An Insight into the Structure-Activity Relationship of Antimicrobial Peptide Brevinin

Authors

  • Md. Kamrul Hasan Arnab Jagannath University, Dhaka, Bangladesh
  • Moynul Hasan Jagannath University, Dhaka, Bangladesh
  • Md. Monirul Islam Noakhali Science and Technology University, Noakhali, Bangladesh

DOI:

https://doi.org/10.35516/jjps.v16i4.1327

Keywords:

Antimicrobial peptides, Brevinin, Helicity, Hydrophobicity, Net charge, Hemolytic activity

Abstract

Numerous amphibian species, particularly those of the genus Rana, have been found to produce linear, amphiphilic, and cationic antimicrobial peptides (AMPs). Such AMPs are gaining more attention in pharmaceutical applications due to their principal method of action, which involves penetrating and rupturing the intended cell membranes with relatively low resistance. Brevinin is a large family of AMPs extensively studied during the last few decades, primarily consisting of two groups of peptides: Brevinin-1 and Brevinin-2. These peptides are cationic and establish secondary structures in the biological membrane environment. In this discussion, we explore the effects of structural parameters (net charge, hydrophobicity, amphiphilicity, helicity, peptide length, etc.) of Brevinin on their antimicrobial activity. As a general rule, an increased net charge tends to enhance antimicrobial activity. However, it is important to note that excessive net charges can also elevate hemolytic activity. The amino acid composition significantly influences hydrophobicity and helicity, which, in turn, impact the activity of the peptides. Moreover, these structural parameters are interconnected; modifying one parameter will affect others. Striking an optimal balance in these factors will provide a Brevinin analog with the highest antimicrobial activity and the lowest hemolytic activity.

Author Biographies

Md. Kamrul Hasan Arnab, Jagannath University, Dhaka, Bangladesh

Department of Pharmacy, Jagannath University, Dhaka, Bangladesh

Moynul Hasan, Jagannath University, Dhaka, Bangladesh

Department of Pharmacy, Jagannath University, Dhaka, Bangladesh

Md. Monirul Islam, Noakhali Science and Technology University, Noakhali, Bangladesh

Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh

References

Hejaz HA. Knowledge and Attitudes towards Antibiotic Usage. Jordan J Pharm Sci. 2023; 16(2): 447. DOI: https://doi.org/10.35516/jjps.v16i2.1486

Antimicrobial resistance global report on surveillance: 2014 summary. World Health Organization. 2014.

Taha AA. Spectrum and Antibiotic Resistance in the Community and Hospital-Acquired Urinary Tract Infected Adults. Jordan J Pharm Sci. 2023 ;16(2): 455. DOI: https://doi.org/10.35516/jjps.v16i2.1494

Neshani A, Sedighian H, Mirhosseini SA. et al. Antimicrobial peptides as a promising treatment option against Acinetobacter baumannii infections. Microb Pathog. 2020; 146(104238): 104238. DOI: https://doi.org/10.1016/j.micpath.2020.104238

Zhao H, Zhou J, Zhang K. et al. A novel peptide with potent and broad-spectrum antiviral activities against multiple respiratory viruses. Sci Rep. 2016; 6(1): 1-3. DOI: https://doi.org/10.1038/srep22008

Sansom MS. The biophysics of peptide models of ion channels. Prog Biophys Mol Biol. 1991; 55(3): 139–235. DOI: https://doi.org/10.1016/0079-6107(91)90004-C

Matsuzaki K, Murase O, Fujii N. et al. An antimicrobial peptide, magainin 2, induced rapid flip-flop of phospholipids coupled with pore formation and peptide translocation. Biochemistry. 1996; 35(35): 11361–11368. DOI: https://doi.org/10.1021/bi960016v

Shai Y. Mechanism of the binding, insertion and destabilization of phospholipid bilayer membranes by α-helical antimicrobial and cell non-selective membrane-lytic peptides. Biochim Biophys Acta Biomembr. 1999; 1462(1–2): 55–70. DOI: https://doi.org/10.1016/S0005-2736(99)00200-X

