عدم وجود ارتباط بين تعدد الأشكال الجيني الكاتليز ( 262السيتوزين>الثايمين) مع التعرض للبهاق بين الأردنيين: دراسة حالة مراقبة

المؤلفون

  • Ebtesam Alhawamdeh قسم الصيدلة والتكنولوجيا الصيدلانية، كلية الصيدلة الجامعة الأردنية، عمان، الأردن.
  • Nailya R. Bulatova قسم الصيدلة والتكنولوجيا الصيدلانية، كلية الصيدلة الجامعة الأردنية، عمان، الأردن.
  • Al Motassem F. Yousef قسم الصيدلة والتكنولوجيا الصيدلانية، كلية الصيدلة الجامعة الأردنية، عمان، الأردن.
  • Mohammed A. AlAbbadi قسم الصيدلة والتكنولوجيا الصيدلانية، كلية الصيدلة الجامعة الأردنية، عمان، الأردن.
  • Ethar A. Omer قسم الصيدلة والتكنولوجيا الصيدلانية، كلية الصيدلة الجامعة الأردنية، عمان، الأردن.

DOI:

https://doi.org/10.35516/jjps.v16i2.438

الكلمات المفتاحية:

تعدد الأشكال الجيني، الكاتليز في الدم، الجين Cat 262- سيتوسين، ثيامين، الاردنيون

الملخص

 

يتم جلب البهاق عن طريق فقدان الخلايا الصباغية الوظيفية ويظهر على شكل بقع بيضاء قد تغطي جلد الجسم كله. هناك خلفية وراثية في التسبب في البهاق. تعدد الأشكال في أجزاء مختلفة من الجينات الكاتلاز قد تؤثر على نشاط المرض وتؤدي إلى تقليل وظيفة الكاتليز، وبالتالي، تراكم بيروكسيد الهيدروجين، واحدة من العوامل المؤكسدة التي تضر الخلايا الصباغية، واحدة من العوامل المؤكسدة التي تضر الخلايا الصباغية. قمنا بتقييم تعدد الأشكال الجيني CAT 262 من مرضى تعدد الاشكال الوراثي البهاق باستخدام تقنية تفاعل البلمرة المتسلسل PCR) ) مع واحد على الأقل سي ونموذج تي واحد على الأقل. وشملت الدراسة 48 مريض البهاق و51  عينة ضابطه. كان التاريخ العائلي للبهاق موجودا في 27.1 ٪ من المرضى وتم تشخيص أمراض المناعة الذاتية في 16.0 ٪ من المرضى. أفاد حوالي ثلاثة أرباع مرضى البهاق (75.0٪) أن التوتر النفسي كان العامل الرئيسي المسبب لمرضهم. كان النمط الجيني CC السائد (56.2% لمرضى البهاق و 62.7% للظابطه) مع عدم وجود فرق كبير بين مجموعة الدراسة P=0.7). ) كان نشاط الكاتليز في الدم متقارب بين أطراف الدراسة (159.1± MU 21.6 وحدة/لتر في مرضى البهاق و151.3 ± 25.4 وحدة/لتر في العينه الضابطه P=0.15). ) نستنتج أنه لا يرتبط تعدد الأشكال الجيني في  CAT262 ولا نشاط الكاتليز في الدم بالبهاق.

السير الشخصية للمؤلفين

Ebtesam Alhawamdeh، قسم الصيدلة والتكنولوجيا الصيدلانية، كلية الصيدلة الجامعة الأردنية، عمان، الأردن.

قسم الصيدلة والتكنولوجيا الصيدلانية، كلية الصيدلة الجامعة الأردنية، عمان، الأردن.

Nailya R. Bulatova، قسم الصيدلة والتكنولوجيا الصيدلانية، كلية الصيدلة الجامعة الأردنية، عمان، الأردن.

قسم الصيدلة والتكنولوجيا الصيدلانية، كلية الصيدلة الجامعة الأردنية، عمان، الأردن.

Al Motassem F. Yousef، قسم الصيدلة والتكنولوجيا الصيدلانية، كلية الصيدلة الجامعة الأردنية، عمان، الأردن.

قسم الصيدلة والتكنولوجيا الصيدلانية، كلية الصيدلة الجامعة الأردنية، عمان، الأردن.

Mohammed A. AlAbbadi، قسم الصيدلة والتكنولوجيا الصيدلانية، كلية الصيدلة الجامعة الأردنية، عمان، الأردن.

