Gram-Positive Bacterial Infections and Antibiotics Resistance in Jordan: Current Status and Future **Perspective**

Mohammad Al-Tamimi¹⊠, Hadeel Albalawi¹, Walaa Isied¹, Ahmad Musallam¹, Fatima Qazzaz¹, Mohammad Azab¹, Jumana Abu-raideh¹, Nisreen Himsawi¹, Joel Vaughan²

Abstract

Background: Antibiotic resistance is expanding worldwide at alarming rates. Middle East countries including Jordan have high prevalence of antibiotic resistance.

Aims: The main aims of this review are to summarize the situation with Gram-positive bacterial infections and antibiotic resistance in Jordan, identify areas where further investigation is required, and suggest strategies to combat antibiotic resistance.

Methods: A systematic literature search was conducted by two independent researchers using general and specific combinations of MeSH search terms using Embase, PubMed, Web of Science, and Google Scholar databases.

Results: Staphylococci and Streptococci were commonly isolated from environmental, animal, and human samples, while Staphylococci, Enterococci, and Listeria were commonly isolated from food. Staphylococci, Streptococci, and Enterococci human colonization were documented at variable but high rates. Methicillin-resistant S. aureus (MRSA) and methicillin-resistance coagulase-negative Staphylococci (MR-CoNS) infections were common with high rates of antibiotic resistance. S. pneumoniae showed increased resistance rates to most antimicrobials. Enterococci and C. difficile resistance rates were moderate, while group B Streptococci (GBS), viridans group streptococci (VGS), C. perfringens and L. monocytogenes antibiotic susceptibility patterns were not reported. All MRSA and vancomycin-resistant Enterococci (VRE) isolates were mec-A positive, while resistance genes among CoNS, S. pneumoniae, S. pyogenes, S. agalactia, C. perfringens, and L. monocytogenes were not investigated.

Conclusions: Gram-positive bacterial infections and antibiotic resistance rates were high in Jordan. Molecular epidemiology studies, a nationwide surveillance program, and action plans are urgently required to combat antibiotic resistance.

Key words: infection; antibiotic resistance; Jordan; MDR; gram-positive; bacteria.

(J Med J 2022; Vol. 56 (1): 17- 44)

Received

Accepted

February, 23, 2021 June, 7, 2021

Department of Basic Medical Sciences, Faculty of Medicine, Hashemite University, Zarqa, Jordan

¹ Department of Basic Medical Sciences, Faculty of Medicine, Hashemite University, Zarqa, Jordan

² Department of Internal Medicine, Faculty of Medicine, Hashemite University, Zarga, Jordan

Corresponding Author: Mohammad Al-Tamimi, MD, PhD

Introduction

The antibiotics era started with the discovery of penicillin by Fleming in the late 1920s. By the 1930s, most common infections were successfully treated with antimicrobials. Sulfonamide, a synthetic antimicrobial agent was first used in 1935. Trimethoprim, another synthetic agent, was developed in the early 1960s ^{1,2}. Penicillin resistance was first reported and 1940s, sulfonamide late Trimethoprim resistance were first identified in 1969. The exact mechanism, including genetic background, was not known at that time ^{1,2}. The origin of modern antibiotic resistance genes in pathogens is possibly the environmental bacteria. Recent work has revealed resistant bacteria in ancient permafrost, caves, and preserved human specimens. An ancient origin of resistance that precedes antibiotic use has been proposed³.

Multi-drug resistant (MDR) bacterial infections are usually associated with high morbidity and mortality as conventional antibiotics are of little value. Some bacterial strains have developed resistance to every known antibiotic, including last resort antibiotics. Antibiotic resistance is increasing at an alarming rate, especially in the last decade ⁴. This challenge is clearly represented by the recent reports of WHO stating that antibiotic resistance is the most serious public health issue of our time ^{5,6}. Antibiotic resistance has multiple effects on social, economic, political, ethical, public health and clinical issues ⁷⁻¹⁰.

Now, multiple Gram-positive organisms are known to be resistant to multiple antibiotics, including *Staphylococcus aureus*, *Clostridium difficile*, Vancomycin-resistant *Enterococci* (VRE), and *Streptococcus pneumonia* ^{4,7,10}. Antibiotic resistance patterns can be different based on geographic location, socio-economic

conditions, health care systems, and political engagement 8,10,11. This is related to the prevalence of different infecting bacterial agents, the genetic background of bacterial strains, environmental factors including animals and food, policies and protocols for antibiotic prescriptions and strategies applied to combat antibiotic resistance 8,10,11. Some countries have been able to contain resistance, while in most countries, the prevalence of antibiotic-resistant bacteria is increasing ^{5,8}. Most of the action planes to tackle antibiotic resistance have originated in the USA and Europe, while some countries are still in the development stage of an action plan. Other countries have no effective measures or clear strategies to control antibiotic resistance ^{8,11}.

