Cytotoxicity, Antioxidant Activities, GC-MS and HPLC Fingerprint Analyses of Different Extracts of Desmodium tortuosum (Sw.) DC

Authors

  • Maha Elshazly Theodor Bilharz Research Institute, Egypt.
  • Laila A. Refahy Theodor Bilharz Research Institute, Egypt
  • Fatma A Hamada Faculty of science, Aswan University, Egypt

DOI:

https://doi.org/10.35516/jjps.v16i4.930

Keywords:

Antioxidant, Cytotoxicty, Desmodium, tortuosum, GC-MS, HPLC

Abstract

The family Fabaceae is the third-largest flowering plant family, and the genus Desmodium has exhibited a wide range of biological activities and a variety of chemical constituents. In the present study, different extracts of Desmodium tortuosum were evaluated for their cytotoxic and antioxidant activities, as well as their total phenolic content (TPC). The antioxidant activities were estimated using the 1,1'-diphenyl-2-picraylhydrazyl free radical (DPPH), while the cytotoxic activity was evaluated via the brine shrimp lethality test (BSLT). The antioxidant activity results revealed that the DPPH radical scavenging activity (SC50) ranged from 1.12 to 61.22 µg/ml with respect to ascorbic acid (SC50 = 7.45 µg/ml). Among all tested fractions, 90% methanol was the most active. On the other hand, the cytotoxic activities were arranged as follows: n-BuOH (LC50 = 310), EtOAc (LC50 = 350), and 70% methanol (LC50 = 380). High-Performance Liquid Chromatography-Fingerprint analyses were used to determine the chemical composition and relative proportions of phenolic compounds. GC-MS analysis indicated the presence of fatty acids and other compounds. The major identified compounds were Benzene (1-butyloctyl) (11.88%) and Himachalene <α-> (11.08%) for the ethyl acetate extract and 10-Undecenoic acid, methyl ester (25.50%) for unsaponifiable matter.

Author Biographies

Maha Elshazly, Theodor Bilharz Research Institute, Egypt.

Department of Medicinal Chemistry, Theodor Bilharz Research Institute, Egypt.

Laila A. Refahy, Theodor Bilharz Research Institute, Egypt

Department of Medicinal Chemistry, Theodor Bilharz Research Institute, Egypt

Fatma A Hamada, Faculty of science, Aswan University, Egypt

Botany Department, Faculty of science, Aswan University, Egypt

References

Lewis G., Schrire B., Mackinder B., Lock M. Legumes of the World. Royal Botanic Gardens, Kew, Richmond, Surrey, UK. 2005.

Saraçoðlu H.T., Zengin G., Akin M., Aktümsek A. A comparative study on the fatty acid composition of the oils from five Bupleurum species collected from Turkey. Turk. J. Biol. 2012; 36: 527–532. DOI: https://doi.org/10.3906/biy-1112-51

Baum S.J., Kris-etherton P.M., Willett W.C., Lchtenstein A.H., Rudel L.L., Maki K.C., whelon J., Ramsden T. Fatty acids in Cardiovascular health and disease: Acomparative update. J. Clin. Phychiatry. 2012; 6: 216-234. DOI: https://doi.org/10.1016/j.jacl.2012.04.077

Ghaffari MA, Chaudhry BA, Uzair M, Imran M and Ashfaq K. Total phenolic and flavonoid content, cytotoxic, immunomodulatory and anti-inflammatory potential of whole plant of Astragalus criticus (Fabaceae). Trop. J. Pharm. Res. 2021; 20: 2109-2115. DOI: https://doi.org/10.4314/tjpr.v20i10.14

Ei-Hawiet AM, Toaima SM, Asaad AM, Radwan MM and EL-Sebakhy NA. Chemical constituents from Astragalus annularis Forssk and Atrimestris L. Fabaceae. Rev. bras. Farmacogn. 2010; 20(6): 1 DOI: https://doi.org/10.1590/S0102-695X2010005000047