قسم الصيدلة والتكنولوجيا الصيدلانية، كلية الصيدلة الجامعة الأردنية، عمان، الأردن.

Ethar A. Omer، قسم الصيدلة والتكنولوجيا الصيدلانية، كلية الصيدلة الجامعة الأردنية، عمان، الأردن.

قسم الصيدلة والتكنولوجيا الصيدلانية، كلية الصيدلة الجامعة الأردنية، عمان، الأردن.

المراجع

Ahmed jan N, Masood S. Vitiligo. [Updated 2022 Aug 8]. In: StatPearls[Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK559149/.

Guerra L, Dellambra E, Brescia S, Raskovic D. Vitiligo: pathogenetic hypotheses and targets for current therapies. Curr Drug Metab. 2010 Jun 1;11(5):451-67. doi:10.2174/138920010791526105.

Ezzedine K, Lim HW, Suzuki T, Katayama I, Hamzavi I, Lan CC, Goh BK, Anbar T, Silva de Castro C, Lee AY, Parsad D, van Geel N, Le Poole IC, Oiso N, Benzekri L, Spritz R, Gauthier Y, Hann SK, Picardo M, Taieb A; Vitiligo Global Issue Consensus Conference Panelists. Revised classification/nomenclature of vitiligo and related issues: the Vitiligo Global Issues Consensus Conference. Pigment Cell Melanoma Res. 2012 May;25(3):E1-13.

https://doi:10.1111/j.1755-148X.2012.00997.x.

Babusikova E, Jesenak M, Evinova A, Banovcin P, Dobrota D. Frequency of polymorphism -262 c/t in catalase gene and oxidative damage in Slovak children with bronchial asthma. Arch Bronconeumol. 2013 Dec;49(12):507-12. doi:10.1016/j.arbres.2013.04.002.

Al-Refu K. Vitiligo in children: a clinical-epidemiologic study in Jordan. Pediatr Dermatol. 2012 Jan-Feb;29(1):114-5. https://doi:10.1111/j.1525-1470.2011.01478.x.

[6] Kaur G, Punia RS, Kundu R, Thami GP. Evaluation of active and stable stages of vitiligo using S-100 and human melanoma black-45 immunostains. Indian J Dermatopathol Diagn Dermatol 2020;7:2-6. https://doi:10.4103/ijdpdd.ijdpdd_44_19.

Deo SS, Bhagat AR, Shah RN. Study of oxidative stress in peripheral blood of Indian vitiligo patients. Indian Dermatol Online J. 2013 Oct;4(4):279-82. https://doi:10.4103/2229-5178.120637.

[8] El-Gayyar MA, Helmy ME, Amer ER, Elsaied MA, Gaballah MA. Antimelanocyte Antibodies: A Possible Role in Patients with Vitiligo. Indian J Dermatol. 2020 Jan-Feb;65(1):33-37. doi:10.4103/ijd.IJD_344_18.

[9] Said-Fernandez SL, Sanchez-Domínguez CN, Salinas-Santander MA, Martinez-Rodriguez HG, Kubelis-Lopez DE, Zapata-Salazar NA, Vazquez-Martinez OT, Wollina U, Lotti T, Ocampo-Candiani J. Novel immunological and genetic factors associated with vitiligo: A review. Exp Ther Med. 2021 Apr;21(4):312. doi:10.3892/etm.2021.9743.

[10] Prasad, D. Pathogenesis of vitiligo. In: Handbook of Vitiligo: Basic Science and Clinical Management. Hamzavi I.H., Mahmoud B.H., Isedeh P.N. (Eds.); Jaypee Brothers Medical Publishers (P) Ltd., 2016; 1st edition, Chapter 03, pp. 37–37. https://doi.org/10.5005/jp/books/12775_4.

Katz EL, Harris JE. Translational Research in Vitiligo. Front Immunol. 2021 Mar 2;12:624517. doi:10.3389/fimmu.2021.624517.

Frączek A, Owczarczyk-Saczonek A, Placek W. The Role of TRM Cells in the Pathogenesis of Vitiligo-A Review of the Current State-Of-The-Art. Int J Mol Sci. 2020 May 18;21(10):3552. doi:10.3390/ijms21103552.

