Omega-3 Fatty Acids as Supplements and Cryoprotectants and Positive Outcomes for Human Seminal Cryopreservation: A Study in the Iraqi Context

Mustafa M. Al-Obeidy, Sameh S. Akkila and Khalida I. Noel

Abstract

Background: With the increasing deterioration in male fertility rates over the past few decades, assisted reproductive therapy via sperm banking has gained considerable attention from different health authorities worldwide. The process of sperm cryopreservation exerts certain harmful effects on sperm quality parameters. The aim of the current study was to examine the effect of omega-3 on human sperm cryopreservation as a dietary supplement and as a cryoprotectant stimulant.

Methods: From healthy men, 120 seminal fluid samples were randomly collected for cryopreservation (for 30 days). All samples were divided into three groups (40 in each). The supplement group (SG) (first group) had been given dietary supplements of omega-3 (30% EPA: 20% DHA) for eight weeks before sample collection. The samples of the cryoprotectant group (CG) (second group) were treated with omega-3 additive in the diluent at the time of being collected and before we cryopreserved them. The samples from the control group (third group) were cryopreserved without any dietary or cryoprotectant supplementation. Initial seminal analysis was recorded and post-thawing assessment of sperm motility, vitality (using eosin test) and oxidative stress (using a nitro blue tetrazolium (NBT) test) were compared.

Results and Conclusion: SG samples had greater initial seminal fluid volumes, as well as better sperm motility and vitality, but the oxidative stress assessment did not differ significantly pre-cryo. Post-thawing assessment revealed that the CG group had the best parameters of motility, vitality and oxidative stress. These results may be related to the positive effects of omega-3 fatty acids on reproductive glands, hormonal milieu, sperm function and structure, making it a suitable biostimulant for improving the outcome of human sperm banking. Results were comparable to multiple previous animal studies.

Keywords: Male fertility, sperm cryopreservation, omega-3, polyunsaturated fatty acids, motility, vitality, oxidative stress

INTRODUCTION

Human reproductive health is an integral part of the survival of the species, and the decline in male fertility over the past years (or possibly decades) has drawn considerable attention from numerous authorities. The observed worldwide deterioration in various sperm parameters may be related to different factors including lifestyle (e.g., stress) [1], diet and increased rates of obesity [2] and/or exposure to environmental toxins [3]. Efforts to combat this problem have led to rapid and continuous advances in assisted reproduction techniques (ART), including sperm cryopreservation [4]. Gestation rates using
cryopreserved sperms have improved with progress in these technologies, especially intracytoplasmic sperm injection (ICSI), in which one viable spermatozoon is required for fertilization [5]. Initially, sperm banking was used to treat infertile couples with oncological conditions, but the scope of application has increased nowadays to include homologous family planning, donor insemination, serodiscordance for viral infection and even posthumous reproduction [6].

After sperm procurement, the process of sperm cryopreservation typically consists of both slow-cooling and rapid-freezing methods, preferably using nitrogen vapor to limit viral cross-contamination encountered with liquid nitrogen [7]. When cryopreserved properly, the sperms remain in a state of metabolic arrest that prevents cellular aging and retains the fertilizing capacity of the sperm for an almost unlimited period [8]. Nevertheless, the freezing-thawing processes cause deterioration in sperm viability due to osmotic or oxidative stress [9], cryoprotectant toxicity and DNA fragmentation [10], physical cellular damage [11], or a combination of these factors. Permeating (e.g., glycerol) and non-permeating (e.g., proteins) cryoprotective agents (cryoprotectants) are used to minimize damage from freezing and thawing [12]. Several studies have examined and shown the benefits of adding further cryoprotective agents, such as minerals, vitamins, proteins and fatty acids to protect the integrity of stored sperms [13].

Omega-3 fatty acids are polyunsaturated fatty acids (PUFAs) that encompass a large family of essential fatty acids. The three main types of omega-3 fatty acids involved in human physiology are α-linolenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). ALA is found in plants, while DHA and EPA are found in marine food sources [14]. EPA and DHA can be synthesized in the liver from ALA, but because of low conversion efficiency, the consumption of foods rich in EPA and DHA is recommended [15]. The ratio and rate of production of eicosanoids, a group of hormones closely involved in inflammatory and homeostatic processes, are greatly affected by the omega-6 to omega-3 ratio, since both eighteen-carbon PUFAs compete for the same metabolic enzymes [16].

Fatty acids are essential ingredients of the spermatozoan membrane and also function as sources of energy [17]. Diets low in PUFAs or with an unbalanced omega-6 to omega-3 ratio reduce sperm quality, whereas dietary PUFA supplementation or corrected ratios reverse this effect [18]. Studies have shown that omega-3 fatty acid supplements are associated with better seminal fluid analysis (SFA) parameters and could improve fertility rates among infertile men [19].