Fofona S, Ouedraogo M, Esposito RC, Ouedraogo WP, Delporte C, Antwerpen PV, Mathieu V and Guissou TP. Systematic Review of Potential Anticancerous Activities of Erythrins senegalensis DC (Fabaceae). Plants. 2022; 11,19: 1-22. DOI: https://doi.org/10.3390/plants11010019

Maroyi A. Medicinal uses of the Fabaceae Family in Zimbabwe: A Review. Plants. 2023, 12, 1255:1-26. DOI: https://doi.org/10.3390/plants12061255

Mahbubr Rahman AHM and Parvin MIA Taxonomic studies on the Family Fabaceae (Weeds) at Rajshahi University Campus. Plants. 2015; 3(3): 20-25. DOI: https://doi.org/10.11648/j.plant.20150303.11

Tsafack B.T., Ponou B.K., Teponno R.B., Nono R.N., Jenett-Siems K., Melzig M.F., Park, HJ and Tapondjou LA, Integracide K. A New Tetracyclic Triterpenoid from Desmodium uncinatum (Jacq.) DC. (Fabaceae). Nat. Prod. Sci. 2017; 23(2): 113-118. DOI: https://doi.org/10.20307/nps.2017.23.2.113

Cheng X., Guo C., Yang Q., Tang X., Zhang C. Isolation and identification of radical scavenging components of seeds of Desmodium styracifolium. Chem. Nat. Compd. 2017; 53 (1): 36-39. DOI: https://doi.org/10.1007/s10600-017-1905-7

Phan M.G., Phan T.S., Matsunami K., Otsuka H. Flavonoid compounds from Desmodium styracifolium of Vietnamese origin. Chem. Nat. Compd. 2010; 46(5): 797-798. DOI: https://doi.org/10.1007/s10600-010-9746-7

Taylor W.G., Sutherland D.H., Richards K.W. Soyasaponins and Related Glycosides of Desmodium canadense and Desmodium illinoense. Nat. Prod. J. 2009; 2: 59-67. DOI: https://doi.org/10.2174/1874848100902010059

Ma X., Zheng C., Hu C., Rahmam K. and Qin L. The genus Desmodium (Fabaceae)-traditional uses in Chinese medicine. Phytochem and Pharmaco. J Ethnopharmacol. 2011; 138: 314-332. DOI: https://doi.org/10.1016/j.jep.2011.09.053

Rastogi, S., Pandey, M.M. and Rawat, A.K.S. An 2011 Ethnomedicinal, phytochemical and pharmacological profile of Desmodium gangeticum (L.) DC. and Desmodium adscendens (Sw.) DC. J. Ethnopharmacol. 136: 283–296.

Hamidi M.R., Jovanova B. and Panovska T.K. Toxicоlogical evaluation of the plant products using Brine Shrimp (Artemia salina L.) model. Macedonian Pharm. Bull. 2014; 60 (1): 9-18. DOI: https://doi.org/10.33320/maced.pharm.bull.2014.60.01.002

Kemal M.E., Bakchiche B., Kemal M., Cheraif K., Kara Y., Bardaweel S.K., Miguel M.G., Yildiz O. and Ghareeb M.A. Six Algerian plants: Phenolic profile, antioxidant, antimicrobial activities associated with different simulated gastrointestinal digestion phases and antiproliferative properties. J. Herb. Med. 2023; 38: 100636. DOI: https://doi.org/10.1016/j.hermed.2023.100636

Manorama R., Chinnasamy N., Rukmini C. Multigeneration studies on red palm oil, and on hydrogenated vegetable oil containing Mahua oil. Food Chem. Toxicol. 1993; 31: 369–375. DOI: https://doi.org/10.1016/0278-6915(93)90193-3

Schlag S, Huang Y, Vetter W. GC/EI-MS method for the determination of phytosterols in vegetable oils. Anal Bioanal Chem. 2022; 414(2):1061-1071. DOI: https://doi.org/10.1007/s00216-021-03730-9

Dicko M.H., Hilhorst R., Gruppen H., Traore A.S., van Berkel W.J.H., Voragen A.G.J. Comparison of Content in Phenolic Compounds, Polyphenol Oxidase, and Peroxidase in Grains of Fifty Sorghum Varieties from Burkina Faso. J Agric. Food Chem. 2002; 50: 3780–3788. DOI: https://doi.org/10.1021/jf011642o

