A Review on Recent Advances of Natural Products as Larvicides in Vector Control Management

Authors

  • Muktarul Rahaman Laboratory of Parasitology, Vector Biology, Nanotechnology, Department of Zoology, The University of Gour Banga, Malda, West Bengal, India
  • Arpita Gope Laboratory of Parasitology, Vector Biology, Nanotechnology, Department of Zoology, The University of Gour Banga, Malda, West Bengal, India
  • Jayeeta Khanrah Laboratory of Parasitology, Vector Biology, Nanotechnology, Department of Zoology, The University of Gour Banga, Malda, West Bengal, India
  • Anjali Rawani Laboratory of Parasitology, Vector Biology, Nanotechnology, Department of Zoology, The University of Gour Banga, Malda, West Bengal, India

DOI:

https://doi.org/10.35516/jjps.v17i1.1792

Keywords:

Vector Control, Traditional Method, Natural Products, Phytochemicals

Abstract

The mosquito, a biological vector, is responsible for the transmission of serious and dreaded diseases worldwide. These diseases, which are chiefly endemic to tropical countries, cause millions of deaths each year. The significance of plant-based and environmentally friendly insecticides has increased in recent years. Due to their easy biodegradability and target selectivity, they can be used safely in aquatic environments. Despite their effectiveness in controlling target vector species, pesticide applications pose a threat as they can lead to increased chemical insecticide resistance, causing a rebound in vectorial capacity. This review explores the efficacy of phytochemicals in controlling mosquito populations. In mosquito control programs, phytochemicals play a significant role. Plants serve as an immense repository for primary and secondary metabolites. Various types of polar and nonpolar solvents can be used to extract the bioactive plant ingredient(s) from either the whole plant or a specific part of it. This literature review defines natural products and provides an overview of the different types of natural products that can be used to control mosquito larvae. Particularly, it examines the effectiveness of natural products in vector control without causing resistance or harm to non-target organisms. The purpose of this paper is to offer a comprehensive review of the use of natural products as mosquito larvicides and to underscore their potential as an alternative to traditional chemical methods. Ultimately, it encourages further research into the development and use of natural products for successful vector mosquito control.

References

Murthy U.S., Jamil K. Effect of the South Indian vetiver oil (Vetiveria zizinioides (L) Nash) against the immatures of Culex quinquefasciatus (Diptera: Culicidae) Say. International pest control. 1987; 29(1):8–9.

Kumar S., Sahgal A., Kumar S., Sahgal A. Advances in Mosquito Control: A Comprehensive Review. Advances in Diptera - Insight, Challenges and Management Tools. 2022, Doi: 10.5772/INTECHOPEN.106378. DOI: https://doi.org/10.5772/intechopen.106378

Shaalan E.A.S., Canyon D., Younes M.W.F., Abdel-Wahab H., Mansour A.H. A review of botanical phytochemicals with mosquitocidal potential. Environ Int. 2005; 31(8):1149–1166.

Doi: 10.1016/J.ENVINT.2005.03.003.

Ghosh A., Chowdhury N., Chandra G. Plant extracts as potential mosquito larvicides. Indian J Med Res. 2012; 135(5):581.

Ranson H., Lissenden N. Insecticide Resistance in African Anopheles Mosquitoes: A Worsening Situationthat Needs Urgent Action to Maintain Malaria Control. Trends Parasitol. 2016; 32(3):187–196. Doi:10.1016/j.pt.2015.11.010. DOI: https://doi.org/10.1016/j.pt.2015.11.010

Krezanoski P., Haberer J. Objective monitoring of mosquito bednet usage and the ethical challenge of respecting study bystanders’ privacy. 2019; 16(5):466–468. Doi:10.1177/1740774519865525. DOI: https://doi.org/10.1177/1740774519865525

Benelli G., Jeffries C.L., Walker T. Biological Control of Mosquito Vectors: Past, Present, and Future. Insects. 2016; 7(4):52. Doi: 10.3390/INSECTS7040052. DOI: https://doi.org/10.3390/insects7040052

Engdahl C.S., Tikhe C.V., Dimopoulos G. Discovery of novel natural products for mosquito control. Parasit Vectors. 2022; (15)1:1–11. Doi:10.1186/S13071-022-05594-Z/FIGURES/5. DOI: https://doi.org/10.1186/s13071-022-05594-z