The aim of the current study is to examine the possible effect of omega-3 fatty acids as cryoprotectants and compare it to the effect of omega-3 oral supplements on various aspects of sperm quality.

METHODOLOGY

Study Scope/Ethical Issues

This prospective experimental analytic study was conducted over nine months (September 2021 to June 2022) at the Postgraduate Studies Lab, Al-Mustansiriya College of Medicine, in Baghdad, Iraq. The study protocol was approved by the Scientific Committee and Editorial Board of the Department of Human Anatomy (No. ECP:21/3B, July 22, 2021).

The study participants were randomly selected from Kamal Al-Samarrai Hospital’s Fertility Center in Baghdad. The study aim and protocol were clearly explained to all participants and ethical consent was obtained. All unused or remaining samples were disposed of in accordance with the Regulations of the National Biomedical Waste Disposal Program [20].

Study Design

The minimum sample size for this study was calculated using Fisher’s formula for sample size estimation with a type one error rate of 5% statistical assumptions, 60% condition knowledge, and ±5% points precision [21].

The study enrolled 120 randomly selected men who were having routine seminal fluid
analysis due to their spouses not conceiving, despite otherwise normal male-related factors (i.e., not infertile or subfertile). All participants had baseline seminal analysis that excluded male-related infertility/ subfertility. Inclusion criteria included: age ≤45 years (range 24–42 years [34.4±10.2]), no chronic/ hereditary disease affecting fertility, being a non-smoker, having no current or previous history of drug or alcohol consumption/ dependence, no current or recent genito-urinary tract inflammation or infection, and being on a normal balanced diet (not taking omega supplements). Participants were instructed to be sexually abstinent for three days before providing a seminal sample. All samples were obtained by traditional masturbation at the lab.

Using simple random allocation, the participants were divided into three groups (40 samples each):

1. Supplement group (SG): these participants were given omega-3 oral supplements for eight weeks. The supplement was provided as 1,000 mg Adrien Gagnon© (Canada) OMEGA-3 concentrate soft gel capsules of marine fish oil (containing 200 mg DHA and 400 mg EPA). Participants were instructed to take three soft gels daily before the main meal. Seminal samples were collected eight weeks afterwards for cryopreservation.

2. Cryoprotectant group (CG): the seminal samples of these participants were supplemented with 1 mg omega-3 (30% EPA: 20% DHA in 50 ml diluents, Biomedical Pharma©, Italy) according to previously approved techniques [22], and then cryopreserved.

3. Control group: the seminal samples of these participants were cryopreserved with no dietary or sample intervention.

Cryopreservation/ thawing

After collection of the samples and recording for seminal fluid analysis, a cryopreservation medium (SpermFreeze™ SSP, FertiPro, Belgium) was mixed with each seminal fluid specimen in a 3:1 seminal fluid: medium ratio (after the medium had been warmed to room temperature). For equilibration, the cryo vials containing the mixture were left for ten minutes at room temperature. Afterwards, liquid nitrogen vapor was used to freeze each cryo vial vertically for 15 minutes, and they were then rinsed and stored in liquid nitrogen (at -196°C) for 30 days [23].

At the time of thawing, frozen cryo vials were placed in tap water for five minutes and the contents were then carefully mixed with a flushing medium (FertiCult, FertiPro, Belgium) in 3:0.5 ml (medium: semen) ratio. The resulting mixture was centrifuged for 15 minutes and the supernatant cast off, and then the pellet [i.e., sperms] was re-suspended in 0.5 ml flushing medium (FertiCult, FertiPro, Belgium) and examined.

Study parameters

1. Seminal fluid volume was recorded at the procuring of each seminal sample only prior to cryopreservation. All other parameters were recorded before cryopreservation and post-thawing.

2. A spermatic motility assessment: high power field magnification (x400) was used to determine sperm motility. Spermatozoa were divided according to their movement into either motile or non-motile and the motility percentage was calculated by examining 100 spermatozoa throughout ten fields [24].

3. A spermatic vitality assessment was recorded using Eosin Y (Sigma-Aldrich©, USA). Under high power field magnification (x 400), 20 µl of semen was mixed with 20 µl of the stain and examined microscopically. The heads of viable spermatozoa were not stained with eosin, but the heads of dead sperms were stained red or pink. Vitality was determined by calculating the percentage of viable (unstained) spermatozoa [25].

4. A reactive oxygen species (ROS) assessment was performed using a nitro blue tetrazolium (NBT) test, according to previous literature [24]. After washing with phosphate buffer saline (PBS) and centrifugation of seminal samples, the resulting pellet was resuspended in equal volumes of PBS and 0.1% NBT. Then, after incubation of the mixture, KOH and DMSO were used to solubilize the resulting formazan crystals (as a result of the
Effect of Omega-3 on seminal fluid parameters

Mustafa M. Al-Obeidy, et al.

reduction of NBT by the intracellular ROS of the sperms). An ELISA plate reader (ELISA BioTek, ELx 800) was used to measure the resulting mixture photometrically at a wavelength of 630 nm.