Marwah R.G., Fatope M.A., Al Mahrooqi R., Varma G.B., Al Abadi H. and Al burtamani S. Antioxidant capacity of some edible and wound healing plants in Oman. Food Chem. 2007; 101(2):465-470. DOI: https://doi.org/10.1016/j.foodchem.2006.02.001

Clarke G., Ting K.N., Fry J. High correlation of 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ferric reducing activity potential and total phenolics content indicates redundancy in use of all three assays to screen for antioxidant activity of extracts of plants from the Malaysian rainforest. Antioxidants 2013; 2: 1-10.

Ipsen J., Feigi P. Bancroft's Introduction to Biostatistics. 2nd ed. Harper & Row. New York, 1970; Chapter 15.

Miya T.S., Holck H.G.O., Yim G.K.W., Mennear J.H., Spratto G.R. 1973 Laboratory Guidein In: Pharmacology. 4th ed. Burgess Publishing, Minneapolis; 1237.

Abd El-Rahman A.A.A., Abd El-Aleem I.M., Refahy L.A. and El-Shazly M.A. Total phenolic content, cytotoxic and antioxidant activities of Quisqualis indica (Linn.) growing in Egypt. Der Pharma Chem. 2016; 8(3):53-59.

Abdel-Wareth M.T.A., Ghareeb M.A. Bioprospecting certain freshwater-derived fungi for phenolic compounds with special emphasis on antimicrobial and larvicidal activity of methyl gallate and p-coumaric acid. Egypt. J. Chem. 2018; 61(5): 500-510.

Nasr S.M., Ghareeb M.A., Mohamed M.A., Elwan N.M., Abdel-Aziz A.A., Abdel-Aziz M.S. HPLC-fingerprint analyses, in vitro cytotoxicity, antimicrobial and antioxidant activities of the extracts of two Cestrum species growing in Egypt. Pharmacognosy Res. 2018; 10(2): 173-180. DOI: https://doi.org/10.4103/pr.pr_145_17

Shawky B.T., Nagah M., Ghareeb M.A., El-Sherbiny G.M., Moghannem S.A.M., and Abdel-Aziz M.S. Evaluation of antioxidants, total phenolics and antimicrobial activities of ethyl acetate extracts from Fungi grown on rice straw. J. Renew. Mater. 2019; 7(7): 667-682. DOI: https://doi.org/10.32604/jrm.2019.04524

Khalaf O.M., Abdel-Aziz M.S., El-Hagrassi A.M., Osman A.F., Ghareeb M.A. Biochemical aspect, antimicrobial and antioxidant activities of Melaleuca and Syzygium species (Myrtaceae) grown in Egypt. J. Phys. Conf. Ser. 2021; 1879(2): 022062. DOI: https://doi.org/10.1088/1742-6596/1879/2/022062

Litchfield C. Analysis of Triglycerides. Academic Press. New York & London. 1972 p.32.

Adams R.P. Identification of the essential oils by ion trap mass spectrometry. Academic press INC, London 19891-310.

Finney D.J. Estimation of the median effective dose. In: Probit Analysis. 3rd ed. Great Britain: Cambridge University; 1971; 20-49.

Clarke G., Ting K.N., Fry J. High correlation of 2,2'-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ferric reducing activity potential and total phenolics content indicates redundancy in use of all three assays to screen for antioxidant activity of extracts of plants from the Malaysian rainforest. Antioxidants. 2013; 2: 1-10. DOI: https://doi.org/10.3390/antiox2010001

Ghareeb M.A., Saad A.M., Ahmed W.S., Refahy L.A., Nasr S.M. HPLC-DAD-ESI-MS/MS characterization of bioactive secondary metabolites from Strelitzia nicolai leaf extracts and their antioxidant and anticancer activities in vitro. Pharmacogn. Res. 2018a; 10(4): 368-378. DOI: https://doi.org/10.4103/pr.pr_89_18

Ghareeb M.A., Mohamed T., Saad A.M., Refahy L.A., Sobeh M. and Wink M. HPLC-DAD-ESI-MS/MS analysis of fruits from Firmiana simplex (L.) and evaluation of their antioxidant and antigenotoxic properties. J. Pharm. Pharmacol. 2018b; 70(1): 133–142. DOI: https://doi.org/10.1111/jphp.12843

El-Sayed M.M., El-Hashash M.M., El-Wakil E.A., Ghareeb M.A. Total phenolic contents and antioxidant activities of Ficus sycomorus and Azadirachta indica. Pharmacology online. 2009; 3: 590-602.