Mandal S. Mosquito vector management with botanicals-the most effective weapons in controlling mosquito-borne diseases. Asian Pac J Trop Biomed. 2012; 2(4): 336. Doi: 10.1016/S2221-1691(12)60035-5. DOI: https://doi.org/10.1016/S2221-1691(12)60035-5

Ganesan P., Ignacimuthu S., Ganesan P., Ignacimuthu S. Metabolites from Actinobacteria for Mosquito Control. Actinobacteria - Diversity, Applications and Medical Aspects. 2022. Doi: 10.5772/INTECHOPEN.106885. DOI: https://doi.org/10.5772/intechopen.106885

D. Varijakzhan et al. Bioactive Compounds from Marine Sponges: Fundamentals and Applications. Marine Drugs. 2021; 19(5):246. Doi:10.3390/MD19050246.

Varijakzhan D., Loh J-Y., Yap W-S., Yusoff K., Seboussi R., Lim S-H.E., Lai K-S., Chong C-M. Bioactive Compounds from Marine Sponges: Fundamentals and Applications. Mar. Drugs. 2021; 19:246. https://doi.org/10.3390/md19050246 DOI: https://doi.org/10.3390/md19050246

Govindarajan M., Hoti S.L., Rajeswary M., Benelli G. One-step synthesis of polydispersed silver nanocrystals using Malva sylvestris: an eco-friendly mosquito larvicide with negligible impact on non-target aquatic organisms. Parasitol Res. 2016; 115(7):2685–2695. Doi: 10.1007/S00436-016-5038-X/TABLES/5. DOI: https://doi.org/10.1007/s00436-016-5038-x

Luker H.A., Salas K.R., Esmaeili D., Holguin F.O., Bendzus-Mendoza H., Hansen I.A. Repellent efficacy of 20 essential oils on Aedes aegypti mosquitoes and Ixodes scapularis ticks in contact-repellency assays. Scientific Reports. 2023; 13(1):1–10. Doi:10.1038/s41598-023-28820-9. DOI: https://doi.org/10.1038/s41598-023-28820-9

Britannica, The Editors of Encyclopaedia. "alkaloid". Encyclopedia Britannica, 21 May. 2023, https://www.britannica.com/science/alkaloid. Accessed 18 October 2023.

Mohanty S.S., Prakash S. Effects of culture media on the larvicidal property of secondary metabolites of mosquito pathogenic fungus Chrysosporium lobatum (Moniliales: Moniliaceae). Acta Trop. 2009; 109(1):50–54.

Doi: 10.1016/J.ACTATROPICA.2008.09.013. DOI: https://doi.org/10.1016/j.actatropica.2008.09.013

Kim S.I., Ahn Y.J. Larvicidal activity of lignans and alkaloid identified in Zanthoxylum piperitum barktoward insecticide-susceptible and wild Culex pipiens pallens and Aedes aegypti. Parasit Vectors. 2017; 10(1):1–10. Doi: 10.1186/S13071-017-2154-0/TABLES/5. DOI: https://doi.org/10.1186/s13071-017-2154-0

Oliveros-Díaz A.F., Pájaro-González Y., Cabrera-Barraza J., Catherine Hill C., Quiñones-Fletcher W., Olivero-Verbel J., Castillo F.D. Larvicidal activity of plant extracts from Colombian North Coast against Aedesaegypti L. mosquito larvae. Arabian Journal of Chemistry. 2022; 15(12):104365.

Doi: 10.1016/J.ARABJC.2022.104365. DOI: https://doi.org/10.1016/j.arabjc.2022.104365

Malathi P., Vasugim S.R. Evaluation of mosquito larvicidal effect of Carica Papaya against Aedes Aegypti. International Journal of Mosquito Research. 2015; 2(3):21–24. Doi: 10.2149/tmh1973.28.177. DOI: https://doi.org/10.2149/tmh1973.28.177

Gutierrez P.M., Antepuesto A.N., Eugenio A.L., Fleurellei M., Santos L., Larvicidal Activity of SelectedPlant Extracts against the Dengue vector Aedes aegypti Mosquito. International Research Journal of Biological Sciences. 2014; 3(4):23–32.

