androstan-3- 

     one) 

(iii) 9α-Hydroxyoxandrolone  

      (9α,17β-Dihydroxy-17α- 

       methyl-2-oxa-5α-androstan-3- 

       one) 

25.0 % 

 

 

 

5.0 % 

 

 

 

8.0 % 

[32] 

Oxymetholone (21) Macrophomina phaseolina  (i) 17β-Hydroxy-2- 

     (hydroxymethyl)-17α-methyl- 

     5α-androstan-1-en-3-one 

(ii) 2α,17α-Di(hydroxymethyl)-5α- 

     androstan-3β-17β-diol  

 [33] 

 Rhizopus stolonifer  2α,17α-Di(hydroxymethyl)-5α-

androstan-3β-17β-diol 

 [33] 

 Fusarium lini (i) 17β-Hydroxy-2- 

     (hydroxymethyl)-17α-methyl- 

     5α-androstan-1-en-3-one 

(ii) 17α-Methyl-5α-androstan- 

      2α,3β-17β-triol 

(iii) 17β-Hydroxy-2- 

      (hydroxymethyl)-17α- 

       methylandrost-1,4-dien-3-one 

 [33] 

Testosterone (22) Beauveria bassiana (i) 11α-Hydroxytestosterone 

(ii) 5α-Androstan-11α,17β-diol-3- 

     one 

(iii) 11α-Hydroxyandrost-4-ene- 

       3,17-dione 

(iv) 5α-Androstan-11α-ol-3,17- 

     dione 

 [23] 
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Substrate Microorganism Product % Yield * Reference 

 Rhizopus stolonifer (i) Androst-4-en-3,17-dione 

(ii) Testolactone 

(iii) 17-Hydroxy-5α-androstan- 

       1,6-dione 

(iv) 11α-Hydroxyandrost-4-en- 

       3,17-dione 

(v) 11α-Hydroxytestolactone 

 [34] 

 Fusarium lini (i) Androst-4-en-3,17-dione 

(ii) Androst-1,4-dien-3,17-dione 

(iii) 1-Dehydrotestosterone (17β- 

      Hydroxyandrost-1,4-dien-3- 

      one) 

(iv) 11α-Hydroxyandrost-1,4-dien- 

      3,17-dione 

(v) 11α-Hydroxytestosterone 

     (11α,17β-Dihydroxyandrost-4- 

      en-3-one) 

(vi) 11α,17β-Dihydroxyandrost- 

      1,4-dien-3-one 

 [34] 

 Curvularia lunata 17-Dehydrotestosterone (androst-4-

ene-3,17-dione) 

 [35] 

 Pleurotus oestreatus 15α-Hydroxytestosterone (15α,17β-

dihydroxyandrost-4-en-3-one) 

 [35] 

 Aspergillus famigatus 15β-Hydroxytestosterone  [36] 

 Phycomyces blakesleeanus (i) 6β-Hydroxytestosterone 

(ii) 7α-Hydroxytestosterone 

(iii) 1-Dehydroandrostenedione 

      (androsta-l,4-diene-3,17-dione) 

(iv) 1-Dehydrotestosterone (17β- 

       hydroxyandrosta-1,4- 

      diene-3-one) 

(v)  Androstenedione 

 

 [15] 

* Available % yields in the literature 

 

2.2. Reduction 

The reduction of anabolic steroids by microorganisms 

has been also reviewed. Reductions of anabolic steroids by 

microorganisms involved transformations of ketones to 

alcohols and hydrogenations. Ahmad et al. reported the 

reduction of 3-keto to 3α-hydroxy form in mesterolone 

(12) by Cephalosporium aphidicola to produce a single 

metabolite with a high stereospecifity [27], while 

Choudhary, et al. reported the hydrogenation between C-5 

and C-6 on dehydroepiandrosterone (6) by Macrophomina 

phaseolina to form androstanedione (2) [20]. Studies on 

microbial reductions of some anabolic steroids that 

included microorganisms, metabolites and references are 

compiled (Table-2). 
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Table 2. Reduction 

Substrate Microorganism Product % Yield * Reference 

Androstenedione (2) Phycomyces blakesleeanus  (i) Testosterone 

(ii) 14α-Hydroxytestosterone 

19.0 % [15] 

4-Chlorotestosterone (4)  Fusarium culmorum 

 

(i) 3β,15α -Dihydroxy-4- 

      chloro- 4-androstene-17-one 

(ii) 3β,15α-Dihydroxy-4α- 

      chloro-5α-androstan-17-one 

 [16] 

Dehydroepiandrosterone 

(DHEA) (6) 

Rhizopus stolonifer (i) 3β,17β-Dihydroxyandrost-5- 

    ene 

(ii) 3β,17β-Dihydroxyandrost-4- 

      ene 

 [18] 