Yang L, Wei Y, Sun Y, Shi W, Yang J, Zhu L, Li M. Interferon-gamma Inhibits Melanogenesis and Induces Apoptosis in Melanocytes: A Pivotal Role of CD8+ Cytotoxic T Lymphocytes in Vitiligo. Acta Derm Venereol. 2015 Jul;95(6):664-70.

https://doi:10.2340/00015555-2080.

Marchioro HZ, Silva de Castro CC, Fava VM, Sakiyama PH, Dellatorre G, Miot HA. Update on the pathogenesis of vitiligo. An Bras Dermatol. 2022 Jul-Aug;97(4):478-490. doi:10.1016/j.abd.2021.09.008.

Fujii J, Homma T, Osaki T. Superoxide Radicals in the Execution of Cell Death. Antioxidants (Basel). 2022 Mar 4;11(3):501. https://doi:10.3390/antiox11030501. .

Zheleva A, Nikolova G, Karamalakova Y, Hristakieva E, Lavcheva R, Gadjeva V. Comparative study on some oxidative stress parameters in blood of vitiligo patients before and after combined therapy. Regul Toxicol Pharmacol. 2018 Apr; 94: 234-239. https://doi:10.1016/j.yrtph.2018.02.008.

Kósa Z, Fejes Z, Nagy T, Csordás M, Simics E, Remenyik E, Góth L. Catalase -262C>T polymorphisms in Hungarian vitiligo patients and in controls: further acatalasemia mutations in Hungary. Mol Biol Rep. 2012 Apr;39(4):4787-95. https://doi:10.1007/s11033-011-1272-6.

Xuan Y, Yang Y, Xiang L, Zhang C. The Role of Oxidative Stress in the Pathogenesis of Vitiligo: A Culprit for Melanocyte Death. Oxid Med Cell Longev. 2022 Jan 22;2022:8498472. doi:10.1155/2022/8498472.

Solleiro-Villavicencio H, Rivas-Arancibia S. Effect of Chronic Oxidative Stress on Neuroinflammatory Response Mediated by CD4+T Cells in Neurodegenerative Diseases. Front Cell Neurosci. 2018 Apr 27;12:114. doi:10.3389/fncel.2018.00114.

[20] Agrawal S, Kumar A, Dhali TK, Majhi SK. Comparison of oxidant-antioxidant status in patients with vitiligo and healthy population. Kathmandu Univ Med J (KUMJ). 2014 Apr-Jun;12(46):132-6. https://doi:10.3126/kumj.v12i2.13660.

Kodydková J, Vávrová L, Kocík M, Žák A. Human catalase, its polymorphisms, regulation and changes of its activity in different diseases. Folia Biol (Praha). 2014;60(4):153-67.

Quan F, Korneluk RG, Tropak MB, Gravel RA. Isolation and characterization of the human catalase gene. Nucleic Acids Res. 1986 Jul 11;14(13):5321-35. doi:10.1093/nar/14.13.5321

Hebert-Schuster M, Fabre EE, Nivet-Antoine V. Catalase polymorphisms and metabolic diseases. Curr Opin Clin Nutr Metab Care. 2012 Jul;15(4):397-402. https://doi:10.1097/MCO.0b013e328354a326.

Forsberg L, Lyrenäs L, de Faire U, Morgenstern R. A common functional C-T substitution polymorphism in the promoter region of the human catalase gene influences transcription factor binding, reporter gene transcription and is correlated to blood catalase levels. Free Radic Biol Med. 2001 Mar 1;30(5):500-5. doi:10.1016/s0891-5849(00)00487-1.

Ahn J, Nowell S, McCann SE, Yu J, Carter L, Lang NP, Kadlubar FF, Ratnasinghe LD, Ambrosone CB. Associations between catalase phenotype and genotype: modification by epidemiologic factors. Cancer Epidemiol Biomarkers Prev. 2006 Jun;15(6):1217-22. doi:10.1158/1055-9965.EPI-06-0104.

Mak JC, Ho SP, Yu WC, Choo KL, Chu CM, Yew WW, Lam WK, Chan-Yeung M. Polymorphisms and functional activity in superoxide dismutase and catalase genes in smokers with COPD. Eur Respir J. 2007 Oct;30(4):684-90. doi:10.1183/09031936.00015207.