Sukari M.A., Noor H.M., Bakar N.A., Ismail S., Rahmani M., Abdul A.B. Larvicidal carbazole alkaloids from Murraya koenigii against dengue fever mosquito Aedes aegypti Linnaeus. Asian Journal of Chemistry. 2013, 25(14): 7719. DOI: https://doi.org/10.14233/ajchem.2013.14579

Rajasekaran A., Duraikannan G. Larvicidal activity of plant extracts on Aedes Aegypti L, Asian Pac J Trop Biomed. 2012; 2(3). Doi:10.1016/S2221-1691(12)60456-0. DOI: https://doi.org/10.1016/S2221-1691(12)60456-0

Hadjiakhoondi A., Vatandoost H., Khanavi M., Abaee M.R., Karami M. Biochemical Investigation ofDifferent Extracts and Larvicidal Activity of Tagetes minuta L. on Anopheles stephensi Larvae. Iranian Journal of Pharmaceutical Sciences. 2005; 1(2):81–84.

Bouabida H., Dris D. Phytochemical constituents and larvicidal activity of Ruta graveolens, Ruta montana and Artemisia absinthium hydro-methanolic extract against mosquito vectors of. Elsevier. 2023.

Hemalatha P., Elumalai D., Janaki A., Babu M., Velu K., Velayutham K., Kaleena P.K. Larvicidal activity of Lantana camara aculeata against three important mosquito species. Journal of entomology and Zoology Studies. 2015; 3(1):174–181.

Rawani A., Chowdhury N., Ghosh A., Laskar S., Chandra G. Mosquito larvicidal activity of Solanum nigrum berry extracts. Indian J Med Res. 2013; 137(5):972-6. PMID: 23760385; PMCID: PMC3734691.

Inaba K., Ebihara K., Senda M., Yoshino R., Sakuma C., Koiwai K., Takaya D., Watanabe C., Watanabe A., Kawashima Y., Fukuzawa K., Imamura R., Kojima H., Okabe T., Uemura N., Kasai S., Kanuka H., Nishimura T., Watanabe K., Inoue H., Fujikawa Y., Honma T., Hirokawa T., Senda T., Niwa R. Molecular action of larvicidal flavonoids on ecdysteroidogenic glutathione S-transferase Noppera-bo in Aedes aegypti. BMC Biol. 2022; 20(1):43. Doi: 10.1186/s12915-022-01233-2. PMID: 35172816; PMCID: PMC8851771. DOI: https://doi.org/10.1186/s12915-022-01233-2

Gautam K., Kumar P., Poonia S., Larvicidal activity and GC-MS analysis of flavonoids of Vitex negundo and Andrographis paniculata against two vector mosquitoes Anopheles stephensi and Aedes aegypti. J Vector Borne Dis. 2013; 50(3):171-8. PMID: 24220075.

Rajkumar S., Jebanesan A. Bioactivity of flavonoid compounds from Poncirus trifoliata L. (Family: Rutaceae) against the dengue vector, Aedes aegypti L. (Diptera: Culicidae). Parasitol Res. 2008; 104(1):19–25. Doi: 10.1007/S00436-008-1145-7. DOI: https://doi.org/10.1007/s00436-008-1145-7

C. A. Granados-Echegoyen et al. Argemone mexicana (Papaverales: Papavaraceae) as an Alternative mosquito Control: First Report of Larvicidal Activity of Flower Extract. J Med Entomol. 2019; 56(1):261–267. Doi: 10.1093/JME/TJY159.

Patel H.V., Patel J.D., Patel B. Comparative efficacy of phytochemical analysis and antioxidant activity of methanolic extract of Calotropis gigantea and Calotropis procera. Research gate. Int J Life Sci Bio technol Pharm Res. 2014, Aug. 21, 2023.

Swargiary A., Brahma K., Boro T., Daimari M., Roy M.K. Study of phytochemical content, antioxidant and larvicidal property of different solvent extracts of Clerodendrum infortunatum and Citrus grandis. Indian Journal of Traditional Knowledge. 2021; 20(2):329–334. DOI: https://doi.org/10.56042/ijtk.v20i2.29058

H. Bouabida, Dris D. Phytochemical constituents and larvicidal activity of Ruta graveolens, Ruta montana and Artemisia absinthium hydro-methanolic extract against mosquito vectors of. Elsevier. 2022. 151(B):504-511. https://doi.org/10.1016/j.sajb.2022.05.017 DOI: https://doi.org/10.1016/j.sajb.2022.05.017

Dhandapani A., Kadarkarai M. HPTLC Quantification of Flavonoids, Larvicidal and Smoke Repellent Activities of Cassia occidentalis L. (Caesalpiniaceae) against Malarial Vectore Anopheles Stephensi Lis (Diptera: Culicidae). Journal of Phytology. 2011; 3(2).

