Ancestry Single Nucleotide Polymorphisms in Malayo-Polynesian Sub-Groups in the Malay Population: A Preliminary Study

Nur Iffah Izzati Norazzman,² Mat Ghani Siti Nor Assyuhada,¹¹² Nuur Athirah Mohd Daud,³ Noorzalifah Mazuki,³ Nurul Atika Musa,³ Sharifah Nany Rahayu Karmilla Syed Hassan,³ Ayunni Zainul Bahri,³ Naam Bahjat Ahmed Adeeb,¹ Nik Norliza Nik Hassan,² Nazihah Mohd Yunus,¹ Mohamad Ros Sidek,¹ Mohamad Zain Musa,⁴ Muhammadfahmee Talek,⁵ Farid Mat Zain,⁶ Numan Hayimasae,ⁿ Md Salleh Yaapar⁵ and Bin Alwi Zilfalil¹ ☒

Abstract

Malay populations are sub-groups of the Malayo-Polynesian, with various sub-ethnic groups believed to have different ancestral origins based on their migration centuries ago. The variability in the genetic pattern within the Malay population might impose different risks and disease probabilities or certain phenotypes. This study aimed to analyze single-nucleotide polymorphisms (SNPs) in Malayo-Polynesian sub-groups of the Malay population in Southeast Asia. SNPs were genotyped through T-ARMS PCR in 52 unrelated individuals from three Malay sub-groups: Champa (n=16), Kelantan (n=25), and Bugis (n=11). Most (60%) of the SNP genotypes showed a similarity with all Malay sub-ethnic groups. The PCA plot showed that all Malay sub-ethnic groups were slightly separated but clustered together with Asian populations compared with population groups from other geographical regions. Overall, the SNP genotyping generated from this study provides essential knowledge of the genetic relationships within Malay sub-ethnic groups in Southeast Asia and other global populations. Additionally, these findings may be used for future illness research, drug response estimation, and the development of preventive and therapeutic management strategies toward more personalized or precision medicine.

Keywords: AIM-SNP, Malayo-Polynesian, ARMS-PCR, allele frequency

(J Med J 2023; Vol. 57 (4): 312–329)

Received Accepted

March 28, 2021 July 7, 2022

¹ Human Genome Centre, School of Medical Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan.

² School of Health Sciences, Health Campus, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan.

³ Malaysian Node of the Human Variome Project, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan.

⁴ Institute of the Malay World and Civilization, Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor.

⁵ Faculty of Nursing, Prince Songkla University, Pattani Campus, 94000 Pattani, Thailand.

⁶ Center for Arabic anguage and Islamic Civilization, Faculty of Islamic Studies, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor.

⁷ Malay and Malay Studies Program, Faculty of Humanities and Social Sciences, Prince of Songkla University,

^{181,} M.6, Charoen Pradit Rd., T.Rusamilae, A.Muang, Pattani, 94000 THAILAND

⁸ School of Humanities, Universiti Sains Malaysia, 11800 Pulau Pinang.

⁹ Faculty of Medicine, Universiti Sultan Zainal Abidin, Medical Campus, Jalan Sultan Mahmud, 20400, Kuala Terengganu, Terengganu

[™]Corresponding author: <u>zilfalil@gmail.com</u>

INTRODUCTION

Malayo-Polynesian, also known as Austronesian, is one of a family of languages spoken by approximately 300 million people. It extends from Madagascar to the central Pacific, including the Malay Peninsula, Indonesia, New Guinea. the Philippines, Taiwan. Melanesian, Micronesian, and Polynesian islands, and New Zealand [1]. As an ethnic group, Malays speak the Malayo-Polynesian language spoken mostly across Southeast Asia, Singapore, Brunei, such Malaysia, Indonesia, southern Thailand, the southern Philippines, the Christmas and Cocos Islands of Australia, western Australia, Sri Lanka, and Cape Town in South Africa [2]. There are various sub-ethnic groups within the Malay population, such as Champa Malay, Kelantan Malay and Bugis Malay [3]. The Champa Malay, also known as the Cham people, live mainly in Vietnam and Cambodia, with smaller numbers living in Thailand and Malaysia. Most Cham in Vietnam live in the country's southern while in Cambodia they concentrated in Kampong Cham, Kampot, and Phnom Penh. Here, they comprise between 1-2% of the total population [4]. Kelantan Malay reside in Kelantan, located northeast of Peninsular Malaysia, which is flanked to the north by Thailand, the northeast by the South China Sea, the east by Terengganu, the south by Pahang, and the west by Perak. Kelantan's geographical location allowed Kelantan Malays to come into contact with the northern half of the Malay Peninsula, as shown by the close genetic relationship between Kelantan Malay, Kedah Malay, and Thai Pattani [5, 6]. However, the Kelantan Malay are genetically distinct from the other Malay populations in the peninsula's western (Minang Malay) and southern (Jawa Malay and Bugis Malay) regions. The Bugis Malay originated on Celebes (now Sulawesi) and moved throughout Indonesia, encroaching on western Sulawesi (mainly Polewali Mandar, Mamuju, Central Mamuju, and North Mamuju), and Southeast Sulawesi, where the Bugis ruled several districts, including Kendari, Kolaka, North Kolaka, and East Kolaka [7, 8]. When Makassar

was captured by the Dutch East India Company, the Bugis Malay migrated to the Malay Archipelago, where they constructed colonies along the banks of the Klang and Selangor rivers in the peninsula's southwest, establishing a Buginese state in the Selangor region during the 17th century. By 1722, the Bugis Malay had built a Buginese state in Riau, an area straddling the island of Sumatra's east-central portion [8].

The genetic ancestry of these Malay populations has been widely studied to determine the origin of the Malay population [5, 6, 9, 10]. These studies were conducted using several DNA markers such as single-nucleotide polymorphisms (SNPs), short tandem repeats (STRs), and insertion-deletion polymorphisms (INDELs) [11, 12]. Due to the availability of numerous highthroughput analysis technologies, SNPs are frequently used to investigate genetic differences between people and communities [12, 13]. The detection of SNPs can be carried out through tetra-primer amplification refractory mutation system polymerase chain reaction (T-ARMS PCR), which utilizes two outer primers and two allele-specific inner primers to amplify the allelespecific sequence in a single PCR reaction [14, 15, 16]. The outer primers serve as an internal control for the PCR, whereas the inner primers are positioned unequally from the corresponding outer primer to create amplicons of different sizes that can be distinguished by gel electrophoresis [17]. Therefore, the combinations of outer and specific inner primers produce allele-specific amplicons depending on the genotype [17].

Research on the genetic structure in Malay sub-ethnic groups in Southeast Asia is quite limited. Since the Malay population consists of various sub-ethnic groups that are believed to have different ancestral origins, it is important to analyse the ancestry of these sub-ethnic groups [18]. Therefore, this study focuses on ancestry SNPs in Malayo-Polynesian subgroups of the Malay population in Southeast Asia.

