Recent Advances in Development of Vesicular Carrier for Transdermal Drug Delivery: A Review

Authors

  • Praveen Kumar Gaur Metro College of Health Sciences & Research, Plot no 41, Knowledge Park -III, Greater Noida, Uttar Pradesh, India.
  • Sakshi Minocha Metro College of Health Sciences & Research, Plot no 41, Knowledge Park -III, Greater Noida, Uttar Pradesh, India.
  • Rosaline Mishra Metro College of Health Sciences & Research, Plot no 41, Knowledge Park -III, Greater Noida, Uttar Pradesh, India.
  • Niharika Lal Metro College of Health Sciences & Research, Plot no 41, Knowledge Park -III, Greater Noida, Uttar Pradesh, India.
  • Kanak Lata Metro College of Health Sciences & Research, Plot no 41, Knowledge Park -III, Greater Noida, Uttar Pradesh, India.

DOI:

https://doi.org/10.35516/jjps.v17i1.1313

Keywords:

Transfersomes, liposomes, niosomes, ethosomes, ufasomes, sphingosomes and cubosomes, transdermal drug delivery, vesicular formulation

Abstract

Transdermal drug delivery has gained significant attention as a non-invasive and convenient method for administering drugs. However, the stratum corneum, the outermost layer of the skin, poses a significant barrier to drug permeation. To overcome this challenge, vesicular carriers have emerged as promising systems for enhancing drug delivery through the skin. This review highlights recent advances in the development of vesicular carriers for transdermal drug delivery. Liposomes, niosomes, transfersomes, ethosomes, and solid lipid nanoparticles are among the commonly used vesicular carriers. These carriers offer advantages such as improved drug solubility, prolonged drug release, and enhanced drug stability. Additionally, they can encapsulate a wide range of drugs, including hydrophilic and lipophilic compounds. Various strategies have been employed to optimize vesicular carriers for transdermal drug delivery. These include modifying the vesicle composition, size, and surface charge to enhance skin penetration. The incorporation of penetration enhancers, such as surfactants, has also been explored to improve drug permeation across the skin. Furthermore, advancements in nanotechnology have led to the development of novel vesicular carriers, such as nanostructured lipid carriers and elastic liposomes. These carriers offer improved drug loading capacity, sustained release profiles, and enhanced skin penetration. Moreover, the use of vesicular carriers has shown promise in delivering a wide range of therapeutic agents, including small molecules, peptides, proteins, and genetic material. The ability to encapsulate and deliver these diverse drug entities opens new possibilities for transdermal drug delivery in various therapeutic areas.

References

https://www.alliedmarketresearch.com/transdermal-drug-delivery-systems-market.

Elzainy AAW, Gu X, Simons FER, Simons KJ. Cetirizine from topical phosphatidylcholine liposomes: Evaluation of peripheral antihistaminic activity and systemic absorption in a rabbit model. Biopharmaceutics & Drug Disposition. 2004; 25(8): 359-66. DOI: https://doi.org/10.1002/bdd.419

Sintov AC, Botner S. Transdermal drug delivery using microemulsion and aqueous systems: influence of skin storage conditions on the in vitro permeability of diclofenac from aqueous vehicle systems. Int J Pharm. 2006; 311(1-2): 55-62. DOI: https://doi.org/10.1016/j.ijpharm.2005.12.019

Pierre MB, Tedesco AC, Marchetti JM, Bentley MV. Stratum corneum lipids liposomes for the topical delivery of 5-aminolevulinic acid in photodynamic therapy of skin cancer: preparation and in vitro permeation study. BMC Dermatol. 2001; 1: 5. DOI: https://doi.org/10.1186/1471-5945-1-5

Barry BW. Lipid-Protein-Partitioning theory of skin penetration enhancement. Journal of Controlled Release. 1991; 15(3): 237-48. DOI: https://doi.org/10.1016/0168-3659(91)90115-T

Barry BW. Novel mechanisms and devices to enable successful transdermal drug delivery. Eur J Pharm Sci. 2001; 14(2): 101-14. DOI: https://doi.org/10.1016/S0928-0987(01)00167-1

Sala M, Diab R, Elaissari A, Fessi H. Lipid nanocarriers as skin drug delivery systems: Properties, mechanisms of skin interactions and medical applications. Int J Pharm. 2018; 535(1-2): 1-17. DOI: https://doi.org/10.1016/j.ijpharm.2017.10.046

De Jager M, Groenink W, van der Spek J, Janmaat C, Gooris G, Ponec M, et al. Preparation and characterization of a stratum corneum substitute for in vitro percutaneous penetration studies. Biochimica et Biophysica Acta (BBA) - Biomembranes. 2006; 1758(5): 636-44. DOI: https://doi.org/10.1016/j.bbamem.2006.04.001

De Jager MW, Gooris GS, Dolbnya IP, Ponec M, Bouwstra JA. Modelling the stratum corneum lipid organisation with synthetic lipid mixtures: the importance of synthetic ceramide composition. Biochimica et Biophysica Acta (BBA) - Biomembranes. 2004; 1664(2): 132-40. DOI: https://doi.org/10.1016/j.bbamem.2004.05.001