 Macrophomina phaseolina (i) Androstane-3,17-dione 

(ii) Androst-4-ene-17β-ol-3-one 

(iii) Androst-4,6-diene-17β-ol-  

      3-one 

(iv) Androst-5-ene-3β,17β−diol 

(v) Androst-4-ene-3β,7β,17β-triol 

(vii) Androst-5-ene- 

       3β,7α,17β-triol 

 [20] 

 Mucor piriformis (i) 3β,17β-Dihydroxyandrost-5- 

     ene 

(ii) 3β,17β-Dihydroxyandrost-5- 

     en-7-one 

(iii) 3β,7α,17β-Trihydroxyandrost- 

      5-ene 

 [21] 

 Penicillium glabrum (Wehmer) 3β-Hydroxy-17a-oxa- D-homo-5α- 

androstan-17-one 

 [22] 

 Beauveria bassiana Androstenediol 

 

 [23] 

1-Dehydrotestosterone (8) Beauveria bassiana (i) 11α-Hydroxytestosterone 

(ii) 11α-Hydroxyandrost-4-ene- 

      3,17-dione 

 [23] 

Mesterolone (12) Cephalosporium aphidicola (1α, 3β, 5α, 17β)-1- 

Methylandrostane-3,17-diol 

 [27] 

Norandrostenedione (19) Fusarium culmorum 6β-Hydroxy-19-nortestosterone  [16] 
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Substrate Microorganism Product % Yield * Reference 

Oxymetholone (21) Macrophomina phaseolina  (i) 17β-Hydroxy-2α- 

    (hydroxymethyl)-17α-methyl- 

    5α-androstan-3-one 

(ii) 2α-(Hydroxymethyl)-17α- 

     methyl-5α-androstan-3β-17β- 

     diol 

 [33] 

 Aspergillus niger  (i) 17β-Hydroxy-2α- 

    (hydroxymethyl)-17α-methyl- 

    5α-androstan-3-one 

(ii) 2α-(Hydroxymethyl)-17α- 

     methyl-5α-androstan-3β-17β- 

     diol 

 [33] 

 Rhizopus stolonifer  (i) 2α,17α-Di(hydroxymethyl)-5α- 

    androstan-3β-17β-diol 

(ii) 17β-Hydroxy-2α- 

    (hydroxymethyl)-17α-methyl- 

    5α-androstan-3-one 

 [33] 

 Fusarium lini (i) 17β-Hydroxy-2- 

     (hydroxymethyl)-17α-methyl- 

     5α-androstan-1-en-3-one 

(ii) 17α-Methyl-5α-androstan- 

      2α,3β-17β-triol 

(iii) 17β-Hydroxy-2- 

      (hydroxymethyl)-17α- 

       methylandrost-1,4-dien-3-one 

 [33] 

Testosterone (22) Beauveria bassiana (i) 5α-Androstan-11α,17β-diol-3- 

     one 

(ii) 5α-Androstan-11α-ol-3,17- 

     dione 

 [23] 

* Available % yields in the literature 

 

2.3. Carbon-carbon bond cleavage 

The carbon-carbon bond cleavage in anabolic steroids that 

took place by microorganisms has been compiled. The 

process includes full oxidations of methyl carbons to 

carboxylic acids. Carboxylic acids are easily eliminated in the 

form of CO2 (g). For instance, Mohammad, et al. reported the 

demethylation at C-17 on 17-methyl-1-testosterone (17) by 

Rhizopus stolonifer to form androstenedione (2) with 18.0% 

yield [25]. However, decarboxylation was performed at C-2 

rather than C-17 on oxymetholone (21) by Fusarium lini to 

yield 17α-Methyl-5α-androstan-2α,3β-17β-triol [33]. Studies 

on carbon-carbon bond cleavage of anabolic steroids by 

microorganisms are compiled (Table-3). 
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Table 3. Carbon-carbon bond cleavage 

Substrate Microorganism Product % Yield * Reference 

Methandienone (Methandrostenolone, 

dianabol) (13) 

Rhizopus 

stolonifer 

11α,17β-Dihydroxy-androsta-

1,4-diene-3-one 

 [25] 

17-Methyl-1-testosterone (17) Rhizopus 

stolonifer 

11α,17β-Dihydroxy-androsta-

1,4-diene-3-one 

18.0 % [25] 

Oxymetholone (21) Fusarium lini 17α-Methyl-5α-androstan- 

2α,3β-17β-triol 

 [33] 

* Available % yields in the literature 

 

3. General Experimental Methods 

3.1. Applications of microorganisms 

3.1.1. Microorganisms and culture medium 

Microorganisms are grown on potato dextrose-agar or 

sabouraud glucose agar at 25 C, and stored at 4 C. The 

media for microorganism differ from one organism to 

another, but generally the following ingredients are used 

in distilled H2O: glucose, peptone, yeast extract, KH2PO4, 

glycerol, KCl, MgSO4.7H2O, and NaCl [34]. 