Aoki W, Ueda M. Characterization of antimicrobial peptides toward the development of novel antibiotics. Pharmaceuticals (Basel). 2013; 6(8): 1055–1081. DOI: https://doi.org/10.3390/ph6081055

Hancock RE, Diamond G. The role of cationic antimicrobial peptides in innate host defences. Trends Microbiol. 2000; 8(9): 402–410. DOI: https://doi.org/10.1016/S0966-842X(00)01823-0

Tossi A, Sandri L, Giangaspero A. Amphipathic, α‐helical antimicrobial peptides. Biopolymers. 2000; 55(1): 4–30. DOI: https://doi.org/10.1002/1097-0282(2000)55:1<4::AID-BIP30>3.0.CO;2-M

Takahashi D, Shukla SK, Prakash O. et al. Structural determinants of host defense peptides for antimicrobial activity and target cell selectivity. Biochimie. 2010; 92(9): 1236–1241. DOI: https://doi.org/10.1016/j.biochi.2010.02.023

Nguyen LT, Haney EF, Vogel HJ. The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol. 2011; 29(9): 464–472. DOI: https://doi.org/10.1016/j.tibtech.2011.05.001

Lee J-K, Luchian T, Park Y. New antimicrobial peptide kills drug-resistant pathogens without detectable resistance. Oncotarget. 2018; 9(21): 15616–15634. DOI: https://doi.org/10.18632/oncotarget.24582

Conlon JM. Structural diversity and species distribution of host-defense peptides in frog skin secretions. Cell Mol Life Sci. 2011; 68(13): 2303–2315. DOI: https://doi.org/10.1007/s00018-011-0720-8

Conlon JM, Kolodziejek J, Nowotny N. Antimicrobial peptides from ranid frogs: taxonomic and phylogenetic markers and a potential source of new therapeutic agents. Biochim Biophys Acta Proteins Proteom. 2004; 1696(1): 1–14. DOI: https://doi.org/10.1016/j.bbapap.2003.09.004

Morikawa N, Hagiwara K, Nakajima T. Brevinin-1 and -2, unique antimicrobial peptides from the skin of the frog, Rana brevipoda porsa. Biochem Biophys Res Commun. 1992; 189(1): 184–190. DOI: https://doi.org/10.1016/0006-291X(92)91542-X

Novković M, Simunić J, Bojović V. et al. DADP: the database of anuran defense peptides. Bioinformatics. 2012; 28(10): 1406–1407. DOI: https://doi.org/10.1093/bioinformatics/bts141

Savelyeva A, Ghavami S, Davoodpour P. et al. An overview of Brevinin superfamily: structure, function and clinical perspectives. Adv Exp Med Biol. 2014; 818: 197–212. DOI: https://doi.org/10.1007/978-1-4471-6458-6_10

Lin Y, Liu S, Xi X. et al. Study on the structure-activity relationship of an antimicrobial peptide, Brevinin-2GUb, from the skin secretion of Hylarana guentheri. Antibiotics (Basel). 2021; 10(8): 895. DOI: https://doi.org/10.3390/antibiotics10080895

Jindal HM, Le CF, Mohd Yusof MY. et al. Antimicrobial activity of novel synthetic peptides derived from indolicidin and ranalexin against Streptococcus pneumoniae. PLoS One. 2015; 10(6): 0128532. DOI: https://doi.org/10.1371/journal.pone.0128532

Albada HB, Prochnow P, Bobersky S. et al. Short antibacterial peptides with significantly reduced hemolytic activity can be identified by a systematic L-to-D exchange scan of their amino acid residues. ACS Comb Sci. 2013; 15(11): 585–592. DOI: https://doi.org/10.1021/co400072q

Chen Y, Mant CT, Farmer SW. et al. Rational design of α-helical antimicrobial peptides with enhanced activities and specificity/therapeutic index. J Biol Chem. 2005; 280(13): 12316–12329. DOI: https://doi.org/10.1074/jbc.M413406200

