تصنيع هلام قائم على الشبكة البوليمرية المتداخلة لإطلاق ناتيغلينيد المستهدف للقولون

المؤلفون

  • Daxaben Kothiya مدير صيدلية باورهاوس، دالاس، الولايات المتحدة الأمريكية.
  • Subhash Vaghani CMD، مختبرات هارفين، أنكليشوار، الهند

DOI:

https://doi.org/10.35516/jjps.v16i4.775

الكلمات المفتاحية:

هلام الكيتوزان-حمض البولي (الميثاكريليك) ، شبكة البوليمر المتداخلة ، ناتيجلينيد ، قابلة للتحلل ، حساس لقيم ال pH.

الملخص

ناتيغلينيد هو عامل مضاد لمرض السكري الذي يعاني من هضم متواضع في المرور الأول وذوبان مائي ضعيف. تستكشف الورقة الحالية إعدادًا وتوصيفًا وتقييمًا لشبكات البوليمر المتداخلة المركبة للهيدروجيلات المركبة من الكيتوزان وحمض البولي (الميثاكريليك) كحامل محتمل للدواء. تم تحضير شبكات البوليمر المتداخلة المركبة للهيدروجيلات من الكيتوزان وحمض البولي (الميثاكريليك) التي تتضمن ناتيغلينيد باستخدام N,Nꞌ- ميثيلين بيساكريلاميد وغلوتارالديهيد كعوامل ربط. تم فحص البلمرة من الشيتوزان ، فخ الدواء وتفاعله في الهلاميات المائية المعدة عن طريق التحليل الطيفي FTIR ، DSC ومسحوق XRD الدراسات للمسح الضوئي للمسح الضوئي للمسح الضوئي. تم تقييم الهيدروجيلات لسلوكها في الانتفاخ وإطلاق الدواء في الكشف الخارجي. درست مورفولوجيا الهيدروجيلات قبل وبعد الانحلال باستخدام. SEM أظهرت الهيدروجيلات نسبة عائد تبلغ 93.29 ± 4.65 % ونسبة تحميل الدواء تبلغ 91.28 ± 2.22 %. أظهرت الهيدروجيلات سلوك انتفاخ حساس لقيم ال pH.  أكد ملف الإطلاق في المختبر أن إطلاق الدواء يعتمد على انتفاخ الهيدروجيلات وأظهر نمط إطلاق ثنائي الطور. هلام الكيتوزان-حمض البولي (الميثاكريليك) المتداخل للشبكة البوليمرية مع طبيعته القابلة للتحلل والإطلاق الحساس لقيم ال pH لناتيغلينيد خيار جذاب يجب استكشافه بشكل أوسع لصياغات توصيل الدواء المستهدفة والمحكومة للدواء.

السير الشخصية للمؤلفين

Daxaben Kothiya، مدير صيدلية باورهاوس، دالاس، الولايات المتحدة الأمريكية.

مدير صيدلية باورهاوس، دالاس، الولايات المتحدة الأمريكية.

Subhash Vaghani، CMD، مختبرات هارفين، أنكليشوار، الهند

CMD، مختبرات هارفين، أنكليشوار، الهند

المراجع

Tentolouris N, Voulgari C, Katsilambros N. A review of nateglinide in the management of patients with type 2 diabetes. Vasc Health Risk Manag. 2007; 3(6): 797-807.

Wairkar S, Gaud R, Jadhav N. Enhanced dissolution and bioavailability of Nateglinide by microenvironmental pH-regulated ternary solid dispersion: in-vitro and in-vivo evaluation. J Pharm Pharmacol. 2017; 69(9): 1099-1109. https://doi.org/10.1111/jphp.12756 DOI: https://doi.org/10.1111/jphp.12756

Sahoo RK, Biswas N, Guha A, Sahoo N, Kuotsu K. Development and in vitro/in vivo evaluation of controlled release provesicles of a nateglinide-maltodextrin complex. Acta Pharm Sin B. 2014; 4(5): 408-416. https://doi.org/10.1016/j.apsb.2014.08.001 DOI: https://doi.org/10.1016/j.apsb.2014.08.001