Chien YW. Novel drug delivery systems. New York: M. Dekker; 1992; 139-96. DOI: https://doi.org/10.1201/9780367805456

Fang JY, Leu YL, Chang CC, Lin CH, Tsai YH. Lipid nano/submicron emulsions as vehicles for topical flurbiprofen delivery. Drug Deliv. 2004; 11(2): 97-105. DOI: https://doi.org/10.1080/10717540490280697

Mezei M, Gulasekharam V. Liposomes--a selective drug delivery system for the topical route of administration. Lotion dosage form. Life Sci. 1980; 26(18): 1473-7. DOI: https://doi.org/10.1016/0024-3205(80)90268-4

Goñi FM, Alonso A. Biophysics of sphingolipids I. Membrane properties of sphingosine, ceramides and other simple sphingolipids. Biochim Biophys Acta. 2006; 1758(12): 1902-21. DOI: https://doi.org/10.1016/j.bbamem.2006.09.011

Hashizume M, Inoue H, Katagiri K, Ikeda A, Kikuchi J-I. Cerasome as an Organic-Inorganic Vesicular Nanohybrid: Characterization of Cerasome-Forming Lipids having a Single or a Dual Trialkoxysilyl Head. Journal of Sol-Gel Science and Technology. 2004; 31(1): 99-102. DOI: https://doi.org/10.1023/B:JSST.0000047968.68111.dc

Hashizume M, Kawanami S-i, Iwamoto S, Isomoto T, Kikuchi J-i. Stable vesicular nanoparticle ‘Cerasome’ as an organic–inorganic hybrid formed with organoalkoxysilane lipids having a hydrogen-bonding unit. Thin Solid Films. 2003; 438-439: 20-6. DOI: https://doi.org/10.1016/S0040-6090(03)00745-4

Kweon JH, Chi SC, Park ES. Transdermal delivery of diclofenac using microemulsions. Arch Pharm Res. 2004; 27(3): 351-6. DOI: https://doi.org/10.1007/BF02980072

Singh D, Pradhan M, Nag M, Singh MR. Vesicular system: Versatile carrier for transdermal delivery of bioactives. Artificial Cells, Nanomedicine, and Biotechnology. 2015; 43(4): 282-90. DOI: https://doi.org/10.3109/21691401.2014.883401

Kumar R, Katare OP. Lecithin organogels as a potential phospholipid-structured system for topical drug delivery: a review. AAPS PharmSciTech. 2005; 6(2): E298-E310. DOI: https://doi.org/10.1208/pt060240

Park KM, Lee MK, Hwang KJ, Kim CK. Phospholipid-based microemulsions of flurbiprofen by the spontaneous emulsification process. Int J Pharm. 1999; 183(2): 145-54. DOI: https://doi.org/10.1016/S0378-5173(99)00080-0

Honeywell-Nguyen PL, Bouwstra JA. Vesicles as a tool for transdermal and dermal delivery. Drug Discov Today Technol. 2005; 2(1): 67-74. DOI: https://doi.org/10.1016/j.ddtec.2005.05.003

Yoshida PA, Yokota D, Foglio MA, Rodrigues RA, Pinho SC. Liposomes incorporating essential oil of Brazilian cherry (Eugenia uniflora L.): characterization of aqueous dispersions and lyophilized formulations. J Microencapsul. 2010; 27(5): 416-25. DOI: https://doi.org/10.3109/02652040903367327

Kulkarni SB, Betageri GV, Singh M. Factors affecting microencapsulation of drugs in liposomes. J Microencapsul. 1995; 12(3): 229-46. DOI: https://doi.org/10.3109/02652049509010292

Bennett WFD, MacCallum JL, Tieleman DP. Thermodynamic Analysis of the Effect of Cholesterol on Dipalmitoylphosphatidylcholine Lipid Membranes. Journal of the American Chemical Society. 2009; 131(5): 1972-8. DOI: https://doi.org/10.1021/ja808541r

Jain S, Patel N, Shah MK, Khatri P, Vora N. Recent Advances in Lipid-Based Vesicles and Particulate Carriers for Topical and Transdermal Application. J Pharm Sci. 2017; 106(2): 423-45. DOI: https://doi.org/10.1016/j.xphs.2016.10.001

Gaur PK, Mishra S, Gupta VB, Rathod MS, Purohit S, Savla BA. Targeted drug delivery of Rifampicin to the lungs: formulation, characterization, and stability studies of preformed aerosolized liposome and in situ formed aerosolized liposome. Drug Development and Industrial Pharmacy. 2010; 36(6): 638-46. DOI: https://doi.org/10.3109/03639040903410300

New R. Liposomes : a practical approach1990. 33-104 p.

Modi C, Bharadia P. Transfersomes: New Dominants for Transdermal Drug Delivery. Am J Pharm Tech Res. 2012; 2.

Jain SK, Umamaheshwari RB, Bhadra D, Jain N. Ethosomes : A Novel Vesicular Carrier For Enhanced Transdermal Delivery Of An AntiHIV Agent. Indian Journal of Pharmaceutical Sciences. 2004; 66: 72-81.