MATERIALS AND METHODS

Subject recruitment

A total of 52 Malay individuals, consisting of 25 individuals from Kelantan Malay, 16 from

Champa Malay, and 11 from Bugis Malay, were recruited. Subject recruitment was carried out in Kelantan in Malaysia, Sulawesi in Indonesia, and Kampung Cham in Cambodia. Inclusion and exclusion criteria are listed in

Table 1. Informed consent was obtained from all the recruited subjects. The study protocol was approved by the Universiti Sains Malaysia Human Ethics Committee.

Table 1. Inclusion and exclusion criteria

Inclusion criteria	Exclusion criteria
Healthy adult, ≥18 years old, consented to	History of any self-reported systemic diseases like
the study	hypertension and diabetes; congenital abnormalities like
	spina bifida, Down's Syndrome and hemophilia
Known family tree and confirmed by	Unclear family history
other family members	
Descendants of the same ethnicity and no	Descendants of other ethnic groups or mixed ethnicity
intermarriage with other ethnic groups for	
at least three generations	
All three generations born and residing in	
similar states or provinces	
Ability to communicate in the local dialect	

SNPs selection

The SNP dataset used in this study was obtained from Padillah Yahya [10]. In the current study, ten SNPs were selected as they are reportedly present in the Malay population,

according to the National Centre for Biotechnology Information (NCBI) Single Nucleotide Polymorphism Database (dbSNP) (https://www.ncbi.nlm.nih.gov/snp/?cmd=sear ch). The chosen SNPs are listed in Table 2.

Table 2. SNPs dataset

SNP ID	Chromosome number	Allele
rs1407728	6	G>T
rs1250233	2	G>A
rs200354	14	G>T
rs9323786	14	C>T
rs2194530	14	G>A
rs10496298	2	T>C
rs10512333	9	A>C
rs2758988	10	A>T
rs4980285	10	C>A

DNA extraction

Following recruitment, 3.0 mL of blood was withdrawn from each subject for genotyping. DNA was extracted using MegaBio plus General Genomic DNA Purification Kit (Hangzhou Bioer Technology Co., Ltd. (BIOER) and the quality of extracted DNA was checked using A260/A280 ratio, with a preferred range of 1.7–2.1. Extracted DNA was

kept at -20°C until further use.

SNP genotyping

SNP genotyping was performed using T-ARMS PCR, which required four primers: a forward outer (FO), reverse outer (RO), forward inner (FI), and reverse inner (RI). The sequences of primers for each SNP and their respective melting temperatures (T_m) are listed in Table 3.

Table 3. List of primers and respective T_m

	Table 3. List of primers and respective T _m				
SNP ID	Primers	Sequences (5' – 3')	T _m (°C)		
rs1407728	FO	AATGTGGAAAGAGAAGATGATCAAGGA	65.0		
	RO	GGTTCCATTTTTTCCTTTAAACCCAGT	65.0		
	FI	TATGGAAGATCTCCAGGAGTAGAATTGTT	65.0		
	RI	TTCATAGGAAAGCTAAATCAAT	65.0		
rs1250233	FO	AAACACTCTGAGATTCACATTCAGTGACT	63.0		
	RO	ATTGATAATGCAGGTCCTAGGGAAAG	63.0		
	FI	GGACAGAGCTGAAATTGAAATCAAGA	64.0		
	RI	AAGAGCAAGAATTTTGTGTCAGGAATAC	63.0		
rs200354	FO	GCAGATCACCACCCCAGGTGACAAATGG	75.0		
	RO	TGCTCCGTGTTCTTTCCCTTTTGGGCAT	75.0		
	FI	CTATGCACCATGGCCATTTGGAACTAGG	75.0		
	RI	TCTACAATGGACAGGGCAGCCTCTCACCAA	75.0		
rs9323786	FO	TGGACTCCTATTATGGCACTTGGAGTAT	61.0		
	RO	GTTGCTATACCGCTATGTCTAGTGGTTG	61.0		
	FI	GTAAATGTAATAGGTGTTCCATAAATAGTT	57.0		
	RI	CACTGTTTTAGCGTTCCTTGATTCACAG	65.0		
rs2194530	FO	ACTTGTTAAAGCCTACGCTTAACTTG	56.0		
	RO	TTCTATGTGATCCAACACTCTATGG	56.0		
	FI	GGTCAAGGTTTTGCTACTTCACCA	56.0		
	RI	AGAAGAAAGATCCAGGAAACTTAC	61.0		
rs10496298	FO	CACTAATAATATCCCTGCCT	48.7		
	RO	TAAGTTCAATAAGGTGAAAACTG	49.0		
	FI	TCTGTAGATTGTAGTGAATCATAAT	49.5		
	RI	TAAACTGGAGTAAATTAATTCG	51.0		
rs10512333	FO	ATTATGCCTGCCAAAAGTTACGTGCGTAGT	70.0		
	RO	CCCATTGGCTATGTGGTGTAAGCCGTAT	70.0		
	FI	TCGCCTTCTTATGAGCAATTTCTGAAGAC	69.0		
	RI	TGGGTTCACTGTCACCTTTAGCCACT	71.0		
rs2758988	FO	GCTCAAGGCCACAGTTAGTCCTACCTAC	66.0		
	RO	GAGCATATCTTTGGAATGAGGAGGACAT	66.0		
	FI	TGCCCTGTACAAATGTGAATTCTACTCCT	66.0		
	RI	ATTGCCGTTCTTTATCTGGTAGCTCCTT	66.0		
rs4980285	FO	TTGCTATTTAAGGGATAAGAACATTTCCA	64.0		
	RO	GCAAACAAATTTTGAGAATGCAAGACTA	64.0		
	FI	GGTAAATGCCATGATGTAAATTTGTAAGA	64.0		
	RI	CCTAAATTCCTTAATGTTCACACAACCTG	64.0		
rs6955239	FO	ATGATTATGGGAGCAGATATTGTGAAAA	63.0		
	RO	TTTCCTAGACAGAGCTTTTGATTTCCAC	63.0		
	FI	TGACAAAATAGACTTGACATATAGCTTCG	63.0		
	RI	ACCCTATTTCTCAAATACATATCTGCCAT	63.0		
		ı			

A total of 12.50 μ L of master mix was prepared, consisting of 2.50 μ L of 5X PCR buffer, 0.75 μ L of 25 mM of magnesium chloride (MgCl₂), 0.20 μ l of 10mM deoxynucleotide triphosphate (dNTP), 0.25 μ L

of 0.20 μ L of each primer, 0.25 μ L of 0.1 U/ μ L Taq polymerase, 1.00 μ L of 11.5 ng/ μ L DNA template and 6.75 μ L of nuclease-free water. The PCR protocol was set at 95°C for the predenaturation step for five minutes, followed by

35 cycles of 94°C denaturation for 30 seconds, annealing steps for 30 seconds, 72°C extension for 25 seconds, and 72°C final extension for three minutes. The annealing temperature (T_a)

for each SNP is listed in Table 4. PCR products were loaded into 2% agarose gel and run at 90 V for 60 minutes.