Multiple studies conducted in the Mediterranean region have shown a high prevalence of antibiotic resistance, especially in the eastern and the southern regions ^{8,12,13}. The Mediterranean area is experiencing a surge in *S*. aureus and S. pneumonia antibiotic resistance ¹⁴⁻¹⁶. The lack of organized antibiotic resistance surveillance programs, effective strategies to combat antibiotic resistance, the progressive increase in antibiotic resistance at national levels and uncontrolled antibiotics prescription have a global impact ¹⁰.

Multinational studies in southern and eastern Mediterranean countries showed the overall prevalence of penicillin non-susceptible *S. pneumoniae* was 26% with the highest proportions being from Algeria and Lebanon ^{12,15}. Iran is the only Mediterranean country with documented tolerance and/or resistance to vancomycin in *S. pneumoniae* ¹⁶. The Middle East is considered endemic for methicillinresistant *S. aureus* (MRSA) carriage and infections, with sequence type 80-MRSA-IV becoming more common ¹⁷. MRSA rates varied

from 10% in Lebanon to 65% in Jordan, while vancomycin non-susceptibility was detected in 0.9% of *E. faecalis* isolates from Turkey and in 3.8% of *E. faecium* isolates from Cyprus ^{12,14}.

Few literature reviews, systematic reviews, and meta-analyses have been published on Gram-positive antibiotic resistance overall, or resistance patterns for specific organisms in Syria 18, Turkey 19, Saudi Arabia 20-23 and Kuwait ²⁴. No reviews have been reported in Jordan so far. International, regional, and local studies have indicated a higher prevalence of antibiotic resistance in Jordan. The highest proportions of MRSA among Mediterranean countries were previously reported by Jordan, Egypt and Cyprus, where more than 50% of the invasive isolates were methicillin-resistant ¹⁴. Similarly, the rates of antibiotic resistance in S. pneumonia isolates from Jordan is among the highest in the world²⁵.

The main aim of this review is to systematically summarize the current state of Gram-positive infections and antibiotic resistance patterns and molecular types in Jordan, identify gaps and areas where further investigation is required, and finally suggest strategies and plans to combat antibiotic resistance.

Methods

A comprehensive literature search was conducted using general and specific combinations of MeSH search terms. The search engines used without limits include Embase, PubMed/Medline, Web of Science, and Google Scholar. General combination terms including "infection/s", "bacteria", "micro/organism", "antibiotic", "antibiotic resistance", "microbial drug resistance", "MDR", "antimicrobial resistance", "AMR", "Gram positive", and "Jordan" were used. Specific combinations terms including each organism's example "Staphylococci", name, for

"Staphylococcus", "Staphylococcus aureus", "S. "methicillin-resistant Staphylococcus aureus", "MRSA", and "Jordan" were also used. Each article title and abstract were reviewed by two independent researchers for relevance to review aims. Inclusion criteria included: 1) Original studies or systematic reviews about Gram-positive bacterial infection and/or colonization of the environment, food and water, animals and birds, or humans in Jordan, 2) Antimicrobial resistance of Gram-positive bacterial colonization and/or infection of humans in Jordan, 3) Prevalence, antibiogram, phenotype, and genotype of antibiotic resistance for each Gram-positive organism in Jordan. Relevant full text articles were extracted and included in the study. Articles related only to infection and/or colonization were described briefly, while articles related to antibiotics resistance, especially in clinical studies, was approached in more depth.

Staphylococcus

Staphylococci is a Gram-positive cocci that mediates large number of human infections including skin, soft tissue and wound infections, deep seated infections, gastrointestinal infections, urinary infections (UTIs), and others²⁶. Staphylococci is mainly classified into coagulase-positive Staphylococci (CoPS) which includes S. aureus and the coagulase-negative Staphylococci (CoNS) which includes S. epidermidis, S. haemolyticus, and other species^{27,28}. Carriers of S. aureus mainly through anterior nares are common and play essential role in transmission of infections ²⁸. Resistance of Staphylococci has been documented to all antibiotics commonly used, including more recent findings of resistance to glycopeptides, linezolid, and daptomycin, and is a major concern²⁶. The WHO considers the development of new drugs

for **MRSA** and Vancomycin-resistant Staphylococcus aureus (VRSA) as a "high priority"²⁹. Methicillin resistance in *S. aureus* is mediated Staphylococcal by chromosomal mec (SCCmec) which carries the and includes multiple mecAgene Staphylococcal protein A (Spa) subtypes³⁰, while vancomycin resistance is mediated by vanA, vanB, and other van genes^{28,31}.