Vimala R.T.V., Sathishkumar G., Sivaramakrishnan S. Optimization of reaction conditions to fabricate nano-silver using Couroupita guianensis Aubl. (leaf & fruit) and its enhanced larvicidal effect. Spectrochim Acta A Mol Biomol Spectrosc. 2015; 135:110-5. Doi: 10.1016/j.saa.2014.06.009. Epub 2014 Jun 27. PMID: 25062056. DOI: https://doi.org/10.1016/j.saa.2014.06.009

Munhoz V.M., Longhini R., Souza J.R.P., Zequic J.A.C., Mello E.V S. L., Lopes G.C., Melloa, J.C.P. Extraction of flavonoids from Tagetes patula: process optimization and screening for biological activity. Rev Bras Farmacogn. 24(2014); 576-583. DOI: https://doi.org/10.1016/j.bjp.2014.10.001

Zuharah W., Yousaf A., Ooi K.L., Sulaiman S.F. Larvicidal activities of family Anacardiaceae on Aedes mosquitoes (Diptera: Culicidae) and identification of phenolic compounds. Journal of King Saud University – Science. 2021; 33(5):101471.

Doi: 10.1016/j.jksus.2021.101471 DOI: https://doi.org/10.1016/j.jksus.2021.101471

Zheng R., Li S., Zhang X., Zhao C. Biological Activities of Some New Secondary Metabolites Isolated from Endophytic Fungi: A Review Study. Int J Mol Sci. 2021; 22(2):959. Doi: 10.3390/ijms22020959. PMID: 33478038; PMCID: PMC7835970. DOI: https://doi.org/10.3390/ijms22020959

Chen X., Li Y., Jiang L., Hu B., Wang L., An S., Zhang X. Uptake, accumulation, and translocation mechanisms of steroid estrogens in plants. Sci Total Environ. 2021; 753:141979. Doi: 10.1016/j.scitotenv.2020.141979. Epub 2020 Aug 25. PMID: 32890876. DOI: https://doi.org/10.1016/j.scitotenv.2020.141979

Rawani A., Haldar K.M., Ghosh A., Chandra G. Larvicidal activities of three plants against filarial vector Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res. 2009; 105(5):1411-7. Doi: 10.1007/s00436-009-1573-z. Epub 2009 Jul 31. PMID: 19644705. DOI: https://doi.org/10.1007/s00436-009-1573-z

Chowdhury N., Laskar S., Chandra G. Mosquito larvicidal and antimicrobial activity of the protein of Solanum villosum leaves. BMC Complement Altern Med. 2008; 8:62. Doi: 10.1186/1472-6882-8-62. PMID: 19061512; PMCID: PMC2642758. DOI: https://doi.org/10.1186/1472-6882-8-62

Sofi M.A., NandaA., Sofi M.A., Maduraiveeran R. Larvicidal activity of Artemisia absinthium extracts with special reference to inhibition of detoxifying enzymes in larvae of Aedes aegypti. Elsevier, Journal of King Saud University – Science. 34(3):102248,

Doi: 10.1016/j.jksus.2022.102248. DOI: https://doi.org/10.1016/j.jksus.2022.102248

O.M.R. Neema., Francis R. The larvicidal activity of Indigofera arrecta leaf extract against culex mosquito larvae. International Journal of Bioassays. 2015, researchgate.net.

Sukumaran S. and Maheswaran R. Larvicidal Activity of Elytraria acaulis against Culex quinquefasciatus and Aedes aegypti (Diptera: Culicidae). J Arthropod Borne Dis. 2020; 14(3):293-301. Doi: 10.18502/jad. v14i3.4563. PMID: 33644243; PMCID: PMC7903361.