Table 4. Annealing temperature (Ta) for each SNP

SNP ID	T _a (°C)
rs1407728	55.9
rs1250233	49.0
rs200354	66.9
rs9323786	48.8
rs2194530	56.0
rs10496298	53.0
rs10512333	62.1
rs2758988	58.9
rs4980285	48.4
rs6955239	49.4

Data analysis

Hardy-Weinberg equilibrium (HWE) was determined using the HWE online calculator (https://wpcalc.com/en/equilibrium-hardyweinberg/). The χ^2 value was 3.84 (degree of freedom, df=1; significance level, α =0.05). Any sub-groups with χ^2 value <3.84 were considered, as in HWE [19]. The principal component analysis (PCA) was constructed to map the genetic structure between the Malay sub-groups and other populations such as African, African American, Asian, East Asian, South Asian, Latin American, European, and others, using XLSTAT software. In the PCA analysis, the factor for the first two principal components, F1 and F2, was used to construct a PCA graph.

RESULTS

All DNA samples (n=52) obtained from the three Malay sub-ethnic individuals (Champa, Kelantan, and Bugis Malays) were successfully genotyped for the ten SNPs (rs1407728, rs1250233, rs200354, rs9323786, rs2194530, rs10496298, rs10512333, rs2758988, rs4980285, and rs6955239) using T-ARMS PCR. This technique required four primers: a forward outer (FO), reverse outer (RO), forward inner (FI), and reverse inner (RI). The FO/RO primer combination creates the SNP locus's outer fragment (OF) and serves as an internal control for the PCR. The FI/RO and FO/RI primer combinations produce allelespecific amplicons depending on the sample's genotype (Figures 1–3).

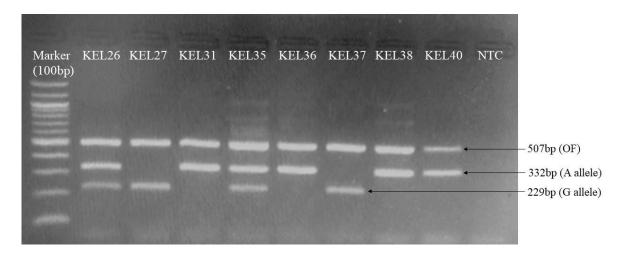


Figure 1. Agarose gel electrophoresis of the rs1250233 allele-specific products for Kelantan Malay. The allele-specific products for this SNP are A and G alleles. The A allele was detected at 332 bp while the G allele was at 229 bp. The outer fragment (OF) was observed at 507 bp, at the top of the allele-specific products

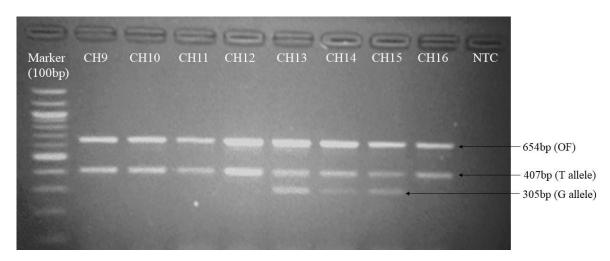


Figure 2. Agarose gel electrophoresis of the rs200354 allele-specific products for Champa Malay. The allele-specific products for this SNP are T and G alleles. The T allele was detected at 407 bp while the G allele was at 305 bp. The outer fragment (OF) was observed at 654 bp, at the top of the allele-specific products

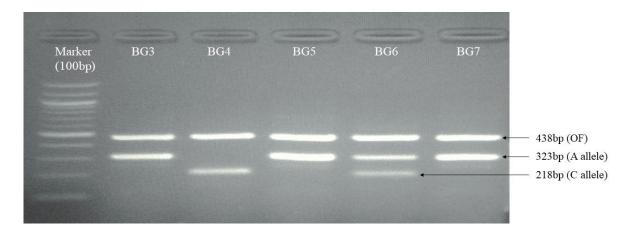


Figure 3. Agarose gel electrophoresis of the rs4980285 allele-specific products for Bugis Malay. The allele-specific products for this SNP are A and C alleles. The A allele was detected at 323 bp, while the C allele was at 218 bp. The outer fragment (OF) was observed at 483 bp, at the top of the allele-specific products

The dataset in Table 5 shows the genotype frequencies of SNPs in the studied Malay subethnic groups. Six SNPs (rs200354, rs9323786, rs10496298, rs10512333, rs2758988, and rs6955239) showed a similarity with all Malay sub-ethnic groups. For SNP rs200354, all Malay sub-groups are predominantly homozygote genotype TT (Champa Malay=0.688, Kelantan Malay=0.640, and Bugis Malay=0.909), while for SNP rs9323786, homozygote genotype CC was predominant in all Malay sub-ethnic groups with a genotype frequency of 1.000. For SNP

rs10496298, all Malay populations are observed to be predominantly heterozygote genotype CT (Champa Malay=0.939, Kelantan Malay=0.680, and Bugis Malay=0.909), whereas for SNP rs10512333, all the Malay sub-groups were predominantly heterozygote genotype AC (Champa Malay=0.875, Kelantan Malay=0.800, and Bugis Malay=0.727). For SNPs rs2758988 and rs6955239, heterozygote genotype TA and heterozygote genotype AG were observed to be predominantly in all the Malay sub-ethnic groups, respectively.