Kazi KM, Mandal AS, Biswas N, Guha A, Chatterjee S, Behera M, et al. Niosome: A future of targeted drug delivery systems. J Adv Pharm Technol Res. 2010; 1(4): 374-80. DOI: https://doi.org/10.4103/0110-5558.76435

Naik A, Pechtold LARM, Potts RO, Guy RH. Mechanism of oleic acid-induced skin penetration enhancement in vivo in humans. Journal of Controlled Release. 1995; 37(3): 299-306. DOI: https://doi.org/10.1016/0168-3659(95)00088-7

Saraf PS, Gupta D, Kaur DCD, Saraf S. Sphingosomes a novel approach to vesicular drug delivery. Int J Cur Sci Res. 2011; 1: 63-8.

Spicer PT, Hayden K, Lynch ML, Ofori-Boateng, Akua, Burns JL. Novel Process for Producing Cubic Liquid Crystalline Nanoparticles (Cubosomes). Langmuir. 2001; 17: 5748-56. DOI: https://doi.org/10.1021/la010161w

Walve JR, Bakliwal SR, Rane B, Pawar SP. Transfersomes: A surrogated carrier for transdermal drug delivery system. Int J Appl Biol Pharm Technol. 2011; 2: 204-13.

Reddy D, Sravani A. Transferosomes A Novel Vesicular Carrier for Transdermal Drug Delivery System. 2015: 193-208.

Maestrelli F, Capasso G, González-Rodríguez ML, Rabasco AM, Ghelardini C, Mura P. Effect of preparation technique on the properties and in vivo efficacy of benzocaine-loaded ethosomes. J Liposome Res. 2009; 19(4): 253-60. DOI: https://doi.org/10.3109/08982100902788408

Zahid S, Upmanyu N, Dangi S, Ray S, Jain P, Parkhe G. Ethosome: a novel vesicular carrier for transdermal drug delivery. Journal of Drug Delivery and Therapeutics. 2018; 8: 318-26. DOI: https://doi.org/10.22270/jddt.v8i6.2028

David SR, Hui MS, Pin CF, Ci FY, Rajabalaya R. Formulation and in vitro evaluation of ethosomes as vesicular carrier for enhanced topical delivery of isotretinoin. International Journal of Drug Delivery. 2013; 5: 28-34.

Song CK, Balakrishnan P, Shim CK, Chung SJ, Chong S, Kim DD. A novel vesicular carrier, transethosome, for enhanced skin delivery of voriconazole: characterization and in vitro/in vivo evaluation. Colloids Surf B Biointerfaces. 2012; 92: 299-304. DOI: https://doi.org/10.1016/j.colsurfb.2011.12.004

Zhang JP, Wei YH, Zhou Y, Li YQ, Wu XA. Ethosomes, binary ethosomes and transfersomes of terbinafine hydrochloride: a comparative study. Arch Pharm Res. 2012; 35(1): 109-17. DOI: https://doi.org/10.1007/s12272-012-0112-0

Ainbinder D, Godin B, Touitou E. Ethosomes: Enhanced Delivery of Drugs to and Across the Skin. In: Dragicevic N, Maibach HI, editors. Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement: Nanocarriers. Berlin, Heidelberg: Springer Berlin Heidelberg; 2016; 61-75. DOI: https://doi.org/10.1007/978-3-662-47862-2_4

Md U, Ghuge P, Jain B. Niosomes: A Novel Trend of Drug Delivery. European Journal of Biomedical and Pharmaceutical sciences (EJBPS). 2017.

Hu C, Rhodes DG. Proniosomes: a novel drug carrier preparation. Int J Pharm. 1999; 185(1): 23-35. DOI: https://doi.org/10.1016/S0378-5173(99)00122-2

Auda SH, Fathalla D, Fetih G, El-Badry M, Shakeel F. Niosomes as transdermal drug delivery system for celecoxib: in vitro and in vivo studies. Polymer Bulletin. 2016; 73(5): 1229-45. DOI: https://doi.org/10.1007/s00289-015-1544-8

Muzzalupo R, Tavano L, Cassano R, Trombino S, Ferrarelli T, Picci N. A new approach for the evaluation of niosomes as effective transdermal drug delivery systems. Eur J Pharm Biopharm. 2011; 79(1): 28-35. DOI: https://doi.org/10.1016/j.ejpb.2011.01.020

Mittal R, Sharma A, Arora S. Ufasomes Mediated Cutaneous Delivery of Dexamethasone: Formulation and Evaluation of Anti-Inflammatory Activity by Carrageenin-Induced Rat Paw Edema Model. J Pharm (Cairo). 2013; 2013: 680580. DOI: https://doi.org/10.1155/2013/680580

Patel DM, Patel CN, Jani R. Ufasomes: A vesicular drug delivery. Systematic Reviews in Pharmacy. 2011; 2. DOI: https://doi.org/10.4103/0975-8453.86290

Nair AJ, Aswathi K, George A, Athira PP, Nair SC. UFASOME: A POTENTIAL PHOSPHOLIPID CARRIER AS A NOVEL PHARMACEUTICAL FORMULATION. International research journal of pharmacy. 2014; 5: 250-3. DOI: https://doi.org/10.7897/2230-8407.050453

Desu P. SPHINGOSOMES: A NOVEL VESICULAR DRUG DELIVERY SYSTEM. 2013; 305-12.