Vinod M, Jitendra N, Komal P, Rahul C, Gokul K. Enhancement of Solubility with Formulation & in-vitro Evaluation of Oral Nateglinide Compacts by Liquisolid Technique. Advances in Diabetes and Metabolism. 2013; 1(3): 57-64. https://doi.org/10.13189/adm.2013.010302 DOI: https://doi.org/10.13189/adm.2013.010302

Terada T, Sawada K, Saito H, Hashimoto Y, Inui K. Inhibitory effect of novel oral hypoglycemic agent nateglinide (AY4166) on peptide transporters PEPT1 and PEPT2. Eur J Pharmacol. 2000; 392(1-2): 11-17. https://doi.org/10.1016/s0014-2999(00)00119-9 DOI: https://doi.org/10.1016/S0014-2999(00)00119-9

Keilson L, Mather S, Walter YH, Subramanian S, McLeod JF. Synergistic effects of nateglinide and meal administration on insulin secretion in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2000; 85(3): 1081-1086. https://doi.org/10.1210/jcem.85.3.6446 DOI: https://doi.org/10.1210/jcem.85.3.6446

Guardado-Mendoza R, Prioletta A, Jiménez-Ceja LM, Sosale A, Folli F. The role of nateglinide and repaglinide, derivatives of meglitinide, in the treatment of type 2 diabetes mellitus. Arch Med Sci. 2013; 9(5): 936-943. https://doi.org/10.5114/aoms.2013.34991 DOI: https://doi.org/10.5114/aoms.2013.34991

Devineni D, Walter YH, Smith HT, Lee JS, Prasad P, McLeod JF. Pharmacokinetics of Nateglinide in Renally Impaired Diabetic Patients. The Journal of Clinical Pharmacology. 2003; 43(2): 163-170.

https://doi.org/10.1177/0091270002239825 DOI: https://doi.org/10.1177/0091270002239825

Aylsworth JW. Plastic composition. Published online September 22, 1914. Accessed February 8, 2022. https: //patents.google.com/patent/US1111284A/en

Lohani A, Singh G, Bhattacharya SS, Verma A. Interpenetrating Polymer Networks as Innovative Drug Delivery Systems. Journal of Drug Delivery. 2014; 2014: 1-11. https://doi.org/10.1155/2014/583612 DOI: https://doi.org/10.1155/2014/583612

Kulkarni RV, Sreedhar V, Mutalik S, Setty CM, Sa B. Interpenetrating network hydrogel membranes of sodium alginate and poly(vinyl alcohol) for controlled release of prazosin hydrochloride through skin. International Journal of Biological Macromolecules. 2010; 47(4): 520-527. https://doi.org/10.1016/j.ijbiomac.2010.07.009 DOI: https://doi.org/10.1016/j.ijbiomac.2010.07.009

Xu Q, Huang W, Jiang L, Lei Z, Li X, Deng H. KGM and PMAA based pH-sensitive interpenetrating polymer network hydrogel for controlled drug release. Carbohydrate Polymers. 2013; 97(2): 565-570. https://doi.org/10.1016/j.carbpol.2013.05.007 DOI: https://doi.org/10.1016/j.carbpol.2013.05.007

Boppana R, Kulkarni RV, Mutalik SS, Setty CM, Sa B. Interpenetrating network hydrogel beads of carboxymethylcellulose and egg albumin for controlled release of lipid lowering drug. Journal of Microencapsulation. 2010; 27(4): 337-344. https://doi.org/10.3109/02652040903191842 DOI: https://doi.org/10.3109/02652040903191842

Malakar J, Nayak AK, Pal D. Development of cloxacillin loaded multiple-unit alginate-based floating system by emulsion–gelation method. International Journal of Biological Macromolecules. 2012; 50(1): 138-147. https://doi.org/10.1016/j.ijbiomac.2011.10.001 DOI: https://doi.org/10.1016/j.ijbiomac.2011.10.001