Hossain E., Rawani A., Chandra G., Mandal SC, Gupta J.K. Larvicidal activity of Dregea volubilis and Bombax malabaricum leaf extracts against the filarial vector Culex quinquefasciatus. Asian Pac J Trop Med. 2011; 4(6):436-41. Doi: 10.1016/S1995-7645(11)60121-1. PMID: 21771694. DOI: https://doi.org/10.1016/S1995-7645(11)60121-1

Rajkumar S., Jebanesan A. Larvicidal and oviposition activity of Cassia obtusifolia Linn (Family: Leguminosae) leaf extract against malarial vector, Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res. 2009; 104(2):337–340. Doi: 10.1007/S00436-008-1197-8. DOI: https://doi.org/10.1007/s00436-008-1197-8

Salama S.A., Al-Faifi Z.E., Masood M.F., El-Amier Y.A. Investigation and Biological Assessment ofRumex vesicarius L. Extract: Characterization of the Chemical Components and Antioxidant, Antimicrobial,Cytotoxic, and Anti-Dengue Vector Activity. Molecules. 2022; 27(10):3177. Doi:10.3390/MOLECULES27103177. DOI: https://doi.org/10.3390/molecules27103177

Shehata A.Z.I. Biological activity of Prunus domestica (Rosaceae) and Rhamnus cathartica (Rhamnaceae) leaves extracts against the mosquito vector, Culex pipiens L. (Diptera). journals. ekb. Eg. Egyptian Academic Journal of Biological Sciences, F. Toxicology & Pest. 2019. DOI: https://doi.org/10.21608/eajbsf.2019.29343

Hamid Z.U.A., Ijaz A., Mughal T.K., Zia K., Correspondence Z., Ullah. Larvicidal activity of medicinal plant extracts against Culex quinquefasciatus Say. (Culicidae, Diptera). Int. J. Mosq. Res. 2018, 5(2):47-51. Doi: 10.13140/RG.2.2.36501.78565.

Granados-Echegoyen C.A., Chan-Bacab M.J., Ortega-Morales B.O., Vásquez-López A., Lagunez-Rivera L., Diego-Nava F., Gaylarde C., Argemone mexicana (Papaverales: Papavaraceae) as an Alternative for Mosquito Control: First Report of Larvicidal Activity of Flower Extract. Journal of Medical Entomology. 2019; 56(1):261–267. https://doi.org/10.1093/jme/tjy159. DOI: https://doi.org/10.1093/jme/tjy159

Mathew N., Anitha M.G., Bala T.S.L., Sivakumar S.M., Narmadha R., Kalyanasundaram M. Larvicidal activity of Saraca indica, Nyctanthes arbor-tristis, and Clitoria ternatea extracts against three mosquito vector species. Parasitol Res. 2009; 104(5):1017–1025. Doi: 10.1007/S00436-008-1284-X. DOI: https://doi.org/10.1007/s00436-008-1284-x

Alayo M.A., Femi-Oyewo M.N., Bakre L.G., Fashina A.O. Larvicidal potential and mosquito repellent activity of Cassia mimosoides extracts. Southeast Asian J Trop Med Public Health. 2015; 46(4):596-601. PMID: 26867378.

Haldar K.M., Ghosh P., Chandra G. Evaluation of target specific larvicidal activity of the leaf extract of Typhonium trilobatum against Culex quinquefasciatus Say. Asian Pacific Journal of Tropical Biomedicine. 2011; 1(2):S199-S203.

Doi:10.1016/S2221-1691(11)60156-1. DOI: https://doi.org/10.1016/S2221-1691(11)60156-1

Egunjobi F.B., Okoye I.C. Ovicidal and Larvicidal Activities of Ethanolic Leaf Extracts of Three Botanicals Against the Malaria Vector - Anopheles gambiae. Int. Ann. Sci. 2020; 9(1):111–121. Doi: 10.21467/ias.9.1.111-121. DOI: https://doi.org/10.21467/ias.9.1.111-121

Suwaiba H., Barde A.A., Mao P.S., Aliyu O.A. Larvicidal activity of Ageratum conyzoides L. extracts on Anopheles gambiae complex. gsconlinepress.com. 2018; 3:1–005. Doi: 10.30574/gscbps.2018.3.3.0027. DOI: https://doi.org/10.30574/gscbps.2018.3.3.0027

Krishnaveni K.V., ThaiyalNayaki R., Balasubramanian G.M. Effect of Gliricidia sepium leaves extracts on Aedes aegypti: Larvicidal activity. Journal of Phytology. 2015; 7:26-31. http://scienceflora.org/journals/index.php/jp/, Doi: 10.19071/jp. 2015. v7.2898. DOI: https://doi.org/10.19071/jp.2015.v7.2898

Chalom S., Panyakaew J., Phaya M., Pyne, S.G., Mungkornasawakul P. Cytotoxic and larvicidal activities of Stemona alkaloids from the aerial parts and roots of Stemona curtisii Hook.f. Nat Prod Res. 2021; 35(22):4311–4316. Doi:10.1080/14786419.2019.1709188. DOI: https://doi.org/10.1080/14786419.2019.1709188

Nerio L.S., Olivero-Verbel J., Stashenko E. Repellent activity of essential oils: A review. Bioresour Technol. 2010; 101(1):372–378.