Witika BA, Mweetwa LL, Tshiamo KO, Edler K, Matafwali SK, Ntemi PV, et al. Vesicular drug delivery for the treatment of topical disorders: current and future perspectives. Journal of Pharmacy and Pharmacology. 2021; 73(11): 1427-41. DOI: https://doi.org/10.1093/jpp/rgab082

Bei D, Meng J, Youan BB. Engineering nanomedicines for improved melanoma therapy: progress and promises. Nanomedicine (Lond). 2010; 5(9): 1385-99. DOI: https://doi.org/10.2217/nnm.10.117

Salah S, Mahmoud AA, Kamel AO. Etodolac transdermal cubosomes for the treatment of rheumatoid arthritis: ex vivo permeation and in vivo pharmacokinetic studies. Drug Delivery. 2017; 24(1): 846-56. DOI: https://doi.org/10.1080/10717544.2017.1326539

Nasr M, Younes H, Abdel-Rashid RS. Formulation and evaluation of cubosomes containing colchicine for transdermal delivery. Drug Delivery and Translational Research. 2020; 10(5): 1302-13. DOI: https://doi.org/10.1007/s13346-020-00785-6

Anwekar H, Patel S, Singhai A. Liposome-as Drug Carriers. International Journal of Pharmacy and Life Sciences. 2011; 2: 945-51.

Moghimipour E, Handali S. Liposomes as Drug Delivery Systems: Properties and Applications. Research Journal of Pharmaceutical, Biological and Chemical. 2013; 4(1): 169-85.

Characterization of the final nanoformulation product. (New R.C.C. Preparation of liposomes. In: New R.C.C., editor. Liposomes: A Practical Approach. Oxford University Press; New York, NY, USA: 1990; 33–104.

Wu J, Liu Q, Lee RJ. A folate receptor-targeted liposomal formulation for paclitaxel. Int J Pharm. 2006; 316(1-2): 148-53. DOI: https://doi.org/10.1016/j.ijpharm.2006.02.027

Perez AP, Altube MJ, Schilrreff P, Apezteguia G, Celes FS, Zacchino S, et al. Topical amphotericin B in ultradeformable liposomes: Formulation, skin penetration study, antifungal and antileishmanial activity in vitro. Colloids Surf B Biointerfaces. 2016; 139: 190-8. DOI: https://doi.org/10.1016/j.colsurfb.2015.12.003

Cevc G, Blume G. New, highly efficient formulation of diclofenac for the topical, transdermal administration in ultradeformable drug carriers, Transfersomes. Biochim Biophys Acta. 2001; 1514(2): 191-205. DOI: https://doi.org/10.1016/S0005-2736(01)00369-8

Sharma N, Aggarwal G, Rana AC, Bhat Z, Kumar D. A Review: Transdermal Drug Delivery System: A Tool For Novel Drug Delivery System. International Journal of Drug Development and Research. 2011; 3: 70-84.

Patel R, Baria AH. Formulation and evaluation considerations of transdermal drug delivery system. International Journal of Pharmaceutical Research. 2011; 3: 1-9.

Monika B, Roy A, Bahadur S, Alisha B, Mihir P, Dhanushram T. Transdermal drug delivery system with formulation and evaluation aspects: Overview. Research Journal of Pharmacy and Technology. 2012; 5: 1168-76.

Paudel KS, Milewski M, Swadley CL, Brogden NK, Ghosh P, Stinchcomb AL. Challenges and opportunities in dermal/transdermal delivery. Ther Deliv. 2010; 1(1): 109-31. DOI: https://doi.org/10.4155/tde.10.16

Opatha SAT, Titapiwatanakun V, Chutoprapat R. Transfersomes: A Promising Nanoencapsulation Technique for Transdermal Drug Delivery. Pharmaceutics. 2020; 12(9): 855. doi: 10.3390/pharmaceutics12090855

Touitou E, Godin B, Weiss C. Enhanced delivery of drugs into and across the skin by ethosomal carriers. Drug Development Research. 2000; 50(3-4): 406-15. DOI: https://doi.org/10.1002/1098-2299(200007/08)50:3/4<406::AID-DDR23>3.0.CO;2-M

López-Pinto JM, González-Rodríguez ML, Rabasco AM. Effect of cholesterol and ethanol on dermal delivery from DPPC liposomes. Int J Pharm. 2005; 298(1): 1-12. DOI: https://doi.org/10.1016/j.ijpharm.2005.02.021

Touitou E, Dayan N, Bergelson L, Godin B, Eliaz M. Ethosomes — novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. Journal of Controlled Release. 2000; 65(3): 403-18. DOI: https://doi.org/10.1016/S0168-3659(99)00222-9

Touitou E, Godin B. Ethosomes for skin delivery. Journal of Drug Delivery Science and Technology. 2007; 17(5): 303-8. DOI: https://doi.org/10.1016/S1773-2247(07)50046-8

Abdelkader H, Alani AW, Alany RG. Recent advances in non-ionic surfactant vesicles (niosomes): self-assembly, fabrication, characterization, drug delivery applications and limitations. Drug Deliv. 2014; 21(2): 87-100. DOI: https://doi.org/10.3109/10717544.2013.838077

Yadav, Kumar S, Mishra M, Garima V, Nayak K, Tiwari A, et al. NIOSOMES: AN APPROACH TOWARDS TARGETED DRUG DELIVERY SYSTEM. International Journal of Institutional Pharmacy and Life Sciences. 2016; 6: 39-52.