Kumar P, Pillay V, Choonara YE. Macroporous chitosan/methoxypoly (ethylene glycol) based cryosponges with unique morphology for tissue engineering applications. Sci Rep. 2021; 11(1): 3104. https://doi.org/10.1038/s41598-021-82484-x DOI: https://doi.org/10.1038/s41598-021-82484-x

Kondolot Solak E, Er A. pH-sensitive interpenetrating polymer network microspheres of poly(vinyl alcohol) and carboxymethyl cellulose for controlled release of the nonsteroidal anti-inflammatory drug ketorolac tromethamine. Artificial Cells, Nanomedicine, and Biotechnology. 2016; 44(3): 817-824.

https://doi.org/10.3109/21691401.2014.982805 DOI: https://doi.org/10.3109/21691401.2014.982805

Nita LE, Chiriac AP, Rusu AG, et al. Stimuli Responsive Scaffolds Based on Carboxymethyl Starch and Poly(2-Dimethylaminoethyl Methacrylate) for Anti-Inflammatory Drug Delivery. Macromol Biosci. 2020; 20(4): e1900412.

https://doi.org/10.1002/mabi.201900412 DOI: https://doi.org/10.1002/mabi.201900412

Boschetti PJ, Toro DJ, Ontiveros A, Pelliccioni O, Sabino MA. Lattice Boltzmann method simulations of swelling of cuboid-shaped IPN hydrogel tablets with experimental validation. Heat Mass Transfer. Published online October 10, 2021. https://doi.org/10.1007/s00231-021-03132-8 DOI: https://doi.org/10.1007/s00231-021-03132-8

Dai Z, Yang X, Wu F, et al. Living fabrication of functional semi-interpenetrating polymeric materials. Nat Commun. 2021; 12(1): 3422.

https://doi.org/10.1038/s41467-021-23812-7 DOI: https://doi.org/10.1038/s41467-021-23812-7

Hasan MdM, Chisty AH, Rahman MM, Khan MN. Bioprotein Based IPN Nanoparticles as Potential Vehicles for Anticancer Drug Delivery: Fabrication Technology. In: Jana S, Jana S, eds. Interpenetrating Polymer Network: Biomedical Applications. Springer; 2020: 183-203. https://doi.org/10.1007/978-981-15-0283-5_7 DOI: https://doi.org/10.1007/978-981-15-0283-5_7

Abou El-Ela RM, Freag MS, Elkhodairy KA, Elzoghby AO. Interpenetrating Polymer Network (IPN) Nanoparticles for Drug Delivery Applications. In: Jana S, Jana S, eds. Interpenetrating Polymer Network: Biomedical Applications. Springer; 2020: 25-54. https://doi.org/10.1007/978-981-15-0283-5_2 DOI: https://doi.org/10.1007/978-981-15-0283-5_2

Kadri R, Elkhoury K, Ben Messaoud G, et al. Physicochemical Interactions in Nanofunctionalized Alginate/GelMA IPN Hydrogels. Nanomaterials. 2021; 11(9): 2256. https://doi.org/10.3390/nano11092256 DOI: https://doi.org/10.3390/nano11092256

Li S, Shao C, Miao Z, Lu P. Development of leftover rice/gelatin interpenetrating polymer network films for food packaging. Green Processing and Synthesis. 2021; 10(1): 37-48. https://doi.org/10.1515/gps-2021-0004 DOI: https://doi.org/10.1515/gps-2021-0004

Mohammad Gholiha H, Ehsani M, Saeidi A, Ghadami A, Alizadeh N. Magnetic dual-responsive semi-IPN nanogels based on chitosan/PNVCL and study on BSA release behavior. Prog Biomater. 2021; 10(3): 173-183. https://doi.org/10.1007/s40204-021-00161-8 DOI: https://doi.org/10.1007/s40204-021-00161-8