Kumar P, Kizhakkedathu J, Straus S. Antimicrobial peptides: Diversity, mechanism of action and strategies to improve the activity and biocompatibility in vivo. Biomolecules. 2018; 8(1): 4. DOI: https://doi.org/10.3390/biom8010004

Samgina TY, Artemenko KA, Gorshkov VA. et al. Mass spectrometric study of peptides secreted by the skin glands of the brown frog Rana arvalis from the Moscow region. Rapid Commun Mass Spectrom. 2009; 23(9): 1241–1248. DOI: https://doi.org/10.1002/rcm.3994

Goraya J, Wang Y, Li Z. et al. Peptides with antimicrobial activity from four different families isolated from the skins of the North American frogs Rana luteiventris, Rana berlandieri and Rana pipiens: Antimicrobial peptides from Ranid frogs. Eur J Biochem. 2000; 267(3): 894–900. DOI: https://doi.org/10.1046/j.1432-1327.2000.01074.x

Conlon JM, Sonnevend A, Patel M. et al. Isolation of peptides of the brevinin-1 family with potent candidacidal activity from the skin secretions of the frog Rana boylii. J Pept Res. 2003; 62(5): 207–213. DOI: https://doi.org/10.1034/j.1399-3011.2003.00090.x

Jin LL, Song SS, Li Q. et al. Identification and characterisation of a novel antimicrobial polypeptide from the skin secretion of a Chinese frog (Rana chensinensis). Int J Antimicrob Agents. 2009; 33(6): 538–542. DOI: https://doi.org/10.1016/j.ijantimicag.2008.11.010

Yang X, Xia J, Yu Z. et al. Characterization of diverse antimicrobial peptides in skin secretions of Chungan torrent frog Amolops chunganensis. Peptides. 2012; 38(1): 41–53. DOI: https://doi.org/10.1016/j.peptides.2012.08.008

Conlon JM, Al-Dhaheri A, Al-Mutawa E. et al. Peptide defenses of the Cascades frog Rana cascadae: implications for the evolutionary history of frogs of the Amerana species group. Peptides. 2007; 28(6): 1268–1274. DOI: https://doi.org/10.1016/j.peptides.2007.03.010

Conlon JM, Kolodziejek J, Nowotny N. et al. Cytolytic peptides belonging to the brevinin-1 and brevinin-2 families isolated from the skin of the Japanese brown frog, Rana dybowskii. Toxicon. 2007; 50(6): 746–756. DOI: https://doi.org/10.1016/j.toxicon.2007.06.023

Marenah L, Flatt PR, Orr DF. et al. Skin secretions of Rana saharica frogs reveal antimicrobial peptides esculentins-1 and -1B and brevinins-1E and -2EC with novel insulin releasing activity. J Endocrinol. 2006; 188(1): 1–9. DOI: https://doi.org/10.1677/joe.1.06293

Wang H, Yu Z, Hu Y. et al. Novel antimicrobial peptides isolated from the skin secretions of Hainan odorous frog, Odorrana hainanensis. Peptides. 2012; 35(2): 285–290. DOI: https://doi.org/10.1016/j.peptides.2012.03.007

Conlon JM, Kolodziejek J, Nowotny N. et al. Characterization of antimicrobial peptides from the skin secretions of the Malaysian frogs, Odorrana hosii and Hylarana picturata (Anura: Ranidae). Toxicon. 2008; 52(3): 465–473. DOI: https://doi.org/10.1016/j.toxicon.2008.06.017

Conlon JM, Musale V, Attoub S. et al. Cytotoxic peptides with insulin-releasing activities from skin secretions of the Italian stream frog Rana italica (Ranidae). J Pept Sci. 2017; 23(10): 769–776. DOI: https://doi.org/10.1002/psc.3025