G DB, P VL. Recent advances of non-ionic surfactant-based nano-vesicles (niosomes and proniosomes): a brief review of these in enhancing transdermal delivery of drug. Future Journal of Pharmaceutical Sciences. 2020; 6(1): 100. DOI: https://doi.org/10.1186/s43094-020-00117-y

Zaid Alkilani A, Hamed R, Abdo H, Swellmeen L, Basheer HA, Wahdan W, Abu Kwiak AD. Formulation and Evaluation of Azithromycin-Loaded Niosomal Gel: Optimization, In Vitro Studies, Rheological Characterization, and Cytotoxicity Study. ACS Omega. 2022; 7 (44): 39782-39793.

doi: 10.1021/acsomega.2c03762. PMID: 36385887; PMCID: PMC9648136. DOI: https://doi.org/10.1021/acsomega.2c03762

Schreier H, Bouwstra J. Liposomes and niosomes as topical drug carriers: dermal and transdermal drug delivery. Journal of Controlled Release. 1994; 30(1): 1-15. DOI: https://doi.org/10.1016/0168-3659(94)90039-6

Yu Y-Q, Yang X, Wu X-F, Fan Y-B. Enhancing Permeation of Drug Molecules Across the Skin via Delivery in Nanocarriers: Novel Strategies for Effective Transdermal Applications. Frontiers in Bioengineering and Biotechnology. 2021; 9. DOI: https://doi.org/10.3389/fbioe.2021.646554

Salama AH, Aburahma MH. Ufasomes nano-vesicles-based lyophilized platforms for intranasal delivery of cinnarizine: preparation, optimization, ex-vivo histopathological safety assessment and mucosal confocal imaging. Pharm Dev Technol. 2016; 21(6): 706-15.

Kanikkannan N, Kandimalla K, Lamba SS, Singh M. Structure-activity relationship of chemical penetration enhancers in transdermal drug delivery. Curr Med Chem. 2000; 7(6): 593-608. DOI: https://doi.org/10.2174/0929867003374840

Singh S, Malik BK, Sharma DK. Molecular drug targets and structure based drug design: A holistic approach. Bioinformation. 2006; 1(8): 314-20. DOI: https://doi.org/10.6026/97320630001314

Gaur PK, Mishra S, Verma A, Verma N. Ceramide–palmitic acid complex based Curcumin solid lipid nanoparticles for transdermal delivery: pharmacokinetic and pharmacodynamic study. Journal of Experimental Nanoscience. 2016; 11(1): 38-53. DOI: https://doi.org/10.1080/17458080.2015.1025301

Gaur PK, Purohit S, Kumar Y, Mishra S, Bhandari A. Ceramide-2 nanovesicles for effective transdermal delivery: development, characterization and pharmacokinetic evaluation. Drug Development and Industrial Pharmacy. 2014; 40(4): 568-76. DOI: https://doi.org/10.3109/03639045.2013.782502

Jain S, Jain V, Mahajan SC. Lipid Based Vesicular Drug Delivery Systems. Advances in Pharmaceutics. 2014; 2014: 574673. DOI: https://doi.org/10.1155/2014/574673

Stefanov SR, Andonova VY. Lipid Nanoparticulate Drug Delivery Systems: Recent Advances in the Treatment of Skin Disorders. Pharmaceuticals (Basel). 2021; 14(11). DOI: https://doi.org/10.3390/ph14111083

S. T. Prajapati, C. G. Patel, and C. N. Patel. Transfersomes: a vesicular carrier system for transdermal drug delivery. Asian Journal of Biochemical and Pharmaceutical Research. 2021; 2(1): 507–524.

Anbarasan, Grace F, editors. AN OVERVIEW OF CUBOSOMES-SMART DRUG DELIVERY SYSTEM. 2016.

Spicer PT, editor Bicontinuous Cubic Liquid Crystalline Phase and Cubosome + Personal Care Delivery Systems. 2003.

Tilekar K, Khade PK, Kakade S, Kotwal S, editors. CUBOSOMES-A DRUG DELIVERY SYSTEM.2014.

Esposito E, Cortesi R, Drechsler M, Paccamiccio L, Mariani P, Contado C, et al. Cubosome dispersions as delivery systems for percutaneous administration of indomethacin. Pharm Res. 2005; 22(12): 2163-73. DOI: https://doi.org/10.1007/s11095-005-8176-x

Nasr M, Ghorab MK, Abdelazem A. In vitro and in vivo evaluation of cubosomes containing 5-fluorouracil for liver targeting. Acta Pharmaceutica Sinica B. 2015; 5(1): 79-88. DOI: https://doi.org/10.1016/j.apsb.2014.12.001

Flak DK, Adamski V, Nowaczyk G, Szutkowski K, Synowitz M, Jurga S, et al. AT101-Loaded Cubosomes as an Alternative for Improved Glioblastoma Therapy. Int J Nanomedicine. 2020; 15: 7415-31. DOI: https://doi.org/10.2147/IJN.S265061