Qin Z, Zhang R, Xu Y, Cao Y, Xiao L. A one-pot synthesis of thermosensitive PNIPAAM interpenetration polymer networks(IPN) hydrogels. JCIS Open. 2021; 1: 100002. https://doi.org/10.1016/j.jciso.2021.100002 DOI: https://doi.org/10.1016/j.jciso.2021.100002

Lim LS, Rosli NA, Ahmad I, Mat Lazim A, Mohd Amin MCI. Synthesis and Swelling Behavior of pH-Sensitive Semi-IPN Superabsorbent Hydrogels Based on Poly(acrylic acid) Reinforced with Cellulose Nanocrystals. Nanomaterials (Basel). 2017; 7(11): E399.

https://doi.org/10.3390/nano7110399 DOI: https://doi.org/10.3390/nano7110399

Dragan ES, Cocarta AI. Smart Macroporous IPN Hydrogels Responsive to pH, Temperature, and Ionic Strength: Synthesis, Characterization, and Evaluation of Controlled Release of Drugs. ACS Appl Mater Interfaces. 2016; 8(19): 12018-12030.

https://doi.org/10.1021/acsami.6b02264 DOI: https://doi.org/10.1021/acsami.6b02264

Sarmad S, Yenici G, Gürkan K, Keçeli G, Gürdağ G. Electric field responsive chitosan–poly(N,N-dimethyl acrylamide) semi-IPN gel films and their dielectric, thermal and swelling characterization. Smart Mater Struct. 2013; 22(5): 055010.

https://doi.org/10.1088/0964-1726/22/5/055010 DOI: https://doi.org/10.1088/0964-1726/22/5/055010

Zhou L, Ma T, Li T, Ma X, Yin J, Jiang X. Dynamic Interpenetrating Polymer Network (IPN) Strategy for Multiresponsive Hierarchical Pattern of Reversible Wrinkle. ACS Appl Mater Interfaces. 2019; 11(17): 15977-15985. https://doi.org/10.1021/acsami.8b22216 DOI: https://doi.org/10.1021/acsami.8b22216

Almasri R, Swed A, Alali H. Preparation and Characterization of Hydrogel Beads for Controlled Release of Amoxicillin. Jordan Journal of Pharmaceutical Sciences. 2022; 15(4): 523-535. https://doi.org/10.35516/jjps.v15i4.675 DOI: https://doi.org/10.35516/jjps.v15i4.675

Ahmed EM. Hydrogel: Preparation, characterization, and applications: A review. Journal of Advanced Research. 2015; 6(2): 105-121.

https://doi.org/10.1016/j.jare.2013.07.006 DOI: https://doi.org/10.1016/j.jare.2013.07.006

Giri TK, Thakur A, Alexander A, Ajazuddin, Badwaik H, Tripathi DK. Modified chitosan hydrogels as drug delivery and tissue engineering systems: present status and applications. Acta Pharmaceutica Sinica B. 2012; 2(5): 439-449. https://doi.org/10.1016/j.apsb.2012.07.004 DOI: https://doi.org/10.1016/j.apsb.2012.07.004

Abudayah AAF. Implication of Nanotechnology for Pulmonary Delivery of Docetaxel. Jordan Journal of Pharmaceutical Sciences. 2023; 16(2): 470-470. https://doi.org/10.35516/jjps.v16i2.1527 DOI: https://doi.org/10.35516/jjps.v16i2.1527

Lee JW, Kim SY, Kim SS, Lee YM, Lee KH, Kim SJ. Synthesis and characteristics of interpenetrating polymer network hydrogel composed of chitosan and poly(acrylic acid). Journal of Applied Polymer Science. 1999; 73(1): 113-120. DOI: https://doi.org/10.1002/(SICI)1097-4628(19990705)73:1<113::AID-APP13>3.0.CO;2-D

https://doi.org/10.1002/(SICI)1097- 4628(19990705)73: 1<113: : AID-APP13>3.0.CO; 2-D

Wang Y, Wang J, Yuan Z, et al. Chitosan cross-linked poly(acrylic acid) hydrogels: Drug release control and mechanism. Colloids and Surfaces B: Biointerfaces. 2017; 152: 252-259.