3.1.2. Fermentation and extraction conditions 

The medium is distributed into conical flasks and then 

sterilized in an autoclave at 121 C for 15 minutes. Mycelia 

are inoculated into all the flask media, and the flasks are 

placed in an incubator with rotary shaking at 28 C. After 

the complete growth of microorganism, substrate is 

dissolved in a particular organic solvent that is not toxic to 

microorganism, and then equally distributed to each 

cultural flask and flasks are again placed on incubated 

shaker to allow the occurrence of fermentation. An 

additional flask labeled as a negative control, which 

contained a microorganism without substrate, is placed 

with the incubated flasks under the same conditions, and 

another additional flask, labeled as a positive control, 

which contained a substrate added to the medium without 

microorganisms, is also placed with the incubated flasks. 

After the completion of fermentation, the mycelia are 

separated from the medium by filtration and then the 

medium is placed in a separatory funnel for extraction. The 

metabolites are extracted using a suitable organic solvent. 

This extraction is repeated three times. The crude extract 

containing the metabolites is collected by evaporating the 

organic solvent, using vacuum on rotavap, and then 

analyzed by TLC [34].  

3.1.3. Isolation of transformed products 

Different chromatographic techniques can be used to 

isolate the metabolites [30-39]. The crude extract is 

adsorbed on silica and subjected to column 

chromatography. The metabolites are eluted and purified 

by solvent mixtures of different polarities. 

3.1.4. Structural elucidations of metabolites 

Structures of the metabolites are elucidated through 

comparative spectroscopic studies (UV, FT-IR, 1D-NMR, 

2D-NMR, MS) with the substrate [30-37]. 

3.2. Applications of immobilized enzymes onto support 

materials 

3.2.1. Support materials 

The support (carrier) can be a synthetic organic 

polymer such as acrylic resins [40], a biopolymer such as 

cellulose, starch, agarose, carragenans, and chitosan [41], 

or an inorganic solid such as alumina, silica, zeolites, and 

mesoporous silicas [42]. A variety of matrixes have been 

used as support materials for enzyme immobilization [43]. 

3.2.2. Immobilization of enzymes onto solid supports 

Enzyme immobilization onto solid supports is a 

possible alternative to in-solution digestion. Different 

reactive groups of the supporting material (–OH, –NH2, 

and –COOH) can be utilized for covalent protein binding 

using relatively simple coupling strategies [44]. These 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3787205/#CR42
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3787205/#CR122
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approaches include co-polymerization with 

polyacrylamide gels, binding onto microbeads, silica-

based substrates, synthetic polymers, and the inner walls 

of open capillaries or Micro-channels in microfluidics. 

 

4. Conclusion: 

Microbial biotransformation technology has proven to be 

a useful tool for stereo- and regio-specific oxidations, regio-

selective reductions, and carbon-carbon bond cleavages. This 

review attempts to present the situation during the period from 

1984 to 2018, and to help researchers for choosing the suitable 

microorganism for stereo- and regio-selectivity reactions on 

other anabolic steroids. 
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 التحويل الحيوي الميكروبي لبعض مركبات الستيرويدات البنائية

 
  ،1، مها حبش1محمد سند أبو درويش ،2، يوسف الحياري 1محمد ياسين محمد 

 5، محمد إقبال شودهري 4، هارون حنيفة3منال النجداوي 

 
 كلية ميشيل الصايغ للصيدلة، جامعة العقبة للتكنولوجيا، العقبة، الأردن. 1
 كلية الصيدلة، الجامعة الأردنية، الأردن. 2
 كلية الصيدلة، جامعة الإسراء، الأردن. 3
 كلية العلوم التطبيقية، جامعة جنوب غرب سريلانكا، سريلانكا. 4
 مركز أبحاث الكيمياء، المركز العالمي للعلوم الكيميائية والحيوية، جامعة كراتشي، باكستان. 5

  

 ملخـص
في هذه الدراسة تتم مراجعة التحولات الحيوية الميكروبية لمختلف مركبات الستيرويدات البنائية. تم تسليط الضوء 

ن والكربون. تم تجميع دراسات وتغطيتها على مختلف على دراسات حول الأكسدة، والاختزال، وانقسام رابطة الكربو 
 .2018-1984الستيرويدات ومستقلباتها، والكائنات الدقيقة المستخدمة في التحولات الحيوية وذلك في الفترة ما بين 

 .تجميع ،المستقلب ،الستيرويد البنائي الأولي ،مراجعة ،التحويل الحيوي الميكروبي الكلمات الدالة:
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