Nanjwade B, Hundekar Y, Kamble M, Srichana T. Development of Cuboidal Nanomedicine by Nanotechnology. Development of Cuboidal Nanomedicine by Nanotechnology. 2014; 2: 1-8. DOI: https://doi.org/10.23880/nnoa-16000268

Naeff R. Feasibility of topical liposome drugs produced on an industrial scale. Advanced Drug Delivery Reviews. 1996; 18(3): 343-7. DOI: https://doi.org/10.1016/0169-409X(95)00080-Q

Sand M, Bechara FG, Sand D, Altmeyer P, Hoffmann K. A randomized, controlled, double-blind study evaluating melanin-encapsulated liposomes as a chromophore for laser hair removal of blond, white, and gray hair. Ann Plast Surg. 2007; 58(5): 551-4. DOI: https://doi.org/10.1097/01.sap.0000245129.53392.0e

Foldvari M. In vitro cutaneous and percutaneous delivery and in vivo efficacy of tetracaine from liposomal and conventional vehicles. Pharm Res. 1994; 11(11): 1593-8. DOI: https://doi.org/10.1023/A:1018909821048

Hofland HE, van der Geest R, Bodde HE, Junginger HE, Bouwstra JA. Estradiol permeation from nonionic surfactant vesicles through human stratum corneum in vitro. Pharm Res. 1994; 11(5): 659-64. DOI: https://doi.org/10.1023/A:1018963910260

Cevc G, Vierl U, Mazgareanu S. Functional characterisation of novel analgesic product based on self-regulating drug carriers. Int J Pharm. 2008; 360(1-2): 18-28. DOI: https://doi.org/10.1016/j.ijpharm.2008.04.002

Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduction and Targeted Therapy. 2018; 3(1): 7. DOI: https://doi.org/10.1038/s41392-017-0004-3

Deitcher OR, Glaspy J, Gonzalez R, Sato T, Bedikian AY, Segarini K, et al. High-dose Vincristine Sulfate Liposome Injection (Marqibo) Is Not Associated With Clinically Meaningful Hematologic Toxicity. Clinical Lymphoma Myeloma and Leukemia. 2014; 14(3): 197-202. DOI: https://doi.org/10.1016/j.clml.2013.10.012

Din FU, Aman W, Ullah I, Qureshi OS, Mustapha O, Shafique S, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine. 2017; 12: 7291-309. DOI: https://doi.org/10.2147/IJN.S146315

Pelzer U, Blanc JF, Melisi D, Cubillo A, Von Hoff DD, Wang-Gillam A, et al. Quality-adjusted survival with combination nal-IRI+5-FU/LV vs 5-FU/LV alone in metastatic pancreatic cancer patients previously treated with gemcitabine-based therapy: a Q-TWiST analysis. Br J Cancer. 2017; 116(10): 1247-53. DOI: https://doi.org/10.1038/bjc.2017.67

Davis JL, Paris HL, Beals JW, Binns SE, Giordano GR, Scalzo RL, et al. Liposomal-encapsulated Ascorbic Acid: Influence on Vitamin C Bioavailability and Capacity to Protect Against Ischemia-Reperfusion Injury. Nutr Metab Insights. 2016; 9: 25-30. DOI: https://doi.org/10.4137/NMI.S39764

Cevc G. Transdermal drug delivery of insulin with ultradeformable carriers. Clin Pharmacokinet. 2003; 42(5): 461-74. DOI: https://doi.org/10.2165/00003088-200342050-00004

Cevc G, Gebauer D, Stieber J, Schätzlein A, Blume G. Ultraflexible vesicles, Transfersomes, have an extremely low pore penetration resistance and transport therapeutic amounts of insulin across the intact mammalian skin. Biochim Biophys Acta. 1998; 1368(2): 201-15. DOI: https://doi.org/10.1016/S0005-2736(97)00177-6

Opatha SAT, Titapiwatanakun V, Chutoprapat R. Transfersomes: A Promising Nanoencapsulation Technique for Transdermal Drug Delivery. Pharmaceutics. 2020; 12(9): 855. DOI: https://doi.org/10.3390/pharmaceutics12090855

Singh S, Verma D, Mirza MA, Das AK, dudeja M, Anwer MK, et al. Development and optimization of ketoconazole loaded nano-transfersomal gel for vaginal delivery using Box-Behnken design: In vitro, ex vivo characterization and antimicrobial evaluation. Journal of Drug Delivery Science and Technology. 2017; 39: 95-103. DOI: https://doi.org/10.1016/j.jddst.2017.03.007

Mahmood S, Chatterjee B, Mandal UK, editors. Nano transfersomes vesicles of raloxifene HCl with sorbitan 80: formulation and characterization. 2018.