Table 5. SNP genotype frequencies

		rs1407728			
Population		Champa Malay	Kelantan Malay	Bugis Malay	
		(CH)	(KN/KEL)	(BG)	
No. of Samples		16	25	11	
Genotype	GG	0.563	0.320	0.455	
	GT	0.438	0.600	0.182	
	TT	0.000	0.080	0.364	

		rs1250233			
Population		Champa Malay	Kelantan Malay	Bugis Malay	
		(CH)	(KN/KEL)	(BG)	
No. of Samp	oles	16	25	11	
Genotype	GG	0.500	0.080	0.000	
	AG	0.375	0.240	0.364	
	AA	0.125	0.680	0.636	

		rs200354			
Population		Champa Malay	Kelantan Malay	Bugis Malay	
		(CH)	(KN/KEL)	(BG)	
No. of Samp	les	16	25	11	
Genotype	TT	0.688	0.640	0.909	
	TG	0.250	0.240	0.000	
	GG	0.063	0.120	0.091	

		rs9323786			
Population		Champa Malay	Kelantan Malay	Bugis Malay	
		(CH)	(KN/KEL)	(BG)	
No. of Samp	oles	16	25	11	
Genotype	CC	1.000	1.000	1.000	
	CT	0.000	0.000	0.000	
	TT	0.000	0.000	0.000	

		rs2194530			
Population		Champa Malay	Kelantan Malay	Bugis Malay	
		(CH)	(KN/KEL)	(BG)	
No. of Samp	oles	16	25	11	
Genotype	GG	0.375	0.360	0.636	
	GA	0.625	0.640	0.364	
	AA	0.000	0.000	0.000	

		rs10496298			
Population		Champa Malay	Kelantan Malay	Bugis Malay	
		(CH)	(KN/KEL)	(BG)	
No. of Samp	oles	16	25	11	
Genotype	CC	0.000	0.000	0.000	
	CT	0.938	0.680	0.909	
	TT	0.063	0.320	0.091	

		rs10512333			
Population		Champa Malay	Kelantan Malay	Bugis Malay	
		(CH)	(KN/KEL)	(BG)	
No. of Samp	oles	16	25	11	
Genotype	AA	0.125	0.080	0.273	
	AC	0.875	0.800	0.727	
	CC	0.000	0.120	0.000	

		rs2758988			
Population		Champa Malay	Kelantan Malay	Bugis Malay	
		(CH)	(KN/KEL)	(BG)	
No. of Samples		16	25	11	
Genotype	TT	0.000	0.080	0.000	
	TA	0.938	0.920	1.000	
	AA	0.063	0.000	0.000	

		rs4980285							
Population		Champa Malay Kelantan Malay		Bugis Malay					
		(CH)	(CH) (KN/KEL)						
No. of Samp	oles	16	16 25						
Genotype	CC	0.063	0.120	0.091					
	CA	0.563	0.520	0.273					
	AA	0.375	0.360	0.636					

		rs6955239							
Population		Champa Malay	Kelantan Malay	Bugis Malay					
		(CH)	(KN/KEL)	(BG)					
No. of Samp	les	16	16 25						
Genotype	AA	0.250	0.040	0.091					
	AG	0.500	0.880	0.909					
	GG	0.250	0.080	0.000					

The Hardy-Weinberg analysis of SNP genotyping (Tables 6–7) showed that all Malay sub-ethnic groups were in equilibrium for SNPs rs1250233, rs9323786, and rs4980285. However, SNPs rs1407728 and rs200354 were in a Hardy-Weinberg disequilibrium (HWD) among Bugis Malay only, while for SNP rs2194530, only the Kelantan Malay group

deviated from HWE. On the other hand, for SNPs rs10512333 and rs6955239, the Malay sub-ethnic groups that followed the HWE were the Bugis Malay and Champa Malay, respectively. In addition, all the Malay sub-ethnic groups were not in equilibrium for SNPs rs10496298 and rs275898.

Table 6. Hardy-Weinberg (HW) analysis of the three Malay sub-ethnic groups

	rs1407728											
		Champa (n=16)	K	Kelantan (n=25)			Bugis (n=11)				
Genot ype	Obser ved	1 squared 1 squared						Expec ted	Chi- squared (χ^2)			
GG	9	9		8	10		5	3				
GT	7	5	1.25*	15	12	1.87*	2	5	4.41			
TT	0	1		2	4		4	2				

	rs1250233											
	(Champa (n=16)	K	Kelantan (n=25)			Bugis (n=11)				
Genot ype	Obser ved	Expec ted	Chi- squared (χ^2)	Obser ved	- Squared			Expec ted	Chi- squared (χ^2)			
GG	8	8		2	1		0	1				
GA	6	7	0.26*	6	8	1.56*	4	3	0.54*			
AA	2	2		17	16		7	7				

	rs200354												
	(Champa (n=16)	K	Kelantan (n=25)			Bugis (n=11)					
Genot ype	Obser ved	Expec ted	Chi- squared (χ^2)	Obser ved	Expec ted	I squared I - I s			Chi- squared (χ^2)				
TT	11	10		16	14		10	9					
TG	4	5	0.52*	6	9	2.93*	0	2	11.00				
GG	1	1		3	1		1	0					

Table 6: Hardy-Weinberg (HW) analysis of Malay sub-ethnic groups (continued)

	rs9323786											
	Cha	ampa (n=1	6)	Kelantan (n=25)			Bugis (n=11)					
Genoty pe	Observ ed	Expect ed	Chi- square d (χ²)	Observ ed	' Square '			· .	Chi- square d (χ²)			
CC	16	16		25	25		11	11				
CT	0	0	0*	0	0	0*	0	0	0*			
TT	0	0		0	0		0	0				

	rs2194530											
	C	Champa (n=16)	K	Kelantan (n=25)			Bugis (n=11)				
Genot ype	Obser ved	Expec ted	Chi- squared (χ²)	Obser ved	1 Squared 1 1							
GG	6	7		9	11		7	7				
GA	10	6	3.31*	16	11	5.54	4	3	0.54*			
AA	0	1		0	3		0	1				

	rs10496298												
	Champa (n=16)				Kelantan (n=25)			Bugis (n=11)					
Genot ype	Obser ved	Expec ted	Squared 1 Squared 1 1						Chi- squared (χ²)				
CC	0	3		0	2		0	2					
CT	15	7	12.46	17	12	6.64	10	6	7.64				
TT	1	4		8	11		1	3					

	rs10512333												
	Champa (n=16)				Kelantan (n=25)			Bugis (n=11)					
Genot ype	Obser ved	Expec ted	Chi- squared (χ^2)	d Obser ved Expec ted (χ^2) Obser ved Expec squared (χ^2) (χ^2) Obser ved (χ^2) $(\chi^2$									
AA	2	5		2	6		3	5					
AC	14	8	9.68	20	12	9.08	8	5	3.59*				
CC	0	3		3	7		0	1					

Table 6: Hardy-Weinberg (HW) analysis of Malay sub-ethnic groups (continued)

	rs2758988											
	Champa (n=16)				Kelantan (n=25)			Bugis (n=11)				
Genot ype	Obser ved	Expec ted	Chi- squared (χ^2)	Obser ved	l i constred l i			Expec ted	Chi- squared (χ²)			
TT	0	4		2	7		0	2				
TA	15	8	12.46	23	12	18.14	11	6	11.00			
AA	1	4		0	5		0	3				

	rs4980285												
	C	Champa (n=16)	Kelantan (n=25)			Bugis (n=11)						
Genot ype	Obser ved	Expec ted	Chi- squared (χ²)	squared Obser Expec squared Obser					Chi- squared (χ²)				
CC	1	2		3	4		1	1					
CA	9	7	0.97*	13	12	0.27*	3	4	0.55*				
AA	6	6		9	9		7	6					

	rs6955239												
	C	Champa (n=16)	Kelantan (n=25)			Bugis (n=11)						
Genot ype	Obser ved	Expec ted	Chi- squared (χ²)	Obser ved	Expec ted	Chi- squared (χ²)	Obser ved	Expec ted	Chi- squared (χ²)				
AA	4	4		1	6		1	3					
AG	8	8	0*	22	12	14.55	10	5	7.64				
GG	4	4		2	7		0	2					

n=sample size, *=HWE, chi-squared, χ^2 <3.84 shows the sub-ethnic group followed the principle of HWE

