Reverse Vaccinology Analysis of B-cell Epitope against Nipah Virus using Fusion Protein

Authors

  • Ziyan Muhammad Aqsha Faculty of Engineering, Universitas Indonesia, Jakarta, Indonesia.
  • Muhammad Alsyifaa Dharmawan Faculty of Engineering, Universitas Indonesia, Jakarta, Indonesia
  • Viol Dhea Kharisma Computational Virology and Complexity Science Research Unit, Division of Molecular Biology and Genetics, Generasi Biologi Indonesia Foundation, Gresik, Indonesia.
  • Arif Nur Muhammad Ansori Faculty of Vetenirary Medicine, Universitas Airlangga, Surabaya, Indonesia
  • Nur Imaniati Sumantri Faculty of Engineering, Universitas Indonesia, Jakarta, Indonesia

DOI:

https://doi.org/10.35516/jjps.v16i3.1602

Keywords:

Fusion protein, Nipah virus, reverse vaccinology, immunoinformatic

Abstract

Nipah virus (NiV) is an RNA virus, a pathogenic paramyxovirus that causes nonlethal respiratory illness in pigs. It was originally reported in Malaysia in 1998. NiV is considered a potential outbreak threat because it is zoonotic. However, no vaccines or antiviral drugs have been found against NiV. Therefore, the main objective is to develop effective vaccines by characterizing the fusion protein of NiV. We used a reference sequence retrieved from the National Center for Biotechnology Information (NCBI), then 3D modeled it to obtain the conserved region of the fusion protein. The interaction between the conserved region and B-cell receptors has been evaluated through a molecular docking approach. The B-cell epitope was identified using the Immune Epitope Database (IEDB) web server. As a result, we recommend Pep_D FANCISVTCQCQ as an epitope-based peptide vaccine candidate against Nipah virus. Pep D is highly immunogenic and does not cause autoimmune reactions. Pep D has the lowest binding energy for BCR molecular complexes, which can activate the transduction signal and direct B-cell immune response. However, further studies are required for confirmation (in vitro and in vivo).

Author Biographies

Ziyan Muhammad Aqsha, Faculty of Engineering, Universitas Indonesia, Jakarta, Indonesia.

Biomedical Engineering, Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Jakarta, Indonesia

Muhammad Alsyifaa Dharmawan, Faculty of Engineering, Universitas Indonesia, Jakarta, Indonesia

Biomedical Engineering, Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Jakarta, Indonesia.

Viol Dhea Kharisma, Computational Virology and Complexity Science Research Unit, Division of Molecular Biology and Genetics, Generasi Biologi Indonesia Foundation, Gresik, Indonesia.

Computational Virology and Complexity Science Research Unit, Division of Molecular Biology and Genetics, Generasi Biologi Indonesia Foundation, Gresik, Indonesia.

Master Program in Biology, Faculty of Mathematics and Natural Sciences, Universitas Brawijaya, Malang, Indonesia.

Arif Nur Muhammad Ansori, Faculty of Vetenirary Medicine, Universitas Airlangga, Surabaya, Indonesia

Doctoral Program in Vetenirary Science, Faculty of Vetenirary Medicine, Universitas Airlangga, Surabaya, Indonesia

Nur Imaniati Sumantri, Faculty of Engineering, Universitas Indonesia, Jakarta, Indonesia

Biomedical Engineering, Department of Electrical Engineering, Faculty of Engineering, Universitas Indonesia, Jakarta, Indonesia

References

Sakib M. S., Islam Md. R., Hasan A. K. M. M., and Nabi A. H. M. N., Prediction of Epitope-Based Peptides for the Utility of Vaccine Development from Fusion and Glycoprotein of Nipah Virus Using In Silico Approach, Adv. Bioinforma. 2014; 1–17. doi: 10.1155/2014/402492. DOI: https://doi.org/10.1155/2014/402492

Aditi and Shariff M., Nipah virus infection: A review, Epidemiol. Infect. 2019; 147: e95. doi: 10.1017/S0950268819000086. DOI: https://doi.org/10.1017/S0950268819000086

Ambat A. S. et al., Nipah virus: A review on epidemiological characteristics and outbreaks to inform public health decision making, J. Infect. Public Health. 2019; 12(5): 634–639. doi: 10.1016/j.jiph.2019.02.013. DOI: https://doi.org/10.1016/j.jiph.2019.02.013

Gupta G. B. M., Ahmed K. K. M., and Gupta R., Nipah Virus Research: A Scientometric Assessment of Global Publications Output during 1999-2018, Int. J. Med. Public Health. 2018; 8(2): 48–55. doi: 10.5530/ijmedph.2018.2.11. DOI: https://doi.org/10.5530/ijmedph.2018.2.11

Yoneda M. et al., Recombinant Measles Virus Vaccine Expressing the Nipah Virus Glycoprotein Protects against Lethal Nipah Virus Challenge. PLoS ONE. 2013: 8(3): e58414. doi: 10.1371/journal.pone.0058414. DOI: https://doi.org/10.1371/journal.pone.0058414

Database resources of the National Center for Biotechnology Information, Nucleic Acids Res. 2016. 44(D1): D7–D19. doi: 10.1093/nar/gkv1290. DOI: https://doi.org/10.1093/nar/gkv1290

Schwede T., SWISS-MODEL: an automated protein homology-modeling server, Nucleic Acids Res. 2003; 31(13): 3381–3385. doi: 10.1093/nar/gkg520. DOI: https://doi.org/10.1093/nar/gkg520