El-Sayed M.M., Mahmoud M.A., El-Nahas H.A., El-Toumy S.A., El-Wakil E.A., Ghareeb M.A. Bio-guided isolation and structure elucidation of antioxidant compounds from the leaves of Ficus sycomorus. Pharmacology online. 2010; 3: 317-332.

Zahin M., Farrukh A., Iqbal A. Broad spectrum antimutagenic activity of antioxidant active fraction of Punica granatum L. peel extracts. Mutat. Res. 2010; 703: 99-107. DOI: https://doi.org/10.1016/j.mrgentox.2010.08.001

Zaki S.A., Somia H.A., Nehal R.A., Ferial A.I. Phenolic compounds and antioxidant activities of pomegranate peels. Int. J. Food Eng. 2015; 1: 73-76. DOI: https://doi.org/10.18178/ijfe.1.2.73-76

Sam T.W. Toxicity testing using the Brine shrimp: Artemia salina. In: Bioactive Natural Products Detection Isolation and Structural Determination. S.M. Colegate and R.J. Molyneux (eds.), (18thed), Boca Raton, CRC Press. 1993; 441-456.

Refahy L.A., Farghaly T.A., Abdel-Aziz M.S. and Mohamed T. Antimicrobial, Antioxidant and Cytotoxic Potential of Caesalpinia pulcherrima Flower. Glob. J. Pharmacol. 2015; (2): 150-158.

Di X., Chan K.K., Leung H.W., Huie C.W. Fingerprint profiling of acid hydrolyzates of polysaccharides extracted from the fruiting bodies and spores of lingzhi by high performance thin layer chromatography. J Chromatogr A. 2003; 1018(1): 85-95. DOI: https://doi.org/10.1016/j.chroma.2003.07.015

Wang L., Tian X., Wei W., Chen G., Wu Z. Fingerprint analysis and quality consistency evaluation of flavonoid compounds for fermented Guava leaf by combining high performance liquid chromatography time of flight electrospray ionization mass spectrometry and chemometric methods. J Sep Sci. 2016; 39: 3906-16. DOI: https://doi.org/10.1002/jssc.201600552

Ghareeb M.A., Sobeh M., Rezq S., El-Shazly A.M., Mahmoud M.F., Wink M. HPLC-ESI-MS/MS profiling of polyphenolics of a leaf extract from Alpinia zerumbet (Zingiberaceae) and its anti-inflammatory, anti-nociceptive, and antipyretic activities in vivo. Molecules 2018c; 23: 3238. DOI: https://doi.org/10.3390/molecules23123238

Rice-Evans C.A., Miller N.J., Paganga G. Structure antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med. 1996; 20: 933-56. DOI: https://doi.org/10.1016/0891-5849(95)02227-9

Rice-Evans C., Miller N., Paganga G. Antioxidant properties of phenolic compounds. Trend Plant Sci. 1997; 2: 152-9. DOI: https://doi.org/10.1016/S1360-1385(97)01018-2

Dilshad R. and Batool R. Antibacterial and antioxidant potential of Ziziphus jujube, Fagonia arabica, Mallotus phillipensis and Hemidesmus indicus. Jordan Journal of Pharmaceutical Sciences. 2022; 15(3): 413-427. DOI: https://doi.org/10.35516/jjps.v15i3.417

Ghareeb MA, Sobeh M, Aboushousha T, Esmat M, Mohammed HS, El-Wakil ES. Polyphenolic profile of Herniaria hemistemon aerial parts extract and assessment of its anti-cryptosporidiosis in a murine model: In silico supported in vivo study. Pharmaceutics. 2023; 15: 415. DOI: https://doi.org/10.3390/pharmaceutics15020415