Data analysis

Data were analyzed using SPSS-26 and Microsoft Excel 2019. Data were presented as mean ± standard deviation (SD) with a paired t-test assessment of the cryopreservation effects and a two-way ANOVA comparison of the three groups. The power of statistical significance was tested at p-value ≤0.05 with a 95% confidence interval.

RESULTS

Pre-cryopreservation analysis of seminal fluid volume revealed a statistically significant difference (p=0.009), with the supplement group (SG) having significantly greater volumes than the other two groups (Figure 1). Pre-cryopreservation parameters of motility and vitality were closely related in the three groups, but the SG samples showed significantly higher levels of pre-cryopreservation sperm motility and vitality levels (Figure 2). Pre-cryopreservation oxidative stress was also lowest in the SG samples, but the difference was not statistically significant (p>0.05).

Figure 1: Pre-cryopreservation difference in seminal fluid volume for the three groups. SG: supplemented group. CG: cryoprotectant group. Bars represent means; error bars represent standard deviation. Red star indicates statistically significant difference p<0.05
Sperm motility and vitality parameters decreased significantly after cryopreservation for all study groups \((p<0.001)\). However, post-thawing analysis of variance of groups showed that the greatest decrease was seen in the control group and the least in the cryoprotectant group. Similarly, post-thawing oxidative stress increased significantly in all groups, but the least oxidative stress was seen in cryoprotectant group, while the greatest increase in ROS was seen in the control group. These results are summarized in Table 1.

Table 1: Pre-cryopreservation and post-thawing values for sperm motility, vitality and oxidative stress for the three groups. SG: supplemented group. CG: cryoprotectant group. * indicates a significant difference \(p<0.05\)

<table>
<thead>
<tr>
<th>Sperm motility %</th>
<th>Groups</th>
<th>Pre-cryopreservation</th>
<th>Post-thawing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>51.2±12.6</td>
<td>17.5±7.1</td>
<td></td>
</tr>
<tr>
<td>SG</td>
<td>59.8±8.6*</td>
<td>25.9±7.3</td>
<td></td>
</tr>
<tr>
<td>CG</td>
<td>52.5±8.1</td>
<td>37.4±6.3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sperm vitality %</th>
<th>Groups</th>
<th>Pre-cryopreservation</th>
<th>Post-thawing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>68.5±14</td>
<td>45.7±12.5</td>
<td></td>
</tr>
<tr>
<td>SG</td>
<td>79.3±7.5*</td>
<td>55.9±10.4</td>
<td></td>
</tr>
<tr>
<td>CG</td>
<td>70.5±9.6</td>
<td>68.7±14.7</td>
<td></td>
</tr>
</tbody>
</table>
Effect of Omega-3 on seminal fluid parameters Mustafa M. Al-Obeidy, et al.

<table>
<thead>
<tr>
<th>Groups</th>
<th>Pre-cryopreservation</th>
<th>Post-thawing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0.2377±0.089</td>
<td>0.3903±0.057</td>
</tr>
<tr>
<td>SG</td>
<td>0.2120±0.058</td>
<td>0.2875±0.051</td>
</tr>
<tr>
<td>CG</td>
<td>0.2265±0.049</td>
<td>0.2405±0.033</td>
</tr>
</tbody>
</table>

Oxidative stress (NBT photometric test)

DISCUSSION

Sperm cryopreservation is becoming an integral part of ART techniques and the process begins with the obtaining of a proper sample of...
sperm damage that may be caused by the formation of ice crystals, oxidative stress, cryocapacitation and/or the toxicity of cryoprotectants [32]. The current study showed that, while pre-cryopreservation supplementation with omega-3 improves seminal parameters, adding omega-3 as an adjuvant cryoprotectant greatly improves post-thawing outcomes regarding sperm motility and vitality and reduces the oxidative stress of cryopreservation. While previous animal studies have shown that supplementing sperm sample diluent with omega-3 fatty acids can improve chilled and cryopreservation capacity [33], other animal studies have concluded that this addition is not beneficial and may even have a detrimental effect [34]. The cause of this discrepancy may be species-related or affected by dose concentration and/or cryopreservation period and method. To our knowledge, no human study has been conducted to enable the in vitro results of the current study to be compared. As a biostimulant, omega-3 seems to have a greater effect as an additive to semen samples than as a dietary supplement [35]. This could be related to the fact that live spermatozoa may have a greater affinity to incorporate DHA/EPA into their cellular components than when supplied via diet and having to cross the blood testis barrier [36]. In addition to the aforementioned biochemical properties of omega-3, being lipids, PUFAs may provide sperms with greater resistance to the physical detrimental effects of the freezing-thawing cycles [37–38].