Table 7. Summary of Hardy-Weinberg (HW) analysis

SNP ID	Champa	Kelantan	Bugis		
rs1407728	HWE	HWE	HWD		
rs1250233	HWE	HWE	HWE		
rs200354	HWE	HWE	HWD		
rs9323786	HWE	HWE	HWE		
rs2194530	HWE	HWD	HWE		
rs10496298	HWD	HWD	HWD		
rs10512333	HWD	HWD	HWE		
rs2758988	HWD	HWD	HWD		
rs4980285	HWE	HWE	HWE		
rs6955239	HWE	HWD	HWD		

Abbreviation: HWE=Hardy-Weinberg equilibrium, HWD=Hardy-Weinberg disequilibrium

In general, the allele frequencies of SNPs in the three studied Malay sub-ethnic groups are most similar to those of Asian populations, and the genetic relationships were mapped using PCA (see Figure 4 and Table 8, respectively). In the PCA plot, Kelantan Malay, Bugis Malay, and Champa Malay, as plotted against East Asian, Asian, and other Asian populations, demonstrate some degree of genetic affinity with these populations. African, African American, and other African populations are plotted closer to each other, while South Asian, Latin American 1, European, and other populations are plotted approximately to each other. In contrast, Latin American 2 is well separated from other populations.

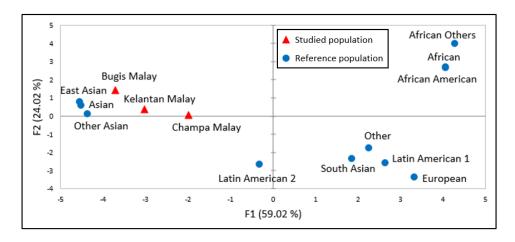


Figure 4. PCA plot of genetic relationship between the studied Malay sub-groups and reference populations (plot constructed using SNP allele frequencies listed in Table 8)

Table 8. SNP allele frequencies in the studied Malay sub-ethnic groups and reference populations

populations										
Population	rs1407728		rs125	50233	rs932	23786	rs20	0354	rs2194530	
	G	Т	G	A	C	Т	G	T	G	A
Champa Malay	0.781	0.219	0.688	0.313	1.000	0.000	0.188	0.813	0.688	0.313
Kelantan Malay	0.620	0.380	0.200	0.800	1.000	0.000	0.240	0.760	0.680	0.320
Bugis Malay	0.545	0.455	0.182	0.818	1.000	0.000	0.091	0.909	0.818	0.182
Europeans*	0.988	0.012	0.763	0.237	0.554	0.446	0.852	0.148	0.369	0.631
Africans*	0.917	0.083	0.711	0.289	0.449	0.551	0.413	0.587	0.840	0.160
Other Africans *	0.890	0.110	0.737	0.263	0.448	0.552	0.370	0.630	0.949	0.051
African American*	0.918	0.082	0.710	0.290	0.449	0.551	0.415	0.585	0.836	0.164
Asian*	0.511	0.489	0.095	0.905	0.968	0.032	0.265	0.735	0.589	0.411
East Asian*	0.448	0.552	0.084	0.916	0.971	0.029	0.267	0.733	0.580	0.420
Other Asians*	0.640	0.360	0.139	0.861	0.954	0.046	0.258	0.742	0.620	0.380
Latin Americans 1*	0.930	0.070	0.687	0.313	0.577	0.423	0.698	0.302	0.457	0.543
Latin Americans 2*	0.813	0.187	0.503	0.497	0.762	0.238	0.465	0.535	0.350	0.650
South Asians*	0.976	0.024	0.811	0.189	0.678	0.322	0.676	0.324	0.413	0.587
Others*	0.908	0.092	0.667	0.333	0.611	0.390	0.705	0.295	0.481	0.519

323

Table 8. SNP alle	Table 8. SNP allele frequencies in the studied Malay sub-ethnic groups and reference									
populations (continued)										
Population	rs10496298		rs10512333		rs2758988		rs4980285		rs6955239	
r oduiation		i					-			

Population	rs10496298		rs10512333		rs2758988		rs4980285		rs6955239	
	T	C	A	C	A	T	C	A	A	G
Champa Malay	0.531	0.469	0.563	0.438	0.531	0.469	0.344	0.656	0.500	0.500
Kelantan Malay	0.660	0.340	0.480	0.520	0.460	0.540	0.380	0.620	0.480	0.520
Bugis Malay	0.545	0.455	0.636	0.364	0.500	0.500	0.227	0.773	0.545	0.455
Europeans*	0.749	0.251	0.794	0.206	0.221	0.779	0.581	0.419	0.574	0.426
Africans*	0.934	0.066	0.915	0.085	0.672	0.328	0.921	0.080	0.874	0.126
Other Africans *	0.972	0.028	0.941	0.059	0.798	0.202	0.997	0.003	0.940	0.060
African Americans*	0.932	0.068	0.914	0.086	0.667	0.333	0.918	0.082	0.872	0.128
Asians*	0.590	0.410	0.484	0.516	0.920	0.080	0.418	0.582	0.000	1.000
East Asians*	0.630	0.370	0.507	0.493	0.950	0.050	0.424	0.576	0.000	1.000
Other Asians*	0.540	0.460	0.400	0.600	0.810	0.190	0.394	0.606	0.000	1.000
Latin Americans 1*	0.829	0.171	0.831	0.169	0.356	0.644	0.714	0.286	0.000	1.000
Latin Americans 2*	0.590	0.410	0.803	0.197	0.439	0.561	0.515	0.485	0.000	1.000
South Asians*	0.940	0.060	0.716	0.284	0.660	0.340	0.435	0.565	0.050	0.950
Others*	0.709	0.292	0.796	0.204	0.409	0.591	0.601	0.399	0.587	0.413

^{*}References SNPs obtained from NCBI Allele Frequency Aggregator (ALFA) dataset (refer to https://www.ncbi.nlm.nih.gov/snp/docs/gsr/alfa/)[20]

DISCUSSION

In this study, all samples from three Malay sub-ethnic groups residing in geographically different locations (Cambodia (Champa Malay), Peninsular were successfully genotyped using the T-ARMS PCR method. This technique has become the gold standard for SNP genotyping. T-ARMS PCR has proved suitable for SNP genotyping due to being rapid and inexpensive for typing many samples. In comparison to other approaches, T-ARMS PCR is a valuable tool for SNP genotyping due to the variable sensitivity of PCR-SSCP [21]. Sequencing is a timeconsuming, technically demanding, expensive procedure [22], and the likelihood of obtaining a restriction site for an enzyme is almost impossible for PCR-RFLP genotyping [23].