Zhang Y, Ng W, Feng X, Cao F, Xu H. Lipid vesicular nanocarrier: Quick encapsulation efficiency determination and transcutaneous application. International Journal of Pharmaceutics. 2017; 516(1-2): 225-30. DOI: https://doi.org/10.1016/j.ijpharm.2016.11.011

Schlich M, Lai F, Murgia S, Valenti D, Fadda AM, Sinico C. Needle-free jet injection of intact phospholipid vesicles across the skin: a feasibility study. Biomed Microdevices. 2016; 18(4): 67. DOI: https://doi.org/10.1007/s10544-016-0098-3

Garg V, Singh H, Bhatia A, Raza K, Singh SK, Singh B, et al. Systematic Development of Transethosomal Gel System of Piroxicam: Formulation Optimization, In Vitro Evaluation, and Ex Vivo Assessment. AAPS PharmSciTech. 2017; 18(1): 58-71. DOI: https://doi.org/10.1208/s12249-016-0489-z

Duangjit S, Opanasopit P, Rojanarata T, Ngawhirunpat T. Evaluation of meloxicam-loaded cationic transfersomes as transdermal drug delivery carriers. AAPS PharmSciTech. 2013; 14(1): 133-40. DOI: https://doi.org/10.1208/s12249-012-9904-2

Kaur CD, Saraf S. Topical vesicular formulations of Curcuma longa extract on recuperating the ultraviolet radiation-damaged skin. J Cosmet Dermatol. 2011; 10(4): 260-5. DOI: https://doi.org/10.1111/j.1473-2165.2011.00586.x

Hassanpour Aghdam M, Ghanbarzadeh S, Javadzadeh Y, Hamishehkar H. Aggregated Nanotransfersomal Dry Powder Inhalation of Itraconazole for Pulmonary Drug Delivery. Adv Pharm Bull. 2016; 6(1): 57-64. DOI: https://doi.org/10.15171/apb.2016.009

Fang Y-P, Huang Y-B, Wu P-C, Tsai Y-H. Topical delivery of 5-aminolevulinic acid-encapsulated ethosomes in a hyperproliferative skin animal model using the CLSM technique to evaluate the penetration behavior. European Journal of Pharmaceutics and Biopharmaceutics. 2009; 73(3): 391-8. DOI: https://doi.org/10.1016/j.ejpb.2009.07.011

Sudhakar K, Nitish U SJR, Narayana C. Ethosomes as Non-invasive Loom for Transdermal Drug Delivery System. 2012; 1-22.

Solanki AB, Parikh JR, Parikh RH, Patel MR, editors. Evaluation of different compositions of niosomes to optimize aceclofenac transdermal delivery. 2010.

Arora R, Sharma A. Release Studies of Ketoprofen Niosome Formulation. J Chem Pharm Res. 2010; 2.

Shaker D, Nasr M, Mostafa M. Bioavailability and hypocholesterolemic effect of proniosomal simvastatin for transdermal delivery. International Journal of Pharmacy and Pharmaceutical Sciences. 2013; 5: 344-51.

Ibrahim MMA, Sammour OA, Hammad MA, Megrab NA. In vitro evaluation of proniosomes as a drug carrier for flurbiprofen. AAPS PharmSciTech. 2008; 9(3): 782-90. DOI: https://doi.org/10.1208/s12249-008-9114-0

Tavano L, Alfano P, Muzzalupo R, de Cindio B. Niosomes vs microemulsions: new carriers for topical delivery of Capsaicin. Colloids Surf B Biointerfaces. 2011; 87(2): 333-9. DOI: https://doi.org/10.1016/j.colsurfb.2011.05.041

Zhang Y, Zhang K, Wu Z, Guo T, Ye B, Lu M, et al. Evaluation of transdermal salidroside delivery using niosomes via in vitro cellular uptake. Int J Pharm. 2015; 478(1): 138-46. DOI: https://doi.org/10.1016/j.ijpharm.2014.11.018

Keservani R, Sharma AK, Ramteke S. Novel Vesicular Approach For Topical Delivery of Baclofen Via Niosomes. Latin American Journal of Pharmacy. 2010; 29: 1364-70.

Bolla PK, Meraz CA, Rodriguez VA, Deaguero I, Singh M, Yellepeddi VK, et al. Clotrimazole Loaded Ufosomes for Topical Delivery: Formulation Development and In-Vitro Studies. Molecules. 2019; 24(17). DOI: https://doi.org/10.3390/molecules24173139

Kumar P, Singh SK, Handa V, Kathuria H. Oleic Acid Nanovesicles of Minoxidil for Enhanced Follicular Delivery. Medicines (Basel). 2018; 5(3): 103. DOI: https://doi.org/10.3390/medicines5030103

Arundhasree, R R, R A, Kumar A, Kumar S, Nair S. UFASOMES: UNSATURATED FATTY ACID BASED VESICULAR DRUG DELIVERY SYSTEM. International Journal of Applied Pharmaceutics. 2021; 76-83. DOI: https://doi.org/10.22159/ijap.2021v13i2.39526

Zakir F, Vaidya B, Goyal AK, Malik B, Vyas SP. Development and characterization of oleic acid vesicles for the topical delivery of fluconazole. Drug Delivery. 2010; 17(4): 238-48. DOI: https://doi.org/10.3109/10717541003680981

Sreekanth DN. SPHINGOSOMES: A NOVEL VESICULAR DRUG DELIVERY SYSTEM. International Journal of Pharmaceutical Research and Bio Science. 2013; 2: 305-12.