How omega-3 supplements affect the viability of sperm has been considered in the literature, with previous studies demonstrating that omega-3 supplementation increases antioxidant activity in human seminal fluid and improves the number, motility, and shape of sperm [39–40]. Additionally, studies on the functions of fatty acids in the cryopreservation of sperm have been focused on animal sperm not human [41].

The limitations of the current study may be related to sample size and dose of cryoprotectant. Further studies using larger populations, different doses and different cryopreservation periods will provide deeper insight.
CONCLUSION
Omega-3 DHA/EPA PUFAs have a positive influence, pre-cryopreservation and post-thawing, on sperm quality parameters, both as dietary supplements and biostimulant additives to diluents of sperm cryopreservation. The effect as direct biostimulant additives seems to exceed that of dietary supplements.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement
This clinical trial was funded by the personal efforts of the authors.

Acknowledgements
The authors acknowledge the postgraduate lab. in the College of Medicine, Al-Mustansiriyah University, Jordan, for permission to use the facilities.

REFERENCES
5. Martini AE, Doyle JO. Fertility preservation before deployment: oocyte and sperm freezing in members of the active-duty military. InSeminars in Reproductive Medicine 2019 Sep ; 37(05/06):232-238).
Effect of Omega-3 on seminal fluid parameters

Mustafa M. Al-Obeidy, et al.

- Effect of Omega-3 on seminal fluid parameters: Mustafa M. Al-Obeidy, et al.

Effect of Omega-3 on seminal fluid parameters

Mustafa M. Al-Obeidy, et al.

أحماض أوميغا 3 الدهنية ككمكملات غذائية وواقية من التجديد لتحسين الحفاظ بالتبريد للسائل المنوي البشري: دراسة على عينة من السكان العراقيين

MSCI Al-Obidy

1قسم التشريح البشري، كلية الطب، الجامعة المستنصرية، بغداد، العراق.

الملخص

الخلفية: مع التدهور المتزايد في معدلات خصوبة الذكور على مدى العقود القليلة الماضية، اكتسب العلاج الإنجابي المساعد الذي ينفذ بنك الحيوانات المنوية اهتماماً كبيراً من السلطات الصحية المختلفة في جميع أنحاء العالم. تؤدي عملية تجميد الحيوانات المنوية إلى العديد من الآثار الضارة على معايير جودة الحيوانات المنوية. الهدف من الدراسة الحالية هو فحص تأثير أوميغا 3 ككمكملات غذائية ومكملات واقية من التجميد على حفظ الحيوانات المنوية البشرية.

الطريقة: تم جمع 120 عينة من السائل المنوي من الرجال الأصحاء بشكل عشوائي للحفظ بالتبريد (مدة 30 يوماً)، ثم تقسيم جميع العينات إلى ثلاث مجموعات (40 لكل مجموعة). تم توفير مجموعة المكملات (المجموعة الأولى) مسبقًا عن طريق المكملات الغذائية من Omega-3 (30% EPA: 20% DHA) لمدة 8 أسابيع قبل جمع العينة، ثم علاج عينات المجموعة الثانية (المجموعة الثانية) باستخدام أوميغا 3 مضافة إلى المادة المخففة في الوقت المحدد قبل جمع عينة السائل المنوي وقبل أن تقوم بحفظه بالتبريد. وتم حفظ عينات المجموعة الضابطة (المجموعة الثالثة) بدون أي مكملات غذائية أو مواد واقية من التجميد. تم تسجيل التحليل المبدئي المنوي وقارنه بعد التجميد لإثبات ما بعد الديسة لحركة الحيوانات المنوية وحيويتها (NBT)(استخدام اختبار التأكسد (NBT)) وantage وخلصة: عينات SG تحتوي على كميات أكبر من السائل المنوي الأولي ، وحركة وحيوية أفضل للحيوانات المنوية، لكن تقييم الإجهاد التأكسدي لم يختلف بشكل كبير قبل التجميد. أظهر تقييم ما بعد التجديد أن مجموعة CG لديها أفضل معايير الحركة والحيوية والإجهاد التأكسدي. قد تكون النتائج مرتبطة بالتأثيرات الإيجابية لأحماض أوميغا 3 الدهنية على الغدد التناسلية ، والبيئة الهرمونية، ووظيفة الحيوانات المنوية وهكذا ، مما يجعلها رشقاً جيداً كمحفز حيوي لتحسين نتائج بنك الحيوانات المنوية البشرية. كانت النتائج قابلة للمقارنة مع العديد من الدراسات الحيوانية السابقة.

الكلمات الدالة: خصوبة الرجال ، تجميد الحيوانات المنوية ، أوميغا 3 ، PUFA ، الحركة ، الحيوية ، الإجهاد التأكسدي.