The genotype frequencies of six out of ten SNPs (60%) (rs200354, rs9323786, rs10496298, rs10512333, rs2758988, and rs6955239) showed a similarity with all Malay sub-ethnic groups. This is unsurprising because Champa, Kelantan, and Bugis Malay are Malayo-Polynesian sub-groups, and so there must be a similarity in their genetic structure. However, the remaining SNPs, including rs1407728, rs1250233, rs2194530 and rs4980285, only showed a similarity either between Champa Malay and Bugis Malay or

Kelantan Malay and Bugis Malay, as well as between Champa Malay and Kelantan Malay. For SNP rs1407728, Champa Malay and Bugis Malay showed similarities. Most of these populations are homozygote genotype GG, while SNP rs1250233, Kelantan Malay and Bugis Malay are similar as most are homozygote genotype AA. In addition, Champa Malay and Kelantan Malay showed similarities for SNPs rs2194530 and rs4980285. For SNPs rs2194530, the heterozygote genotype GA is dominant in these groups, while for SNP rs4980285, both Champa and Kelantan Malay have a higher frequency of genotype CA (heterozygote). The differences in the SNPs genotype frequencies between these Malay subethnic groups are expected to be due to their geographical location and interaction with the local population, such as mixed marriage. Kelantan Malays live in Kelantan state, northeast of Peninsular Malaysia, while Champa Malays reside in Cambodia. Bugis Malay, on the other hand, are in Sulawesi, Indonesia. Interaction with other populations, such as Chinese, Indians, Arabs, Europeans, and other Asian populations in ancient times may reflect the genetic mosaic in these Malay populations [9].

Despite the correlation due to Malayo-

Polynesian origins, Kelantan Malay also showed a relation with Champa Malay due to trade and religious activities. The Champa Kingdom has had established trading ties with both present-day Malaya, Pattani, Acheh, and Java since the 4th century [24]. Furthermore, for religious activities, Islamic missionaries from Kelantan have been visiting the Cham people in both Cambodia and Vietnam since at least the 16th century. At the same time, many Chams send their children to Kelantan for religious education [25]. For these reasons, we expect more genetic similarity between these two groups [26]. Hence, we observed no significant difference in genotype frequencies in 8 out of 10 SNPs (80%) genotyped between Kelantan Malay and Champa Malay.

HW analysis was carried out to determine whether the Malay sub-ethnic groups are in equilibrium or not. The test estimates the number of homozygous and heterozygous variant carriers based on their allele frequency in populations that are not evolving [27]. We postulate that evolution occurred within the population if the allele frequencies changed from the original frequencies after one round of random mating. Based on the HW analysis, all studied populations showed significant deviation from HWE for SNPs rs10496298 (Champa Malay, $\chi^2=12.46$, Kelantan Malay, χ^2 =6.64 and Bugis Malay, χ^2 =7.64) and rs2758988 (Champa Malay, χ²=12.46, Kelantan Malay, $\chi^2=18.14$ and Bugis Malay, $\chi^2=11.00$). In addition, for SNP rs10512333, Champa Malay ($\gamma^2=9.68$) and Kelantan Malay ($\gamma^2=9.08$) are not in HWE, while for SNP rs6955239, Kelantan Malay ($\chi^2=14.55$) and Bugis Malay $(\gamma^2=7.64)$ showed deviation from HWE. Moreover, Bugis Malay ($\gamma^2=11.00$) and Kelantan Malay ($\gamma^2=5.54$) are not in HWE for SNPs rs200354 and rs2194530, respectively.

Five factors might contribute to these HW disequilibria: (1) gene flow, (2) mutation, (3) genetic drift, (4) genetic recombination, and (5) natural selection. If one or more of these conditions are acting on the population, evolution will occur [27], resulting in changes in gene pool frequencies which we could observe in the Malay sub-ethnic populations.

Departure from HWE can also be caused by genotyping error. In general, there is no genotyping method that is 100% accurate. As mentioned earlier, in this study, we used T-ARMS PCR. Even though many studies have reported the high accuracy of this method [28– 31], it does have some pitfalls. Therefore, it is highly recommended to test the method's accuracy by introducing another genotyping technique (such as sequencing) and comparing the results with these two Unfortunately, we did not validate the T-ARMS PCR method's accuracy in this study. Another potential factor contributing to observed HWE deviation in the Malay sub-groups is relatively small sample size. This is due to the limited number of individuals with 'pure' lineage of the sub-ethnic group. Most either have a mixedmarriage background or have assimilated into the other population. Furthermore, due to the COVID-19 pandemic, our movement was restricted, making the situation more challenging to collect more samples.

The distribution of SNP allele frequencies among Malay sub-groups was compared with population groups from other geographical regions using PCA. Based on the PCA plot (Figure 4), all Malay sub-ethnic groups are slightly separated from each other but are clustered together with Asian populations at the top left of the PCA plot, as most of the Asian population are Malayo-Polynesian speakers. They are well separated from European, Latin American, African, and African American populations. These findings are supported by Deng et al., who suggest that the Malay populations shared four significant components: East Asian, South Asian, Austronesian, and aboriginal Southeast Asian [9]. This finding is in accordance with others [19, 32, 33]. The slight separation observed Malay between each sub-ethnic demonstrates their variations in genetic structure due to the reasons mentioned earlier.

In addition, African, African American and other African populations show a close genetic structure as they are plotted closer to each other. Similarly, South Asian, Latin American 1, European, and other populations are plotted

approximately to each other at the bottom right of the PCA plot. In contrast, Latin American 2 is well separated from other populations studied. Overall, we found that the PCA plot based on the SNP allele frequencies reflects the populations' geographical proximity and ancestral relationships. However, this finding should be interpreted with some caution as the PCA analysis was carried out using the first two factors (F1 and F2), as these captured most of the information. However, some information might be hidden in the following factors.

CONCLUSION

In this report, we can conclude that ten SNPs in three selected Malay sub-ethnic groups in Southeast Asia have been successfully genotyped using the T-ARMS PCR technique. T-ARMS PCR is an appropriate platform to genotype single-base mutations such as SNPs. The simplicity of this method makes it suitable for the analysis of a large number of samples. The SNP genotyping generated in this study

provides essential knowledge on the genetic relationships within Malay sub-ethnic groups in Southeast Asia and other global populations. These Malay sub-ethnic groups show a closer genetic relationship between each other and with Asian people rather than with African and European populations. Even though there are some variations in their genetic structure, these variations reflect their geographical origin and interaction with other people. Furthermore, the comprehensive SNP genotype and allele frequencies information in this report has potential applications for the future study of diseases, estimating drug response, and designing preventive approaches and treatment management for personalized or precision medicine.