Doi: 10.1016/J.BIORTECH.2009.07.048. DOI: https://doi.org/10.1016/j.biortech.2009.07.048

Jawale C.S. Larvicidal activity of some saponin containing plants against the dengue vector Aedes aegypti. Trends Biotechnol Res. 2014; 3(1).

Bagavan A., Rahuman A., Kamaraj C., Geetha K. Larvicidal activity of saponin from Achyranthes aspera against Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitology Research. 2008. 103(1):223–229. Doi: 10.1007/s00436-008-0962-z. DOI: https://doi.org/10.1007/s00436-008-0962-z

Hadjiakhoondi A., Vatandoost H., Khanavi M., Abaee M.R., Karami M. Biochemical investigation of different extracts and larvicidal activity of Tagetes minuta L. on Anopheles stephensi larvae. Iranian Journal of Pharmaceutical Sciences, 2005, ijps. ir.

Elumalai K., Dhanasekaran S., Krishnappa K. Larvicidal activity of Saponin isolated from Gymnema sylvestre R. Br. (Asclepiadaceae) against Japanese Encephalitis vector, Culex tritaeniorhynchus Giles (Diptera: Culicidae). Eur Rev Med Pharmacol Sci. 2013; 17(10):1404-10. PMID: 23740457.

Pereira T.M., Silva Vde C., Neto J.A.R., Alves S.N., Lima L.A.R.S. Larvicidal activity of the methanol extract and fractions of the green fruits of Solanum lycocarpum (Solanaceae) against the vector Culex quinquefasciatus (Diptera: Culicidae). Rev Soc Bras Med Trop. 2014; 47(5):646-8. Doi: 10.1590/0037-8682-0010-2014. PMID: 25467268. DOI: https://doi.org/10.1590/0037-8682-0010-2014

Angaye T.C.N., Ohimain E.L., Siasia E.P., Asaigbe P.I., Finomo O.A. Larvicidal activities of the leaves of Niger Delta mangrove plants against Anopheles gambiae. Sky Journal of Microbiology Research. 2014; academia.edu.

Linhares L.P.M.B., Pereira B.V.N., Dantas M.K.G., Bezerra W.Md.S Viana-Marques Dd.A., de Lima L.R.A., Sette-de-Souza P.H., Schinopsis brasiliensis Engler—Phytochemical Properties, Biological Activities, and Ethnomedicinal Use: A Scoping Review. Pharmaceuticals. 2022; 15(8):1028.

https://doi.org/10.3390/ph15081028. DOI: https://doi.org/10.3390/ph15081028

Amakiri P.C., Nwankwo, E.N., Amakiri, A.C., IEgbuche C.M., Osuagwu I.F., Okwelogu I.S., Offor V.O., Acha C.T. Phytochemical analysis and toxicity of Annona muricata stem bark and leaf extracts on Anopheles gambiae larvae. Unpublished. 2019. https://doi.org/10.13140/rg.2.2.28329.13927.

Ghosh A., Chowdhury N., Chandra G. Plant extracts as potential mosquito larvicides. Indian J Med Res. 2012; 135(5):581-98. PMID: 22771587; PMCID: PMC3401688.

de Carvalho G.H.F., de Andrade M.A., de Araújo C.N., Santos M.L., de Castro N.A., Charneau S., Monnerat R., de Santana J.M., Bastos I.M.D. Larvicidal and pupicidal activities of eco-friendly phenolic lipid products from Anacardium occidentale nutshell against arbovirus vectors. Environ Sci Pollut Res Int. 2019; 26(6):5514-5523. Doi: 10.1007/s11356-018-3905-y. Epub 2019 Jan 4. PMID: 30610586. DOI: https://doi.org/10.1007/s11356-018-3905-y

Daniel J., Innocent E., Sempombe J., Mugoyela V., Fossen T. Isolation and characterization of larvicidal phenolic acids from Kotschya thymodora Leaves. Journal of Applied Sciences and Environmental Management. 2020; 24(8):1483–1488. Doi: 10.4314/jasem.v24i8.26. DOI: https://doi.org/10.4314/jasem.v24i8.26