Teggar N, Bakchiche B, Abdel-Aziz ME, Bardaweel SK, Ghareeb MA. Chemical composition and biological evaluation of Algerian propolis from six different regions. Jordan Journal of Pharmaceutical Sciences. 2023; 16(2): 184-197. DOI: https://doi.org/10.35516/jjps.v16i2.1319

Naskar A., Dasgupta A. and Acharya K. Antioxidant and cytotoxic activity of Lentinus fasciatus. Jordan Journal of Pharmaceutical Sciences. 2023; 16(1): 72-81. DOI: https://doi.org/10.35516/jjps.v16i1.1064

Mishra P.M., Sree A. Antibacterial Activity and GCMS Analysis of the Extract of Leaves of Finlaysonia obovata (A Mangrove Plant). Asian J. Plant Sci. 2007; 6: 168-172. DOI: https://doi.org/10.3923/ajps.2007.168.172

Lee Y.S., Kang M.H., Cho Y.S., Jeong C.S. Effects of constituents of Amomum xanthioides on gastritis in rats and on growth of gastric cancer cells. Arch. Pharm. Res. 2007; 30: 436. DOI: https://doi.org/10.1007/BF02980217

Özçelik B., Aslan M., Orhan I., Karaoglu T. Antibacterial, antifungal, and antiviral activities of the lipophylic extracts of Pistacia vera. Microbiol. Res. 2005; 160(2): 159-64. DOI: https://doi.org/10.1016/j.micres.2004.11.002

Hsouna A.B., Trigie, M., Mansour R.B., Jarraya R.M., Damak M., Jaoua, S. Chemical composition, cytotoxicity effect and antimicrobial activity of Ceratonia siliqua essential oil with preservative effects against Listeria inoculated in minced beef meat. Inter. J. Food Microbiol. 2011; 148(2): 66-72. DOI: https://doi.org/10.1016/j.ijfoodmicro.2011.04.028

Yogeswari S., Ramalakshmi S.N., Muthu J.M. Antimicrobial and Antioxidant Properties of a Bacterial Endophyte, Methylobacterium radiotolerans MAMP 4754, Isolated from Combretum erythrophyllum Seeds. Global J. Pharmacol. 2012; 6: 65.

Mou, Y., Meng, J., Fu, X., Wang, X., Tian, J., Wang, M., Peng, Y., Zhou. L. Antimicrobial and Antioxidant Activities and Effect of 1-Hexadecene Addition on Palmarumycin C2 and C3 Yields in Liquid Culture of Endophytic Fungus Berkleasmium sp. Dzf12. Molecules. 2013; 18: 15587. DOI: https://doi.org/10.3390/molecules181215587

Syeda F.A, Habib-ur-Rahman A.M. Khan, Choudahry M.I., Atta-Ur-Rahman. Gas chromatography-mass spectrometry (GC-MS) analysis of petroleum ether extract (oil) and bioassays of crude extract of Iris germanica. Inter. J. Genetics Mol. Biol. 2011; 3: 95.

Hema, R., Kumaravel, S., Alagusundaram. GC/MS Determination of Bioactive Components of Murraya koenigii. J. Am. Sci. 2011; 7: 27.

Rastogi, S., Pandey, MM and Rawat, AKS. An Ethnomedicinal, phytochemical and pharmacological profile of Desmodium gangeticum (L.) DC. and Desmodium adscendens (Sw.) DC. J. Ethnopharmacol. 2011; 136(2): 283-296. DOI: https://doi.org/10.1016/j.jep.2011.04.031

Downloads

Published

2023-12-25

How to Cite

Elshazly, M., Refahy, L. A., & Hamada, F. A. (2023). Cytotoxicity, Antioxidant Activities, GC-MS and HPLC Fingerprint Analyses of Different Extracts of Desmodium tortuosum (Sw.) DC. Jordan Journal of Pharmaceutical Sciences, 16(4), 690–713. https://doi.org/10.35516/jjps.v16i4.930

Issue

Section

Articles