Acknowledgments

This work was supported by the Research University Individual grant

(1001/PPSP/8012301).

Conflicts of Interest: The authors declare no conflict of interest.

REFERENCES

- Mittal VK. Simulation training-a necessity for Malayo-Polynesian languages. The Columbia Electronic Encyclopedia. 6th ed. Columbia University Press. 2012. Retrieved from: www.infoplease.com/encyclopedia/arts/language/linguistics/malayopolynesianlanguages (accessed on 6 January 2022).
- Yahya P, Sulong S, Harun A, Isa HW, Rajab N-SA, Wangkumhang P, Wilantho A, Ngamphiw C, Tongsima S, Zilfalil BA. Analysis of the genetic structure of the Malay population: Ancestryinformative marker SNPs in the Malay of Peninsular Malaysia. Forensic Sci Int Genet. 2017; 30: 152-159.
- Halim-Fikri H, Etemad A, Latif AZA, Merican AF, Baig AA, Annuar AA, Ismail E, Salahshourifar I, Liza-Sharmini AT, Ramli M, et al. The first Malay database toward the ethnic-specific target molecular variation. BMC Res Notes. 2015; 8: 176.

- Minority Rights Group. 2018. Cham. Retrieved from: https://minorityrights.org/minorities/cham/ (accessed on 6 January 2022).
- Hatin WI, Nur-Shafawati AR, Zahri MK, Xu S, Jin L, Tan SG, Rizman-Idid M, Zilfalil BA; HUGO Pan-Asian SNP Consortium. Population genetic structure of peninsular Malaysia Malay sub-ethnic groups. PLoS One. 2011; 6(4): e18312.
- Hatin WI, Nur-Shafawati AR, Etemad A, Jin W, Qin P, Xu S, Jin L, Tan S-G, Limprasert P, Feisal MA, et al. A genome wide pattern of population structure and admixture in peninsular Malaysia Malays. Hugo J. 2014; 8(1): 5.
- Ho S. Bugis community National Library Board Singapore. 2013. Retrieved from: https://eresources.nlb.gov.sg/infopedia/articles/SIP 2013-08-12 113516.html (accessed on 9 December 2021).

- Britannica. Bugis. Encyclopedia Britannica. Encyclopedia Britannica, Inc. 2015. Retrieved from: https://www.britannica.com/topic/Bugis (accessed on 9 December 2021).
- Deng L, Hoh B-P, Lu D, Saw W-Y, Ong RT-H., Kasturiratne A, Silva HJd, Zilfalil BA, Kato N, Wickremasinghe AR, et al. Dissecting the genetic structure and admixture of four geographical Malay populations. Sci Rep. 2015; 5: 1–8.
- 10. Yahya P. Development of Ancestry Informative Markers (AIMs) Single Nucleotide Polymorphism (SNP) Panel for Malaysian Malay population for ancestry and medical application [dissertation]. Malaysia: Universiti Sains Malaysia; 2020.
- Paschou P, Lewis J, Javed A, Drineas P. Ancestry informative markers for fine-scale individual assignment to worldwide populations. J Med Genet. 2010; 47(12): 835-47.
- 12. Teama S. DNA polymorphisms: DNA-based molecular markers and their application in medicine. In Genetic Diversity and Disease Susceptibility, 1st ed.; Liu Y, Ed.; IntechOpen: London, UK, 2018; Volume 25.
- 13. Vallejos-Vidal E, Reyes-Cerpa S, Rivas-Pardo JA, Maisey K, Yáñez JM, Valenzuela H, Cea PA, Castro-Fernandez V, Tort L, Sandino AM, Imarai M, Reyes-López FE. Single-nucleotide polymorphisms (SNP) mining and their effect on the tridimensional protein structure prediction in a set of immunity-related expressed sequence tags (EST) in Atlantic Salmon (*Salmo salar*). Front Genet. 2020; 10: 1406.
- Mahdieh N, Rabbani B. An overview of mutation detection methods in genetic disorders. Iran J Pediatr. 2013; 23(4): 375-88.
- Medrano RFV, Oliveira CAd. Guidelines for the tetra-primer ARMS-PCR technique development. Mol Biotechnol. 2014; 56(7): 599-608.

- 16. Ahlawat S, Sharma R, Maitra A, Roy M, Tantia MS. Designing, optimization and validation of tetra-primer ARMS PCR protocol for genotyping mutations in caprine Fec genes. Meta Gene. 2014; 2: 439-449.
- 17. Alyethodi RR, Singh U, Kumar S, Alex R, Deb R, Sengar GS, Raja TV, Prakash B. T-ARMS PCR genotyping of SNP rs445709131 using thermostable strand displacement polymerase. BMC Res Notes. 2018; 11(1): 1–5.
- Cavalli-Sforza LL. Human evolution and its relevance for genetic epidemiology. Annu Rev Genomics Hum Genet. 2007; 8: 1-5.
- NurWaliyuddin HZ, Norazmi MN, Edinur HA, Chambers GK, Panneerchelvam S, Zafarina Z. Ancient genetic signatures of Orang Asli revealed by killer immunoglobulin-like receptor gene polymorphisms. PloS One. 2015; 10(11): e0141536.
- 20. ALFA: Allele Frequency Aggregator.c 2020. Retrieved from:

 https://www.ncbi.nlm.nih.gov/snp/docs/gsr/alfa/
 (accessed on 9 December 2021).
- Scoggan KA, Bulman DE . Single-strand conformational polymorphism analysis (SSCP) and sequencing for ion channel gene mutations. Methods Mol Biol. 2003; 217: 143–151.
- 22. Fakhrai-Rad H, Pourmand N, Ronaghi M. Pyrosequencing: an accurate detection platform for single nucleotide polymorphisms. Hum Mutat. 2002; 19(5): 479-85.
- 23. Koopaee HK, Koshkoiyeh AE. SNPs Genotyping technologies and their applications in farm animals breeding programs. Braz Arch Biol Technol. 2014; 57(1): 87-95.
- 24. Dreadnought. The origins of the Kelantanase.

 Malaysia Today. 2008. Retrieved from:

 https://www.malaysia-today.net/2008/10/26/the-origins-of-the-kelantanese/ (accessed on 9 December 2021).