Conlon JM, Sonnevend A, Jouenne T. et al. A family of acyclic brevinin-1 peptides from the skin of the Ryukyu brown frog Rana okinavana. Peptides. 2005; 26(2): 185–190. DOI: https://doi.org/10.1016/j.peptides.2004.08.008

Basir YJ, Knoop FC, Dulka J. et al. Multiple antimicrobial peptides and peptides related to bradykinin and neuromedin N isolated from skin secretions of the pickerel frog, Rana palustris. Biochim Biophys Acta. 2000; 1543(1): 95–105. DOI: https://doi.org/10.1016/S0167-4838(00)00191-6

Samgina TY, Artemenko KA, Bergquist J. et al. Differentiation of frogs from two populations belonging to the Pelophylax esculentus complex by LC-MS/MS comparison of their skin peptidomes. Anal Bioanal Chem. 2017; 409(7): 1951–1961. DOI: https://doi.org/10.1007/s00216-016-0143-3

Conlon TJ, Halverson T, Dulka J. et al. Peptides with antimicrobial activity of the brevinin-1 family isolated from skin secretions of the southern leopard frog, Rana sphenocephala. J Pept Res. 1999; 54(6): 522–527. DOI: https://doi.org/10.1034/j.1399-3011.1999.00123.x

Graham C, Richter SC, McClean S. et al. Histamine-releasing and antimicrobial peptides from the skin secretions of the dusky gopher frog, Rana sevosa. Peptides. 2006; 27(6): 1313–1319. DOI: https://doi.org/10.1016/j.peptides.2005.11.021

Yang X, Hu Y, Xu S. et al. Identification of multiple antimicrobial peptides from the skin of fine-spined frog, Hylarana spinulosa (Ranidae). Biochimie. 2013; 95(12): 2429–2436. DOI: https://doi.org/10.1016/j.biochi.2013.09.002

Bevier CR, Sonnevend A, Kolodziejek J. et al. Purification and characterization of antimicrobial peptides from the skin secretions of the mink frog (Rana septentrionalis). Comp Biochem Physiol C Toxicol Pharmacol. 2004; 139(1–3): 31–38. DOI: https://doi.org/10.1016/j.cca.2004.08.019

Simmaco M, Mignogna G, Barra D. Antimicrobial peptides from amphibian skin: what do they tell us? Biopolymers. 1998; 47(6): 435–450. DOI: https://doi.org/10.1002/(SICI)1097-0282(1998)47:6<435::AID-BIP3>3.0.CO;2-8

Zhou J, McClean S, Thompson A. et al. Purification and characterization of novel antimicrobial peptides from the skin secretion of Hylarana guentheri. Peptides. 2006; 27(12): 3077–3084. DOI: https://doi.org/10.1016/j.peptides.2006.08.007

Conlon JM, Al-Ghaferi N, Abraham B. et al. Antimicrobial peptides from diverse families isolated from the skin of the Asian frog, Rana grahami. Peptides. 2006; 27(9): 2111–2117. DOI: https://doi.org/10.1016/j.peptides.2006.03.002

Iwakoshi-Ukena E, Ukena K, Okimoto A. et al. Identification and characterization of antimicrobial peptides from the skin of the endangered frog Odorrana ishikawae. Peptides. 2011; 32(4): 670–676. DOI: https://doi.org/10.1016/j.peptides.2010.12.013

Liu J, Jiang J, Wu Z. et al. Antimicrobial peptides from the skin of the Asian frog, Odorrana jingdongensis: de novo sequencing and analysis of tandem mass spectrometry data. J Proteomics. 2012; 75(18): 5807–5821. DOI: https://doi.org/10.1016/j.jprot.2012.08.004

Samgina TY, Tolpina MD, Trebse P. et al. LTQ Orbitrap Velos in routine de novo sequencing of non-tryptic skin peptides from the frog Rana latastei with traditional and reliable manual spectra interpretation. Rapid Commun Mass Spectrom. 2016; 30(2): 265–276. DOI: https://doi.org/10.1002/rcm.7436