Mathew J. and Thoppil J.E. Chemical composition and mosquito larvicidal activities of Salvia essential oils. Pharmaceutical Biology, 2011; 49(5):456-463, Doi:10.3109/13880209.2010.523427. DOI: https://doi.org/10.3109/13880209.2010.523427

Soni N. and Dhiman R.C. Phytochemical, anti-oxidant, larvicidal, and antimicrobial activities of castor (Ricinus communis) synthesized silver nanoparticles. Chinese Herbal Medicines Elsevier. 2017; 9(3):289-294, Doi: 10.1016/S1674-6384(17)60106-0. DOI: https://doi.org/10.1016/S1674-6384(17)60106-0

Pierre D.Y., Okechukwu E.C., Nchiwan N.E. Larvicidal and phytochemical properties of Callistemon rigidus R. Br. (Myrtaceae) leaf solvent extracts against three vector mosquitoes. J Vector Borne Dis. 2014; 51(3):216-23. PMID: 25253215.

Rajakumar G., Rahuman A.A. Larvicidal activity of synthesized silver nanoparticles using Eclipta prostrata leaf extract against filariasis and malaria vectors. Acta Trop. 2011; 118(3):196-203.

doi: 10.1016/j.actatropica.2011.03.003. Epub 2011 Mar 17. PMID: 21419749. DOI: https://doi.org/10.1016/j.actatropica.2011.03.003

Lalitha A., Thangapandiyan S. Mosquito larvicidal efficacy of the acetone leaf extract of Solanum trilobatum against Culex quinquefasciatus and Aedes aegypti. Asian Journal of Pharmaceutical and Clinical Research. 2018; 11(12):273-6. Doi:10.22159/ajpcr. 2018.v11i12.27432. DOI: https://doi.org/10.22159/ajpcr.2018.v11i12.27432

Fayemiwo K.A., Adeleke M.A., Okoro O.P., Awojide S.H., Awoniyi I.O. Larvicidal efficacies and chemical composition of essential oils of Pinus sylvestris and Syzygium aromaticum against mosquitoes. Asian Pac J Trop Biomed. 2014; 4(1):30-4. Doi: 10.1016/S2221-1691(14)60204-5. PMID: 24144127; PMCID: PMC3819492. DOI: https://doi.org/10.1016/S2221-1691(14)60204-5

Kaushik R. and Saini P. Screening of some semi-arid region plants for larvicidal activity against Aedes aegypti mosquitoes. J Vector Borne Dis. 2009; 46(3):244-6. PMID: 19724091.

Kelly P.H., Yingling A.V., Ahmed A., Hurwitz I., Ramalho-Ortigao M. Defining the mechanisms of action and mosquito larva midgut response to a yeast-encapsulated orange oil larvicide. Parasit Vectors. 2022; 15(1). Doi: 10.1186/S13071-022-05307-6. DOI: https://doi.org/10.1186/s13071-022-05307-6

Dharmagadda V.S., Naik S.N., Mittal P.K., Vasudevan P. Larvicidal activity of Tagetes patula essential oil against three mosquito species. Bioresour Technol. 2005; 96(11):1235-40. Doi: 10.1016/j.biortech.2004.10.020. Epub 2004 Dec 15. PMID: 15734310. DOI: https://doi.org/10.1016/j.biortech.2004.10.020

Moussa Soleimani-Ahmadi M., Abtahi S.M., Madani A., Paksa A., Abadi Y.S., Gorouhi M.A., Sanei-Dehkordi A. Phytochemical Profile and Mosquito Larvicidal Activity of the Essential Oil from Aerial Parts of Satureja bachtiarica Bunge Against Malaria and Lymphatic Filariasis Vectors. Journal of Essential Oil-Bearing Plants. 2017; (20)2:328–336. Doi: 10.1080/0972060X.2017.1305919. DOI: https://doi.org/10.1080/0972060X.2017.1305919

Huong L.T., Huong T.T., Huong N.T.T., Hung N.H., Dat P.T.T., Luong N.X., Ogunwande I.A. Mosquito Larvicidal Activity of the Essential Oil of Zingiber collinsii against Aedes albopictus and Culex quinquefasciatus. J Oleo Sci. 2020; 69(2):153-160. Doi: 10.5650/jos. ess19175. PMID: 32023580. DOI: https://doi.org/10.5650/jos.ess19175

