Microbial Biotransformation of Some Anabolic Steroids

Authors

  • Mohammad Yasin Mohammad Michael Sayegh Faculty of Pharmacy, Aqaba University of Technology, Jordan.
  • Prof. Yusuf Al-Hiari Faculty of Pharmacy, The University of Jordan, Jordan.
  • Mohammad S. Abu-Darwish Michael Sayegh Faculty of Pharmacy, Aqaba University of Technology, Jordan.
  • Maha Habash Michael Sayegh Faculty of Pharmacy, Aqaba University of Technology, Jordan.
  • Manal Al-Najdawi Faculty of Pharmacy, Al-Isra University, Jordan.
  • Haroon M. Haniffa Faculty of Applied Sciences, South Eastern University of Sri Lanka, Sri Lanka.
  • M. Iqbal Choudhary H.E.J., Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Pakistan

DOI:

https://doi.org/10.35516/jjps.v15i4.672

Keywords:

Microbial biotransformation, Review, Anabolic steroidal substrate, Metabolite, Compilation

Abstract

Microbial biotransformations of various anabolic steroids are reviewed. Studies on oxidation, reduction, and carbon bond cleavage are highlighted. Various anabolic steroid substrates, their metabolites and the microorganisms used for the biotransformations are compiled covering the literature from the period 1984−2018.

Author Biographies

Mohammad Yasin Mohammad , Michael Sayegh Faculty of Pharmacy, Aqaba University of Technology, Jordan.

Michael Sayegh Faculty of Pharmacy, Aqaba University of Technology, Jordan.

Prof. Yusuf Al-Hiari, Faculty of Pharmacy, The University of Jordan, Jordan.

Faculty of Pharmacy, The University of Jordan, Jordan.

Mohammad S. Abu-Darwish, Michael Sayegh Faculty of Pharmacy, Aqaba University of Technology, Jordan.

Michael Sayegh Faculty of Pharmacy, Aqaba University of Technology, Jordan.

Maha Habash, Michael Sayegh Faculty of Pharmacy, Aqaba University of Technology, Jordan.

Michael Sayegh Faculty of Pharmacy, Aqaba University of Technology, Jordan.

Manal Al-Najdawi, Faculty of Pharmacy, Al-Isra University, Jordan.

Faculty of Pharmacy, Al-Isra University, Jordan.

Haroon M. Haniffa , Faculty of Applied Sciences, South Eastern University of Sri Lanka, Sri Lanka.

Faculty of Applied Sciences, South Eastern University of Sri Lanka, Sri Lanka.

M. Iqbal Choudhary , H.E.J., Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Pakistan

H.E.J., Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Pakistan

References

Murray, H. C., Peterson, D. H. U.S. Patent 2602769, 1952 (Upjohn Co., Kalamazoo, Michigan, USA). Oxygenation of steroids by Mucorales fungi.

Segal, D. M., Perez, M. and Shapshak, P. Oxandrolone used for treatment of wasting disease in HIV-1-infected patients, does not diminish the antiviral activity of deoxynucleoside analogs in lymphocyte and macrophage cell cultures. J Acquir Immune Defic Syndr Hum Retrovirol. 1999; 20(3):215–219.

Orr,R. and Flatarone, S. M. The anabolic androgenic steroid oxandrolone in the treatment of wasting and catabolic disorders: review of efficacy and safety. Drugs. 2004; 64(7):725–750.

Mahato, S. B. and Mukherjee A. Steroid transformations by microorganisms. Phytochem. 1984; 23:2131–2154.

Mahato, S. B. and Banerjee S. Steroid transformation by microorganisms II. Phytochem. 1985; 24:1403–1421.

Mahato, S. B., Banerjee S. and Podder S. Steroid transformations by microorganisms III. Phytochem. 1989; 28:7–40.

Mahato,S. B. and Mazumder,I. Current trends in microbial steroid biotransformation. Phytochem. 1995; 34:883–898.

Mahato, S. B. and Garai, S. Advances in microbial steroid biotransformation. Steroids. 1997; 62:332–345.

Walsh G. New biopharmaceuticals. Biopharm. Int. 2012; 25:34–38.

Carla, C. C. R. de Carvalho and Manuela M. R. da Fonseca. Comprehensive Biotechnology (Third Edition), 2017.

Converti,A., Aliakbarian,B., Domínguez, J. M., Bustos Vázquez G. and Perego P. Microbial Production of Biovanillin. Brazilian Journal of Microbiology. 2010; 41(3):519–530.