https://doi.org/10.1016/j.colsurfb.2017.01.008 DOI: https://doi.org/10.1016/j.colsurfb.2017.01.008

Yadav KH, Satish CS, Shivakumar HG. Preparation and evaluation of chitosan-poly (acrylic acid) hydrogels as stomach specific delivery for amoxicillin and metronidazole. Indian Journal of Pharmaceutical Sciences. 2007; 69(1): 91. https://doi.org/10.4103/0250-474X.32115 DOI: https://doi.org/10.4103/0250-474X.32115

Milosavljević NB, Milašinović NZ, Popović IG, Filipović JM, Kalagasidis Krušić MT. Preparation and characterization of pH-sensitive hydrogels based on chitosan, itaconic acid and methacrylic acid: pH-sensitive hydrogels based on Ch, IA and MAA. Polym Int. 2011; 60(3): 443-452. https://doi.org/10.1002/pi.2967 DOI: https://doi.org/10.1002/pi.2967

Yazdani-Pedram M, Retuert J, Quijada R. Hydrogels based on modified chitosan, 1. Synthesis and swelling behavior of poly(acrylic acid) grafted chitosan. Macromolecular Chemistry and Physics. 2000; 201(9): 923-930. DOI: https://doi.org/10.1002/1521-3935(20000601)201:9<923::AID-MACP923>3.0.CO;2-W

https://doi.org/10.1002/1521-3935(20000601)201: 9<923: : AID-MACP923>3.0.CO; 2-W

Wang H, Li W, Lu Y, Wang Z. Studies on chitosan and poly(acrylic acid) interpolymer complex. I. Preparation, structure, pH-sensitivity, and salt sensitivity of complex-forming poly(acrylic acid): Chitosan semi-interpenetrating polymer network. Journal of Applied Polymer Science. 1997; 65(8): 1445-1450. https://doi.org/10.1002/(SICI)1097-4628(19970822)65: 8<1445::AID-APP1>3.0.CO; 2-G DOI: https://doi.org/10.1002/(SICI)1097-4628(19970822)65:8<1445::AID-APP1>3.0.CO;2-G

Fujiwara M, Grubbs RH, Baldeschwieler JD. Characterization of pH-Dependent Poly(acrylic Acid) Complexation with Phospholipid Vesicles. Journal of Colloid and Interface Science. 1997; 185(1): 210-216. https://doi.org/10.1006/jcis.1996.4608 DOI: https://doi.org/10.1006/jcis.1996.4608

Tavakol M, Vasheghani-Farahani E, Dolatabadi-Farahani T, Hashemi-Najafabadi S. Sulfasalazine release from alginate-N,O-carboxymethyl chitosan gel beads coated by chitosan. Carbohydrate Polymers. 2009; 77(2): 326-330. https://doi.org/10.1016/j.carbpol.2009.01.005 DOI: https://doi.org/10.1016/j.carbpol.2009.01.005

Torre P. Release of amoxicillin from polyionic complexes of chitosan and poly(acrylic acid). study of polymer/polymer and polymer/drug interactions within the network structure. Biomaterials. 2003; 24(8): 1499-1506. https://doi.org/10.1016/S0142-9612(02)00512-4 DOI: https://doi.org/10.1016/S0142-9612(02)00512-4

Silva CL, Pereira JC, Ramalho A, Pais AACC, Sousa JJS. Films based on chitosan polyelectrolyte complexes for skin drug delivery: Development and characterization. Journal of Membrane Science. 2008; 320(1-2): 268-279. https://doi.org/10.1016/j.memsci.2008.04.011 DOI: https://doi.org/10.1016/j.memsci.2008.04.011

Helal SH, Abdel-Aziz HMM, El-Zayat MM, Hasaneen MNA. Preparation, characterization and properties of three different nanomaterials either alone or loaded with nystatin or fluconazole antifungals. Sci Rep. 2022; 12(1): 22110. https://doi.org/10.1038/s41598-022-26523-1 DOI: https://doi.org/10.1038/s41598-022-26523-1