Mathew B, Jacobson JR, Berdyshev E, Huang Y, Sun X, Zhao Y, et al. Role of sphingolipids in murine radiation-induced lung injury: protection by sphingosine 1-phosphate analogs. Faseb j. 2011; 25(10): 3388-400. DOI: https://doi.org/10.1096/fj.11-183970

Baumruker T, Prieschl EE. Sphingolipids and the regulation of the immune response. Semin Immunol. 2002; 14(1): 57-63. DOI: https://doi.org/10.1006/smim.2001.0342

Kunwarpuriya AS, Doke V, Changedia S, Khutle NM, editors. SPHINGOSOME: A NOVEL VESICULAR DRUG DELIVERY SYSYTEM. 2015.

Mui BL-S, Ahkong Q-F, Leone R, Wong K, Lam K, Chow L, et al. Encapsulation of crystalline topotecan in sphingosomes: a formulation suitable for clinical development. Cancer Research. 2005; 65 (9_Supplement): 326-7.

Abourehab MAS, Ansari MJ, Singh A, Hassan A, Abdelgawad MA, Shrivastav P, et al. Cubosomes as an emerging platform for drug delivery: a review of the state of the art. Journal of Materials Chemistry B. 2022; 10(15): 2781-819. DOI: https://doi.org/10.1039/D2TB00031H

Morsi NM, Abdelbary GA, Ahmed MA. Silver sulfadiazine based cubosome hydrogels for topical treatment of burns: development and in vitro/in vivo characterization. Eur J Pharm Biopharm. 2014; 86(2): 178-89. DOI: https://doi.org/10.1016/j.ejpb.2013.04.018

Khan S, Jain P, Jain S, Jain R, Bhargava S, Jain A. Topical Delivery of Erythromycin Through Cubosomes for Acne. Pharm Nanotechnol. 2018; 6(1): 38-47. DOI: https://doi.org/10.2174/2211738506666180209100222

Lai J, Lu Y, Yin Z, Hu F, Wu W. Pharmacokinetics and enhanced oral bioavailability in beagle dogs of cyclosporine A encapsulated in glyceryl monooleate/poloxamer 407 cubic nanoparticles. Int J Nanomedicine. 2010; 5: 13-23. DOI: https://doi.org/10.2147/IJN.S8311

Nithya R, Jerold P, Siram K. Cubosomes of dapsone enhanced permeation across the skin. Journal of Drug Delivery Science and Technology. 2018; 48: 75-81. DOI: https://doi.org/10.1016/j.jddst.2018.09.002

Han S, Shen JQ, Gan Y, Geng HM, Zhang XX, Zhu CL, et al. Novel vehicle based on cubosomes for ophthalmic delivery of flurbiprofen with low irritancy and high bioavailability. Acta Pharmacol Sin. 2010; 31(8): 990-8. DOI: https://doi.org/10.1038/aps.2010.98

Saber MM, Al-Mahallawi AM, Nassar NN, Stork B, Shouman SA. Targeting colorectal cancer cell metabolism through development of cisplatin and metformin nano-cubosomes. BMC Cancer. 2018; 18(1): 822. DOI: https://doi.org/10.1186/s12885-018-4727-5

Magdy M, Almahallawi A, Nassar N, Shouman S. Pluronic Based Cubosomes Enhance Metformin Cytotoxicity In Colon Cancer Cell Lines. Clinical Therapeutics. 2017; 39(8, Supplement): e27. DOI: https://doi.org/10.1016/j.clinthera.2017.05.082

Mehanna MM, Sarieddine R, Alwattar JK, Chouaib R, Gali-Muhtasib H. Anticancer Activity of Thymoquinone Cubic Phase Nanoparticles Against Human Breast Cancer: Formulation, Cytotoxicity and Subcellular Localization. Int J Nanomedicine. 2020; 15: 9557-70. DOI: https://doi.org/10.2147/IJN.S263797

Varghese R, Salvi S, Sood P, Kulkarni B, Kumar D. Cubosomes in cancer drug delivery: A review. Colloid and Interface Science Communications. 2022; 46: 100561. DOI: https://doi.org/10.1016/j.colcom.2021.100561

Al Khawaja AY, Khalil EA, Mansour RSH, Hamdan II. Preparation, Characterization and Transdermal Permeation of Losartan-Amlodipine Molecular Salt. Jordan Journal of Pharmaceutical Sciences. 2022; 15(4): 536-52. DOI: https://doi.org/10.35516/jjps.v15i4.677

Obaid RZ, Abu-Huwaij R, Hamed R. Development and Characterization of Anticancer Model Drug Conjugated to Biosynthesized Zinc Oxide Nanoparticles Loaded into Different Topical Skin Formulations. Jordan Journal of Pharmaceutical Sciences. 2023; 16(2): 486. DOI: https://doi.org/10.35516/jjps.v16i2.1545

Downloads

Published

2024-03-19

How to Cite

Gaur, P. K., Minocha, S., Mishra, R., Lal, N., & Lata, K. (2024). Recent Advances in Development of Vesicular Carrier for Transdermal Drug Delivery: A Review. Jordan Journal of Pharmaceutical Sciences, 17(1), 1–30. https://doi.org/10.35516/jjps.v17i1.1313

Issue

Section

Articles