Kolek, T., Szpineter, A. and Swizdor, A. Biotransformation of androstenedione to testolactone by Penicillium camemberti. PL 212045 B1 Jul 31, 2012.

Kołek, T., Milecka, N., Świzdor, A., Panek, A. and Bialońska A. Hydroxylation of

DHEA, androstenediol and epiandrosterone by Mortierella isabellina AM212. Evidence inducible indicating that both constitutive and hydroxylases catalyze 7α- as well as 7-hydroxylations of 5-ene substrates. Organic & Biomolecular Chemistry. 2011; 9:5414–5422.

Shen, G., Zhou, B., Lai, T., Su, H. and Yang, H. Study on biotransformation products of androstenedione by Paecilomyces victoriae. Advanced Materials Research. 2013; 807–809:414–417.

Smith, K. E., Latif, S. and Kirk, D. N. Microbial transformation of steroids–II. Transformations of progesterone, testosterone and androstenedione by Phycomyces blakesleeanus. Journal of Steroid Biochemistry. 1989; 32(3):445–451.

Świzdor, A. and Kołek, T. Transformations of 4- and 17α-substituted testosterone analogues by Fusarium culmorum. Steroids. 2005; 70:817–824.

Świzdor, A., Kołek,T. and Szpineter,A. Transformations of steroid esters by Fusarium culmorum. Z. Naturforsch. 2006; 61c:809–814.

Choudhary, M. I., Shah, S. A. A., Musharraf, S. G., Shaheen F. and Atta-ur-Rahman. Microbial transformation of dehydroepiandrosterone. Nat. Prod. Res. 2003; 17(3):215–220.

Sultana, N. Microbial biotransformation of bioactive and clinically useful steroids and some salient features of steroids and biotransformation. Steroids. 2018; 136:76–92.

Choudhary, M. I., Zafar S., Khan,N. T., Ahmad,S., Noreen S., Marasini B., Al-Khedhairy A. A. and Atta-ur-Rahman. Biotransformation of dehydroepiandrosterone with Macrophomina phaseolina and β-glucuronidase inhibitory activity of transformed products. Journal of Enzyme Inhibition and Medicinal Chemistry. 2012; 27(3):348–355.

Mayastha, K. M. and Joseph, T. Transformation of dehydroepiandrosterone and pregnenolone by Mucor piriformis. Appl. Microbiol. Biotechnol. 1995; 44(3–4):339–343.

Huang, L-H., Li J., Xu G., Zhang, X-H., Wang, Y-G., Yin,Y-L. and Liu, H-M. Biotransformation of dehydroepiandrosterone (DHEA) with Penicillium griseopurpureum Smith and Penicillium glabrum (Wehmer) Westling. Steroids. 2010; 75:1039–1046.

Huszcza, E., Dmochowska-Gładysz, J. and Bartmańska,A. Transformations of steroids by Beauveria bassiana. Z. Naturforsch. 2005; 60c:103-108.

Choudhary, M. I., Adnan, S., Shah, A. and Atta-ur-Rahman. Microbial oxidation of anabolic steroids. Nat. Prod. Res. 2008; 22(15):1289–1296.

Mohammad, M. Y., Musharraf, S. G., Al-Majid, A. M., Atta-ur-Rahman and Choudhary M. I. Biotransformation of mestanolone and 17-methyl-1-testosterone by Rhizopus stolonifer. Biocatalysis and Biotransformation. 2013; 31(4):153–159.

Farooq, R., Hussain, N., Al-Majid,A., Yousuf, S., Atia-tul-Wahab, Ahmad M. S., Atta-ur-Rahman and Choudhary M. I. Microbial transformation of mestanolone by Macrophomina phaseolina and Cunninghamella blakesleeana and anticancer activities of the transformed products. RSC Advances. 2018; 39(8):21985–21992.

Ahmad, M. S., Zafar, S., Bibi, M., Bano, S., Atia-tul-Wahab, Atta-ur-Rahman and Choudhary M. I. Biotransformation of androgenic steroid mesterolone with Cunninghamella blakesleeana and Macrophomina phaseolina. Steroids. 2014; 82:53–59.

Khan, N. T., Zafar, S., Noreen, S., Al Majid, A. M., Al Othman, Z. A., Al-Resayes, S. I., Atta-ur-Rahman and Choudhary M. I. Biotransformation of dianabol with the filamentous fungi and β-Glucuronidase inhibitory activity of resulting metabolites. Steroids. 2014; 85:65–72.