Brady J, Dürig T, Lee PI, Li JX. Chapter 7 - Polymer Properties and Characterization. In: Qiu Y, Chen Y, Zhang GGZ, Yu L, Mantri RV, eds. Developing Solid Oral Dosage Forms (Second Edition). Academic Press; 2017: 181-223. https://doi.org/10.1016/B978-0-12-802447-8.00007-8 DOI: https://doi.org/10.1016/B978-0-12-802447-8.00007-8

Hhr C, K C, Ja LP, et al. Design and Optimization of a Nanoparticulate Pore Former as a Multifunctional Coating Excipient for pH Transition-Independent Controlled Release of Weakly Basic Drugs for Oral Drug Delivery. Pharmaceutics. 2023; 15(2).

https://doi.org/10.3390/pharmaceutics15020547 DOI: https://doi.org/10.3390/pharmaceutics15020547

Tian Y, Lei M. Polydopamine-Based Composite Nanoparticles with Redox-Labile Polymer Shells for Controlled Drug Release and Enhanced Chemo-Photothermal Therapy. Nanoscale Res Lett. 2019; 14(1): 186. https://doi.org/10.1186/s11671-019-3027-6 DOI: https://doi.org/10.1186/s11671-019-3027-6

Duarte Junior AP, Tavares EJM, Alves TVG, et al. Chitosan nanoparticles as a modified diclofenac drug release system. J Nanopart Res. 2017; 19(8): 274. https://doi.org/10.1007/s11051-017-3968-6 DOI: https://doi.org/10.1007/s11051-017-3968-6

El-Sherbiny IM. Enhanced pH-responsive carrier system based on alginate and chemically modified carboxymethyl chitosan for oral delivery of protein drugs: Preparation and in-vitro assessment. Carbohydrate Polymers. 2010; 80(4): 1125-1136.

https://doi.org/10.1016/j.carbpol.2010.01.034 DOI: https://doi.org/10.1016/j.carbpol.2010.01.034

de Abreu FR, Campana-Filho SP. Characteristics and properties of carboxymethylchitosan. Carbohydrate Polymers. 2009; 75(2): 214-221.

https://doi.org/10.1016/j.carbpol.2008.06.009 DOI: https://doi.org/10.1016/j.carbpol.2008.06.009

Nam S. Pervaporation and properties of chitosan-poly(acrylic acid) complex membranes. Journal of Membrane Science. 1997; 135(2): 161-171.

https://doi.org/10.1016/S0376-7388(97)00144-0 DOI: https://doi.org/10.1016/S0376-7388(97)00144-0

Risbud MV, Hardikar AA, Bhat SV, Bhonde RR. pH-sensitive freeze-dried chitosan-polyvinyl pyrrolidone hydrogels as controlled release system for antibiotic delivery. J Control Release. 2000; 68(1): 23-30. https://doi.org/10.1016/s0168-3659(00)00208-x DOI: https://doi.org/10.1016/S0168-3659(00)00208-X

Banerjee T, Mitra S, Kumar Singh A, Kumar Sharma R, Maitra A. Preparation, characterization and biodistribution of ultrafine chitosan nanoparticles. International Journal of Pharmaceutics. 2002; 243(1): 93-105. https://doi.org/10.1016/S0378-5173(02)00267-3 DOI: https://doi.org/10.1016/S0378-5173(02)00267-3

Bruni G, Berbenni V, Milanese C, et al. Thermodynamic relationships between nateglinide polymorphs. J Pharm Biomed Anal. 2009; 50(5): 764-770.

https://doi.org/10.1016/j.jpba.2009.06.017 DOI: https://doi.org/10.1016/j.jpba.2009.06.017

Bruni G, Berbenni V, Milanese C, et al. Determination of the nateglinide polymorphic purity through DSC. J Pharm Biomed Anal. 2011; 54(5): 1196-1199.