Vita R. et al., The Immune Epitope Database (IEDB): 2018 update, Nucleic Acids Res. 2019; 47(D1): D339–D343. doi: 10.1093/nar/gky1006. DOI: https://doi.org/10.1093/nar/gky1006

Doytchinova I. A. and Flower D. R., VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines, BMC Bioinformatics. 2007; 8(1): 4. doi: 10.1186/1471-2105-8-4. DOI: https://doi.org/10.1186/1471-2105-8-4

Gupta S. et al., In Silico Approach for Predicting Toxicity of Peptides and Proteins, PLoS ONE. 2013; 8(9): e73957. doi: 10.1371/journal.pone.0073957. DOI: https://doi.org/10.1371/journal.pone.0073957

Dimitrov I., Flower D. R., and Doytchinova I., AllerTOP - a server for in silico prediction of allergens, BMC Bioinformatics, 2013; (14)6: S4. doi: 10.1186/1471-2105-14-S6-S4. DOI: https://doi.org/10.1186/1471-2105-14-S6-S4

Berman H. M. et al., The Protein Data Bank, Nucleic Acids Res. 2000; 28(1): 235-242. doi: 10.1093/nar/28.1.235. DOI: https://doi.org/10.1093/nar/28.1.235

Lamiable A., Thévenet P., Rey J., Vavrusa M., Derreumaux P., and Tufféry P., PEP-FOLD3: faster de novo structure prediction for linear peptides in solution and in complex, Nucleic Acids Res. 2016; 44. doi: 10.1093/nar/gkw329. DOI: https://doi.org/10.1093/nar/gkw329

Schneidman-Duhovny D., Inbar Y., Nussinov R., and Wolfson H. J., PatchDock and SymmDock: servers for rigid and symmetric docking, Nucleic Acids Res., 2005; 33: W363–W367. doi: 10.1093/nar/gki481. DOI: https://doi.org/10.1093/nar/gki481

Meng X.-Y., Zhang H.-X., Mezei M., and Cui M., Molecular Docking: A Powerful Approach for Structure-Based Drug Discovery, Curr. Comput. Aided-Drug Des. 2011; 7(2): 146-157. doi: 10.2174/157340911795677602. DOI: https://doi.org/10.2174/157340911795677602

Yuan S., Chan H. C. S., and Hu Z., Using PyMOL as a platform for computational drug design, WIREs Comput. Mol. Sci. 2017; 7(2). doi: 10.1002/wcms.1298. DOI: https://doi.org/10.1002/wcms.1298

Himmah K., Polytope Prediction for Dengue Vaccine Candidate Based on Conserved Envelope Glycoprotein of Four Serotypes of Dengue Virus and Its Antigenicity, J. Pure Appl. Chem. Res. 2016; 5(2): 101–107. doi: 10.21776/ub.jpacr.2016.005.02.290. DOI: https://doi.org/10.21776/ub.jpacr.2016.005.02.290

Zahroh H., Ma’rup A., Tambunan U. S. F., and Parikesit A. A., Immunoinformatics Approach in Designing Epitope-based Vaccine against Meningitis-inducing Bacteria (Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae Type b), Drug Target Insights. 2016; 10: DTI.S38458. doi: 10.4137/DTI.S38458. DOI: https://doi.org/10.4137/DTI.S38458

Fu Y., Zhao J., and Chen Z., Insights into the Molecular Mechanisms of Protein-Ligand Interactions by Molecular Docking and Molecular Dynamics Simulation: A Case of Oligopeptide Binding Protein, Comput. Math. Methods Med. 2018; 2018: 1-12. doi: 10.1155/2018/3502514. DOI: https://doi.org/10.1155/2018/3502514

Borra, S. S., and Kumar, D. M., A Comprehensive Review on Efficacy and Adverse Events Associated with Different Covid-19 Vaccines, Jordan Journal of Pharmaceutical Sciences. 2022; 15(2): 289–304. doi: 10.35516/jjps.v15i2.326. DOI: https://doi.org/10.35516/jjps.v15i2.326

Obeidat, M. S., Alyahya, L. A., Obeidat, E. S., Obeidat, A., and Mukattash, T. L. Safety Practices in Community Pharmacy during COVID-19 Pandemic in Jordan, Jordan Journal of Pharmaceutical Sciences. 2023; 16(1): 11-17. doi: 10.35516/jjps.v16i1.1031 DOI: https://doi.org/10.35516/jjps.v16i1.1031

Al Jomaa, E. E., Al Meslamani, A., and Abazid, H., A. Comparative Cross-Sectional Study- Knowledge, behavior and psychological change among Medical and Nonmedical Students in Jordan during COVID-19 pandemic, Jordan Journal of Pharmaceutical Sciences. 2022; 15(2): 204-213. doi: 10.35516/jjps.v15i2.320. DOI: https://doi.org/10.35516/jjps.v15i2.320

Downloads

Published

2023-09-23

How to Cite

Aqsha, Z. M. ., Dharmawan, M. A., Kharisma, V. D. ., Ansori, A. N. M. ., & Sumantri, N. I. . (2023). Reverse Vaccinology Analysis of B-cell Epitope against Nipah Virus using Fusion Protein. Jordan Journal of Pharmaceutical Sciences, 16(3), 499–507. https://doi.org/10.35516/jjps.v16i3.1602

Issue

Section

Articles