Torshabi M., Badiee M., Faramarzi M. A., Rastegar H., Forootanfar H. and Mohit E. Biotransformation of methyltestosterone by the filamentous fungus Mucor racemosus. Chemistry of Natural Compounds. 2011; 47(1):59–63.

Baydoun E., Karam M., Atia-tul-Wahab, Khan M. S. A., Ahmad M. S., Samreen, Smith C., Abdel-Massih R. and Choudhary M. I. Microbial transformation of nandrolone with Cunninghamella echinulata and Cunninghamella blakesleeana and evaluation of leishmaniacidal activity of transformed products. Steroids. 2014; 88:95–100.

Pan S. C., Semar J., Junta B. and Principe P. A. Aromatization of 9α-hydroxy-19- nor androstenedione by Arthrobacter simplex. Biotechnology and Bioengineering.

; XI:1183–1194.

Choudhary M. I., Mohammad M. Y., Musharraf S. G., Parvez M., Al-Aboudi A. and Atta-ur-Rahman. New oxandrolone derivatives by biotransformation using Rhizopus stolonifer. Steroids. 2009; 74:1040–1044.

Khan N. T., Bibi M., Yousuf S., Qureshi I. H., Atta-ur-Rahman, Al-Majid A. M., Mesaik M. A., Khalid A. S., Sattar S. A., Atia-tul-Wahab and Choudhary MI. Synthesis of some potent immunomodulatory and anti-inflammatory metabolites by fungal transformation of anabolic steroid oxymetholone. Chemistry Central Journal. 2012; 6:153.

Al-Aboudi A., Mohammad M. Y., Musharraf S. G., Choudhary M. I. and Atta-ur-Rahman. Microbial transformation of testosterone by Rhizopus stolonifer and Fusarium lini. Nat. Prod. Res. 2008; 22(17):1498–1509.

Atta-ur-Rahman, Choudhary M. I., Asif F., Farooq A. and Yaqoob M. Microbial transformations of testosterone. Natural Product Letters. 1998; 12(4):255–261.

Mahato S. B. and Mukherjee A. Microbial transformation of testosterone by Aspergillus famigatus. Journal of Steroid Biochemistry. 1984; 21(3):341–342.

Choudhary M. I., Mohammad M. Y., Musharraf S. G., Atta-ur-Rahman. Epoxidation of ferutinin by different fungi and antibacterial activity of its metabolite. Jordan Journal of Pharmaceutical Sciences. 2013; 6(1): 23-29.

Dilshad R., Batool R. Antibacterial and Antioxidant Potential of Ziziphus jujube, Fagonia Arabica, Mallotus phillipensis and Hemidesmus Indicus. Jordan Journal of Pharmaceutical Sciences. 2022; 15(3): 413-427.

Alzweiri M., Aqel Q., Sweidan K. Investigation of the Chemical Stability of Lenalidomide in Methanol/Ethanol Solvents Using RP-HPLC-UV and LC-MS. Jordan Journal of Pharmaceutical Sciences. 2022; 15(3): 305-314.

Boller T., Meier C. and Menzler S. EUPERGIT oxirane acrylic beads: how to make enzymes fit for biocatalysis. Org Process Res Dev. 2002;6:509–519.

van de Velde F., Lourenço N. D., Pinheiro H. M. and Bakker M. Carrageenan: a food-grade and biocompatible support for immobilisation techniques. Adv Synth Catal. 2002;344:815–835.

Hudson S., Cooney J. and Magner E. Proteins in mesoporous silicates. Angew Chem. 2008;47:8582–8594.

Girelli A. M. and Mattei E. Application of immobilized enzyme reactor in online high performance liquid chromatography: a review. J Chromatogr B. 2005;819:3–16.

Bryjak J., Kruczkiewicz P., Rekuć A. and Peczyńska-Czoch W. Laccase immobilization on copolymer of butyl acrylate and ethylene glycol dimethacrylate. Biochem Eng J. 2007; 35:325–327.

Downloads

Published

2022-12-25

How to Cite

Mohammad , M. Y. ., Al-Hiari, Y. M., Abu-Darwish, M. S. ., Habash, M., Al-Najdawi, M. ., Haniffa , H. M. ., & Choudhary , M. I. . (2022). Microbial Biotransformation of Some Anabolic Steroids. Jordan Journal of Pharmaceutical Sciences, 15(4), 474–492. https://doi.org/10.35516/jjps.v15i4.672

Issue

Section

Articles