Ghavami S, Asoodeh A, Klonisch T. et al. Brevinin-2R1 semi-selectively kills cancer cells by a distinct mechanism, which involves the lysosomal-mitochondrial death pathway. J Cell Mol Med. 2008; 12(3): 1005–1022. DOI: https://doi.org/10.1111/j.1582-4934.2008.00129.x

Samgina TY, Artemenko KA, Gorshkov VA. et al. De novo sequencing of peptides secreted by the skin glands of the Caucasian Green Frog Rana ridibunda. Rapid Commun Mass Spectrom. 2008; 22(22): 3517–3525. DOI: https://doi.org/10.1002/rcm.3759

Lamb R, Bonuccelli G, Ozsvári B. et al. Mitochondrial mass, a new metabolic biomarker for stem-like cancer cells: Understanding WNT/FGF-driven anabolic signaling. Oncotarget. 2015; 6(31): 30453–30471. DOI: https://doi.org/10.18632/oncotarget.5852

Asoodeh A, Sepahi S, Ghorani-Azam A. Purification and Modeling Amphipathic Alpha Helical Antimicrobial Peptides from Skin Secretions of Euphlyctis cyanophlyctis. Chem Biol Drug Des. 2014; 83(4): 411–417. DOI: https://doi.org/10.1111/cbdd.12256

Lu Y, Li J, Yu H. et al. Two families of antimicrobial peptides with multiple functions from skin of rufous-spotted torrent frog, Amolops loloensis. Peptides. 2006; 27(12): 3085–3091. DOI: https://doi.org/10.1016/j.peptides.2006.08.017

Clark DP, Durell S, Maloy WL. et al. A novel antimicrobial peptide from bullfrog (Rana catesbeiana) skin, structurally related to the bacterial antibiotic, polymyxin. J Biol Chem. 1994; 269(14): 10849–10855. DOI: https://doi.org/10.1016/S0021-9258(17)34136-4

Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev. 2003; 55(1): 27–55. DOI: https://doi.org/10.1124/pr.55.1.2

Kwon M-Y, Hong S-Y, Lee K-H. Structure-activity analysis of brevinin 1E amide, an antimicrobial peptide from Rana esculenta. Biochim Biophys Acta. 1998; 1387(1–2): 239–248. DOI: https://doi.org/10.1016/S0167-4838(98)00123-X

Lee T-H, N. Hall K, Aguilar M-I. Antimicrobial peptide structure and mechanism of action: A focus on the role of membrane structure. Curr Top Med Chem. 2015; 16(1): 25–39. DOI: https://doi.org/10.2174/1568026615666150703121700

Jiang Z, Vasil AI, Hale JD. et al. Effects of net charge and the number of positively charged residues on the biological activity of amphipathic α‐helical cationic antimicrobial peptides. Peptide Science. 2008; 90(3): 369-383. DOI: https://doi.org/10.1002/bip.20911

Conlon JM, Ahmed E, Condamine E. Antimicrobial properties of brevinin-2-related peptide and its analogs: efficacy against multidrug-resistant Acinetobacter baumannii. Chem Biol Drug Des. 2009; 74(5): 488–493. DOI: https://doi.org/10.1111/j.1747-0285.2009.00882.x

Guo C, Hu Y, Li J. et al. Identification of multiple peptides with antioxidant and antimicrobial activities from skin and its secretions of Hylarana taipehensis, Amolops lifanensis, and Amolops granulosus. Biochimie. 2014; 105: 192–201. DOI: https://doi.org/10.1016/j.biochi.2014.07.013

Islam MM, Asif F, Zaman SU. et al. Effect of charge on the antimicrobial activity of alpha-helical amphibian antimicrobial peptide. Curr Res Microb Sci. 2023. 100182. DOI: https://doi.org/10.1016/j.crmicr.2023.100182