Govindarajan M., Sivakumar R., Rajeswari M., Yogalakshmi K. Chemical composition and larvicidal activity of essential oil from Mentha spicata (Linn.) against three mosquito species. Parasitol Res. 2012; 110(5):2023-32. Doi: 10.1007/s00436-011-2731-7. Epub 2011 Dec 6. PMID: 22139403. DOI: https://doi.org/10.1007/s00436-011-2731-7

Cavalcanti E.S., Morais S.M., Lima M.A., Santana E.W. Larvicidal activity of essential oils from Brazilian plants against Aedes aegypti L. Mem Inst Oswaldo Cruz. 2004; 99(5):541-4. Doi: 10.1590/s0074-02762004000500015. Epub 2004 Nov 3. PMID: 15543421. DOI: https://doi.org/10.1590/S0074-02762004000500015

Cheng S.S., Liu J.Y., Tsai K.H., Chen W.J., Chang S.T. Chemical composition and mosquito larvicidal activity of essential oils from leaves of different Cinnamomum osmophloeum provenances. J Agric Food Chem. 2004; 52(14):4395-400. Doi: 10.1021/jf0497152. PMID: 15237942. DOI: https://doi.org/10.1021/jf0497152

Manh H.D., Hue D.T., Hieu N.T.T., Tuyen D.T.T., Tuyet O.T. The Mosquito Larvicidal Activity of Essential Oils from Cymbopogon and Eucalyptus Species in Vietnam. Insects. 2020; 11(2):128.

https://doi.org/10.3390/insects11020128. DOI: https://doi.org/10.3390/insects11020128

Su T. and Mulla M.S. Antifeedancy of neem products containing Azadirachtin against Culex tarsalis and Culex quinquefasciatus (Diptera: Culicidae). J Vector Ecol. 1998; 23:114-122.

Babu R., Murugan K., Interactive effect of neem seed kernel and neem gum extracts on the control of Culex quinquefasciatus say. Neem Newsletter. 1998; 15(2):9-11.

Venkatachalam M.R., Jebanesan A. Repellent activity of Ferronia elephantum Corr. (Rutaceae) leaf extracts against Aedes aegypti. Biores Technol. 2001; 76:287-288. DOI: https://doi.org/10.1016/S0960-8524(00)00096-1

Shaalan E.A.S., Canyon D., Younes M.W.F., Abdel-Wahab H., Mansour A.H. A review of botanical phytochemicals with mosquitocidal potential. Environ Int. 2005;31(8):1149-66.

Doi: 10.1016/j.envint.2005.03.003. PMID: 15964629. DOI: https://doi.org/10.1016/j.envint.2005.03.003

Alsarhan, A., BaniSalman, K., Olimat, S. Chemical Composition of the Essential Oils of the Flowers Asphodelus aestivus Brot. Grown Wild in Jordan. Jordan Jordan j. pharm. Sci. 2023; 16(4):734-739.

DOI: https://doi.org/10.35516/jjps.v16i4.1082 DOI: https://doi.org/10.35516/jjps.v16i4.1082

Yabansabra, Y.R., Bebari, S.F., Simaremare, E.S. The Effectiveness of Zodia Leaves (Evodia Suaveolens Scheff) Oil as Aedes aegypti L Mosquito Repellent in Papua. Jordan j. pharm. Sci. 2023; 16(2):207-216.

DOI: https://doi.org/10.35516/jjps.v16i2.1321 DOI: https://doi.org/10.35516/jjps.v16i2.1321

Nour, S., Salama, M., Mahrous, E., El-Askary, H., Hifnawy, M., & Abdel Kawy, M. A. Severinia buxifolia Leaves: Isolation, Characterization of Major Metabolites from the Bioactive Fractions and their Antiprotozoal Activity. Jordan j. pharm. Sci. 2023; 16(1),18–29. https://doi.org/10.35516/jjps.v16i1.1033 DOI: https://doi.org/10.35516/jjps.v16i1.1033

Downloads

Published

2024-03-19

How to Cite

Rahaman, M., Gope, A., Khanrah, J. ., & Rawani, A. (2024). A Review on Recent Advances of Natural Products as Larvicides in Vector Control Management. Jordan Journal of Pharmaceutical Sciences, 17(1), 78–104. https://doi.org/10.35516/jjps.v17i1.1792

Issue

Section

Articles