Gavalas NG, Akhtar S, Gawkrodger DJ, Watson PF, Weetman AP, Kemp EH. Analysis of allelic variants in the catalase gene in patients with the skin depigmenting disorder vitiligo. Biochem Biophys Res Commun. 2006 Jul 14;345(4):1586-91. doi:10.1016/j.bbrc.2006.05.063

Sample size calculator. Available at: https://clincalc.com/stats/samplesize.aspx. Last accessed on December 6, 2022.

Kemp EH, Emhemad S, Akhtar S, Watson PF, Gawkrodger DJ, Weetman AP. Autoantibodies against tyrosine hydroxylase in patients with non-segmental (generalised) vitiligo. Exp Dermatol. 2011 Jan;20(1):35-40. doi:10.1111/j.1600-0625.2010.01181.x.

Góth L. Two cases of acatalasemia in Hungary. Clin Chim Acta. 1992 Apr 30;207(1-2):155-8. https://doi:10.1016/0009-8981(92)90160-r.

Li S, Dai W, Wang S, Kang P, Ye Z, Han P, Zeng K, Li C. Clinical Significance of Serum Oxidative Stress Markers to Assess Disease Activity and Severity in Patients With Non-Segmental Vitiligo. Front Cell Dev Biol. 2021 Dec 16; 9:739413. https://doi:10.3389/fcell.2021.739413.

Alkhateeb A, Al-Dain Marzouka N, Qarqaz F. SMOC2 gene variant and the risk of vitiligo in Jordanian Arabs. Eur J Dermatol. 2010 Nov-Dec;20(6):701-4. doi:10.1684/ejd.2010.1095.

Alkhateeb A, Qarqaz F. Genetic association of NALP1 with generalized vitiligo in Jordanian Arabs. Arch Dermatol Res. 2010 Oct;302(8):631-4. doi:10.1007/s00403-010-1064-1. Epub 2010 Jun 24.

Alkhateeb A, Qarqaz F, Al-Sabah J, Al Rashaideh T. Clinical characteristics and PTPN22 1858C/T variant analysis in Jordanian Arab vitiligo patients. Mol Diagn Ther. 2010 Jun 1;14(3):179-84. https://doi:10.1007/BF03256371.

[35] Alkhateeb A, Marzouka NA, Tashtoush R. Variants in PTPN22 and SMOC2 genes and the risk of thyroid disease in the Jordanian Arab population. Endocrine. 2013 Dec;44(3):702-9. doi:10.1007/s12020-013-9908-z.

[36] Alkhateeb A, Jarun Y, Tashtoush R. Polymorphisms in NLRP1 gene and susceptibility to autoimmune thyroid disease. Autoimmunity. 2013 May;46(3):215-21. doi:10.3109/08916934.2013.768617.

Lu L, Liu L, Ji Y, Jin H, He L. Association of the 389 C/T polymorphism of the catalase gene with susceptibility to vitiligo: a meta-analysis. Clin Exp Dermatol. 2014 Jun;39(4):454-60. doi:10.1111/ced.12340.

Komina AV, Korostileva KA, Gyrylova SN, Belonogov RN, Ruksha TG. Interaction between single nucleotide polymorphism in catalase gene and catalase activity under the conditions of oxidative stress. Physiol Res. 2012;61(6):655-8. doi:10.33549/physiolres.932333.

[39] Bastaki M, Huen K, Manzanillo P, Chande N, Chen C, Balmes JR, Tager IB, Holland N. Genotype-activity relationship for Mn-superoxide dismutase, glutathione peroxidase 1 and catalase in humans. Pharmacogenet Genomics. 2006 Apr;16(4):279-86. https://doi:10.1097/01.fpc.0000199498.08725.9c.

Liu L, Li C, Gao J, Li K, Zhang R, Wang G, Li C, Gao T. Promoter variant in the catalase gene is associated with vitiligo in Chinese people. J Invest Dermatol. 2010 Nov;130(11):2647-53. https:// doi:10.1038/jid.2010.192.

Mansuri MS, Jadeja SD, Singh M, Laddha NC, Dwivedi M, Begum R. The catalase gene promoter and 5'-untranslated region variants lead to altered gene expression and enzyme activity in vitiligo. Br J Dermatol. 2017 Dec;177(6):1590-1600. doi:10.1111/bjd.15681.