Situ AJ, Kang S-M, Frey BB. et al. Membrane anchoring of α-helical proteins: Role of tryptophan. J Phys Chem B. 2018; 122(3): 1185–1194. DOI: https://doi.org/10.1021/acs.jpcb.7b11227

Chen Y, Guarnieri MT, Vasil AI. et al. Role of peptide hydrophobicity in the mechanism of action of α-helical antimicrobial peptides. Antimicrob Agents Chemother. 2007; 51(4): 1398–1406. DOI: https://doi.org/10.1128/AAC.00925-06

Conlon JM, Sonnevend Á, Patel M. et al. A family of brevinin-2 peptides with potent activity against Pseudomonas aeruginosa from the skin of the Hokkaido frog, Rana pirica. Regul Pept. 2004; 118(3): 135–141. DOI: https://doi.org/10.1016/j.regpep.2003.12.003

Phuong PT, Oliver S, He J. et al. Effect of hydrophobic groups on antimicrobial and hemolytic activity: Developing a predictive tool for ternary antimicrobial polymers. Biomacromolecules. 2020; 21(12): 5241–5255. DOI: https://doi.org/10.1021/acs.biomac.0c01320

Conlon JM, Raza H, Coquet L. et al. Purification of peptides with differential cytolytic activities from the skin secretions of the Central American frog, Lithobates vaillanti (Ranidae). Comp Biochem Physiol C Toxicol Pharmacol. 2009; 150(2): 150–154. DOI: https://doi.org/10.1016/j.cbpc.2009.04.003

Kumari VK, Nagaraj R. Structure− function studies on the amphibian peptide brevinin 1E: translocating the cationic segment from the C-terminal end to a central position favors selective antibacterial activity. J Pept Res. 2001; 58(5): 433–441. DOI: https://doi.org/10.1034/j.1399-3011.2001.00924.x

Chen Q, Cheng P, Ma C. et al. Evaluating the bioactivity of a novel broad-spectrum antimicrobial peptide Brevinin-1GHa from the frog skin secretion of Hylarana guentheri and its analogues. Toxins (Basel). 2018; 10(10): 413. DOI: https://doi.org/10.3390/toxins10100413

Zhou X, Liu Y, Gao Y. et al. Enhanced antimicrobial activity of N-terminal derivatives of a novel brevinin-1 peptide from the skin secretion of Odorrana schmackeri. Toxins (Basel). 2020; 12(8): 484. DOI: https://doi.org/10.3390/toxins12080484

Chen G, Miao Y, Ma C. et al. Brevinin-2GHk from Sylvirana guentheri and the design of truncated analogs exhibiting the enhancement of antimicrobial activity. Antibiotics (Basel). 2020; 9(2): 85. DOI: https://doi.org/10.3390/antibiotics9020085

Conlon JM, Al-Ghaferi N, Abraham B. et al. Strategies for transformation of naturally-occurring amphibian antimicrobial peptides into therapeutically valuable anti-infective agents. Methods. 2007; 42(4): 349–357. DOI: https://doi.org/10.1016/j.ymeth.2007.01.004

Ma Z, Wei D, Yan P. et al. Characterization of cell selectivity, physiological stability and endotoxin neutralization capabilities of α-helix-based peptide amphiphiles. Biomaterials. 2015; 52: 517–530. DOI: https://doi.org/10.1016/j.biomaterials.2015.02.063

Abraham P, George S, Kumar KS. Novel antibacterial peptides from the skin secretion of the Indian bicoloured frog Clinotarsus curtipes. Biochimie. 2014; 97: 144–151 DOI: https://doi.org/10.1016/j.biochi.2013.10.005

Downloads

Published

2023-12-25

How to Cite

Arnab, M. K. H., Hasan, M., & Islam, M. M. (2023). An Insight into the Structure-Activity Relationship of Antimicrobial Peptide Brevinin. Jordan Journal of Pharmaceutical Sciences, 16(4), 815–829. https://doi.org/10.35516/jjps.v16i4.1327

Issue

Section

Articles