https://doi.org/10.1016/j.jpba.2010.12.003 DOI: https://doi.org/10.1016/j.jpba.2010.12.003

Neira-Carrillo A, Yazdani-Pedram M, Retuert J, Diaz-Dosque M, Gallois S, Arias JL. Selective crystallization of calcium salts by poly(acrylate)-grafted chitosan. J Colloid Interface Sci. 2005; 286(1): 134-141. https://doi.org/10.1016/j.jcis.2004.12.046

Goyal P, Rani D, Chadha R. Exploring structural aspects of nateglinide polymorphs using powder X-ray diffraction. International Journal of Pharmacy and Pharmaceutical Sciences. Published online October 2, 2017: 119-127.

https://doi.org/10.22159/ijpps.2017v9i10.20795 DOI: https://doi.org/10.22159/ijpps.2017v9i10.20795

El-Sherbiny IM. Synthesis, characterization and metal uptake capacity of a new carboxymethyl chitosan derivative. European Polymer Journal. 2009; 45(1): 199-210. https://doi.org/10.1016/j.eurpolymj.2008.10.042 DOI: https://doi.org/10.1016/j.eurpolymj.2008.10.042

Bauer S, Störmer E, Kirchheiner J, Michael C, Brockmöller J, Roots I. Rapid and simple method for the analysis of nateglinide in human plasma using HPLC analysis with UV detection. J Pharm Biomed Anal. 2003; 31(3): 551-555.

https://doi.org/10.1016/s0731-7085(02)00680-5 DOI: https://doi.org/10.1016/S0731-7085(02)00680-5

Neira-Carrillo A, Yazdani-Pedram M, Retuert J, Diaz-Dosque M, Gallois S, Arias JL. Selective crystallization of calcium salts by poly(acrylate)-grafted chitosan. J Colloid Interface Sci. 2005; 286(1): 134-141. https://doi.org/10.1016/j.jcis.2004.12.046 DOI: https://doi.org/10.1016/j.jcis.2004.12.046

Raj BS, Shanthi, Nair RS, Samraj PI, Vidya. Formulation and Evaluation of Coated Microspheres for Colon Targeting. J App Pharm Sci. 2013; 3(8): S68-S74. https://doi.org/10.7324/JAPS.2013.38.S11 DOI: https://doi.org/10.7324/JAPS.2013.38.S11

Ren Y, Jiang L, Yang S, et al. Design and preparation of a novel colon-targeted tablet of hydrocortisone. Braz J Pharm Sci. 2016; 52: 239-250.

https://doi.org/10.1590/S1984-82502016000200002 DOI: https://doi.org/10.1590/S1984-82502016000200002

Jin L, Ding YC, Zhang Y, Xu XQ, Cao Q. A novel pH-enzyme-dependent mesalamine colon-specific delivery system. Drug Des Devel Ther. 2016; 10: 2021-2028. https://doi.org/10.2147/DDDT.S107283 DOI: https://doi.org/10.2147/DDDT.S107283

Maity S, Kundu A, Karmakar S, Sa B. In Vitro and In Vivo Correlation of Colon-Targeted Compression-Coated Tablets. Journal of Pharmaceutics. 2016; 2016: e5742967. https://doi.org/10.1155/2016/5742967 DOI: https://doi.org/10.1155/2016/5742967

Alfrey Jr. T, Pinner SH. Preparation and titration of amphoteric polyelectrolytes. Journal of Polymer Science. 1957; 23(104): 533-547.

https://doi.org/10.1002/pol.1957.1202310402 DOI: https://doi.org/10.1002/pol.1957.1202310402

التنزيلات

منشور

2023-12-25

كيفية الاقتباس

Kothiya, D., & Vaghani, S. (2023). تصنيع هلام قائم على الشبكة البوليمرية المتداخلة لإطلاق ناتيغلينيد المستهدف للقولون. Jordan Journal of Pharmaceutical Sciences, 16(4), 753–769. https://doi.org/10.35516/jjps.v16i4.775

إصدار

القسم

Articles