- Steve H. Champa and Malaysia-Connections Part 2.
 Cambodia News English. 2019. Retrieved from: https://cne.wtf/2019/11/28/champa-and-malaysia-connections-part-2/ (accessed on 9 December 2021).
- 26. Ken DWT. Historical Relations between the Chams and the Malays: Sustaining Common Identity, Culture and Ethnicity through Two Millennia of Relations. Southeast Asia: History and Culture. 2008; 2008(37): 112-136.
- 27. Abramovs N, Brass A, Tassabehji M. Hardy-Weinberg Equilibrium in the Large Scale Genomic Sequencing Era. Front Genet. 2020; 11: 210.
- 28. Duta-Cornescu G, Simon-Gruita A, Constantin N, Stanciu F, Dobre M, Banica D, Tuduce R, Cristea P, Stoian V. A comparative study of ARMS-PCR and RFLP-PCR as methods for rapid SNP identification. Biotechnol. 2009;14(6):4845-4850.
- 29. Zhang C, Liu Y, Ring BZ, Nie K, Yang M, Wang M, Shen H, Wu X, Ma X. A novel multiplex tetraprimer ARMS-PCR for the simultaneous genotyping of six single nucleotide polymorphisms associated with female cancers. PLoS One. 2013; 8(4): e62126.

- 30. Zhang S, Dang Y, Zhang Q, Qin Q, Lei C, Chen H, Lan X. Tetra-primer amplification refractory mutation system PCR (T-ARMS-PCR) rapidly identified a critical missense mutation (P236T) of bovine ACADVL gene affecting growth traits. Gene. 2015; 559(2): 184-188.
- 31. Zhang S, Cai Y, Zhang J, Liu X, He L, Cheng L, Hua K, Hui W, Zhu J, Wan Y, et al. Tetra-primer ARMS-PCR combined with GoldMag lateral flow assay for genotyping: simultaneous visual detection of both alleles. Nanoscale. 2020; 12(18): 10098-10105.
- 32. Manaf SM, NurWaliyuddin HZA, Panneerchelvam S, Zafarina Z, Norazmi MN, Chambers GK, Edinur HA. Human neutrophil antigen profiles in Banjar, Bugis, Champa, Jawa and Kelantan Malays in Peninsular Malaysia. Blood Transfus. 2015; 13(4): 610–615.
- 33. Syafawati WUW, Norhalifah HK, Zefarina Z, Zafarina Z, Panneerchelvam S, Norazmi MN, Chambers GK, Edinur HA. Allele frequencies of human platelet antigens in Banjar, Bugis, Champa, Jawa and Kelantan Malays in Peninsular Malaysia. Transfus Med. 2015; 25(5): 326-32.

تحليل تعدد أشكال النوكليوتيدات المنفردة (SNP) بين المجموعات الفرعية الملايو بولينيزبة لسكان الملايو: دراسة أولية

نور إفاح عزاتي نورزمان 5 ، مات غاني سيتي نور آسيوهادا 1 ، نور أذيرة محمد داود 6 ، نورزاليفه مازوكي 5 ، نور عتيقة موسى 5 ، شريفة ناني راهايو كرميلا سيد حسن 5 ، عيون زين البحري 5 ، نعم بهجت أحمد أديب 1 ، نيك نورليزا محمد حسن 2 ، محمد فهمي تالك 5 ، في فريد مات زين 6 ، نعمان هايماساي 7 ، محمد صالح يابار 8 ، بن علوي زلفليل 1

1 مركز الجينوم البشري، كلية العلوم الطبية، الحرم الجامعي الصحي، جامعة سينز ماليزيا، 16150 كوبانج كيريان، كيلانتان.

2 كلية العلوم الصحية، الحرم الجامعي الصحي، جامعة سينز ماليزيا، 16150 كوبانج كيريان، كيلانتان.

3 العقدة الماليزية لمشروع المتغير البشري، كلية العلوم الطبية، جامعة سينز ماليزيا، 16150 كوبانغ كيريان، كيلانتان.

4 معهد عالم وحضارة الملايو، جامعة كيبانغسان ماليزيا، 43600 UKM، بانجي، سيلانجور.

5 كلية التمريض، جامعة الأمير سونغكلا، حرم باتاني الجامعي، 94000 باتاني، تايلاند.

6 مركز اللغة العربية والحضارة الإسلامية، كلية الدراسات الإسلامية، جامعة كيبانغسان ماليزيا، 43600 بانغي، سيلانغور.

7 قسم الدراسات الماليزية، قسم اللغات الشرقية، كلية العلوم الإنسانية والاجتماعية، جامعة الأمير سونغكلا، 90110 باتاني، تايلاند.

8 كلية العلوم الإنسانية، جامعة سينز ماليزيا، 11800 بولاو بينانغ.

الملخص

الخلفية والأهداف: سكان الملايو هم إحدى المجموعات الفرعية للملايو البولينيزية. الملايو لديها مجموعات عرقية فرعية مختلفة يعتقد أن لها أصول أسلاف مختلفة بناءً على هجرتها منذ قرون. قد يفرض التباين في النمط الجيني داخل سكان الملايو مخاطر مختلفة واحتمالات مرضية أو أنماط ظاهرية معينة. هدفت هذه الدراسة إلى تحليل تعدد الأشكال بين المجموعات الفرعية الملايو بولينيزية من سكان الملايو في جنوب شرق آسيا.

منهجية الدراسة: تم التنميط الجيني SNPs من خلال T-ARMS PCR في 52 فردًا غير مرتبطين من 3 مجموعات فرعية T من الملايو: (Champa (n=16)) و Kelantan (n=25) ، Champa (n=16) من الملايو: (SNP نظرًا لكونه سربعًا وسربعًا وغير مكلف لتنميط عدد كبير من العينات.

النتائج: أظهرت الغالبية (60 %) من الأنماط الجينية للنيوكليوتيدات SNPs تشابهًا مع جميع المجموعات العرقية الفرعية للملايو. أظهرت مؤامرة PCA أن جميع المجموعات العرقية الفرعية للملايو تم فصلها قليلاً عن بعضها البعض ولكن تم تجميعها مع السكان الآسيويين مقارنة بالمجموعات السكانية من المناطق الجغرافية الأخرى. بشكل عام ، يوفر التنميط الجيني SNPs الاستنتاجات: الناتج عن هذه الدراسة المعرفة الأساسية حول العلاقات الجينية داخل المجموعات العرقية الملاوية في جنوب شرق آسيا وسكان العالم الأخرين. بالإضافة إلى ذلك ، يمكن استخدام النتائج الواردة في هذا التقرير لأبحاث المرض المستقبلية ، وتقدير الاستجابة للأدوية ، وتطوير استراتيجيات الإدارة الوقائية والعلاجية نحو الطب الأكثر تخصيصًا أو الدقة.

الكلمات الدالة: ARMS-PCR ،Malayo-Polynesian ،AIM-SNP ، تواتر الأليل.