Ochoa-Ramírez LA, Díaz-Camacho SP, Becerra-Loaiza DS, Verdugo-Nieto L, Muñoz-Estrada VF, Servín-Vázquez LA, Osuna-Ramírez I, Rodríguez-Millán J, Velarde-Félix JS. Catalase but not vitamin D receptor gene polymorphisms are associated with nonsegmental vitiligo in Northwestern Mexicans. Int J Dermatol. 2019 Nov;58(11):1264-1269. doi:10.1111/ijd.14508.

Alissa A, Al Eisa A, Huma R, Mulekar S. Vitiligo-epidemiological study of 4134 patients at the National Center for Vitiligo and Psoriasis in Central Saudi Arabia. Saudi Med J. 2011 Dec;32(12):1291-6.

Alkhateeb A, Fain PR, Thody A, Bennett DC, Spritz RA. Epidemiology of vitiligo and associated autoimmune diseases in Caucasian probands and their families. Pigment Cell Res. 2003 Jun;16(3):208-14.

https://doi:10.1034/j.1600-0749.2003.00032.x.

Nejad SB, Qadim HH, Nazeman L, Fadaii R, Goldust M. Frequency of autoimmune diseases in those suffering from vitiligo in comparison with normal population. Pak J Biol Sci. 2013 Jun 15;16(12):570-4. https://doi:10.3923/pjbs.2013.570.574.

Dutta T, Mitra S, Saha A, Ganguly K, Pyne T, Sengupta M. A comprehensive meta-analysis and prioritization study to identify vitiligo associated coding and non-coding SNV candidates using web-based bioinformatics tools. Sci Rep. 2022 Aug 25;12(1):14543. https://doi:10.1038/s41598-022-18766-9.

Arican O, Kurutas EB. Oxidative stress in the blood of patients with active localized vitiligo. Acta Dermatovenerol Alp Pannonica Adriat. 2008 Mar;17(1):12-6.

Ozel Turkcu U, Solak Tekin N, Gokdogan Edgunlu T, Karakas Celik S, Oner S. The association of FOXO3A gene polymorphisms with serum FOXO3A levels and oxidative stress markers in vitiligo patients. Gene. 2014 Feb 15;536(1):129-34.

https://doi:10.1016/j.gene.2013.11.055

Shajil EM, Begum R. Antioxidant status of segmental and non-segmental vitiligo. Pigment Cell Res. 2006 Apr;19(2):179-80.

https://doi:10.1111/j.1600-0749.2006.00299.x.

Ines D, Sonia B, Riadh BM, Amel el G, Slaheddine M, Hamida T, Hamadi A, Basma H. A comparative study of oxidant-antioxidant status in stable and active vitiligo patients. Arch Dermatol Res. 2006 Sep;298(4):147-52. https://doi:10.1007/s00403-006-0680-2

Hazneci E, Karabulut AB, Oztürk C, Batçioğlu K, Doğan G, Karaca S, Eşrefoğlu M. A comparative study of superoxide dismutase, catalase, and glutathione peroxidase activities and nitrate levels in vitiligo patients. Int J Dermatol. 2005 Aug;44(8):636-40. https://doi:10.1111/j.1365-4632.2004.02027.x.

Saja Hamed, Fatma Afifi, Iman Mansi, Yasser Bustanji, Hatim S Alkhatib. Screening of commonly used plant extracts in Jordanian skin lightening folkloric recipes for their tyrosinase inhibitory activity: An in vitro study. Jordan Journal of Pharmaceutical Sciences. 2021;14(2).

Sandipta Ghosh, Tribeni Chatterjee, Anirban Sardar, Ishita Chatterjee, Arup Bose, Angana Dasgupta, Akash Malitha, Krishnendu Acharya. Antioxidant Properties and Phytochemical Screening of Infusion and Decoction Obtained from Three Cultivated Pleurotus Species: A Comparative Study. Jordan Journal of Pharmaceutical Sciences. 2020 ; 13(2).

التنزيلات

منشور

2023-06-25

كيفية الاقتباس

Alhawamdeh, E., Bulatova, N. R., Yousef, A. M. F., AlAbbadi, M. A., & Omer, E. A. (2023). عدم وجود ارتباط بين تعدد الأشكال الجيني الكاتليز ( 262السيتوزين>الثايمين) مع التعرض للبهاق بين الأردنيين: دراسة حالة مراقبة. Jordan Journal of Pharmaceutical Sciences, 16(2), 330–344. https://doi.org/10.35516/jjps.v16i2.438

إصدار

القسم

Articles