S. aureus was isolated from the environment in Jordan, including in the air at six Hospitals³², the hands and mobile phones of university students^{33,34}, the hands of food handlers³⁵, waterpipe drain hoses³⁶, the storage cases of contact lenses³⁴, and the organic and inorganic archaeological objects in Jordanian museums³⁷. Similarly, S. aureus was isolated from different foods in Jordan, including traditional dairy products and milk 38-40, different types of meat⁴¹⁻⁴⁵, imported fish⁴⁶, cheddar cheese ⁴⁷, and table eggs⁴⁸. Furthermore, S. aureus was isolated from animals in Jordan, including dogs⁴⁹, camels ^{40,42,50}, slaughtered goats⁵¹, dairy cows with mastitis⁵²⁻⁵⁴, bovine^{55,56}, dairy cattle's^{57,58}, Awassi sheep⁵⁹⁻⁶², and heifers⁶³. It was also isolated from pneumonic sheep lung⁶⁴, camels' cutaneous abscesses 65, and the lung abscesses ⁶⁶and arthritic joints of calves⁶⁷, and it was associated with neonatal mortality in lambs and kids of sheep and goats, respectively $(Table 1)^{68}$.

S. aureus was isolated from multiple clinical samples in Jordan including blood, wounds, abscesses, skin, ears, urine, stool, the upper respiratory tract (URT), eyes, and others⁶⁹⁻⁷⁸. It was the main cause of health care-associated bloodstream infections⁷⁹, wound infection⁸⁰⁻⁸², surgical site infections^{83,84}, intensive care infections⁸⁵, otitis media⁸⁶, ocular bacterial infections⁸⁷, lower respiratory tract infections⁸⁸, bacteremia⁸⁹⁻⁹¹, neonatal septicemia^{92,93}and

septic arthritis⁹⁴. S. aureus was among the most common isolates in infected burns^{95,96}, bacteremia in cancer patients with febrile neutropenia⁹⁷, cancer patient infections in general⁹⁸, biliary tract infections⁹⁹, and nosocomial infections 100. It was a rare isolate in UTIs¹⁰¹⁻¹⁰⁷, otitis externa¹⁰⁸⁻¹¹⁰, and ventilator associated pneumonia (VAP)111. Few cases of S. aureus infections were reported in Jordan in the following illnesses: neonatal meningitis¹¹², recurrent meningitis in children¹¹³, nosocomial neonatal septic arthritis¹¹⁴, endocarditis¹¹⁵, bilateral primary psoas abscesses¹¹⁶, orbital abscess with acute ethmoiditis 117, primary pyomyositis^{118,119}, intramedullary spinal cord abscess¹²⁰, persistent bacteraemia¹²¹, sinusitis cellulitis¹²², tufted with orbital hair folliculitis¹²³, combat-related traumatic chronic osteomyelitis¹²⁴, and autoimmune hepatitis and transverse myelitis presented with persistent bacteremia (Table 1)¹²⁵.

Multiple studies have investigated prevalence of nasal colonization with MRSA among different populations and age groups in Jordan. Adults' colonization rates were 4.3%³¹, 7.5% ³⁰, 19% ⁷⁰, 22.7% ⁸¹, and 24.6% ⁷⁷. Children's colonization rates were 7.1% 126 and 7.2% 31, and infants' rate was 7.9% 127. MRSA colonization rates among health care workers and medical students were $2.4\%^{128}$, $5.8\%^{129}$, $8.7\%^{130}$ and $10.1\%^{31}$. Colonization among adult hospitalized patients was 6.4%²⁸. Furthermore, MRSA was detected in 5.3% of stool samples from infants¹²⁷, 40% of nasal and stool samples in general¹³⁰, and 5.7% on the skin of healthy volunteers30. All MRSA nasal isolates from Jordan were mecA-positive ^{28,31,70,128}, mostly were SCCmec type IV30,31,126,127, and Spa types t223, t9519, and t044 were the most common^{30,31,126,130}. Panton-Valentine leukocidin (PVL) was prevalent in nasal isolates at 0% 126, 0.9%³⁰, 5.4%³¹, 15%¹³⁰, and 28%¹²⁷. A large proportion of nasal isolates was resistant to ampicillin and benzylpenicillin while all isolates were sensitive to vancomycin (Table 1)^{28,30,31,70,127,128}.

Isolates from clinical samples in Jordan have higher rates of MRSA, including 8.8%⁶⁹, 31.6%⁷⁶, 49.5%⁷², 56%¹⁴, 57%⁷⁰, 62%⁷¹, 67.3% and of hospital-acquired (HA) infections⁷⁷, 68% ⁷⁴ and 73.2% ⁷⁸, and were all mediated by the *mecA* gene^{31,70,71,77,78}. MRSA clinical isolates in Jordan possessed the SCCmec type III or IV^{73,131}, with Spa type t932 and t044 being the most common^{73,74,131}. MRSA clinical isolates had 76.7% inducible resistance to macrolide-lincosamide-streptogramin B (iMLSB), 4.7% macrolide-steptogramin Bresistant phenotype (MSB), and 18.6% constitutive MLSB mediated by ErmA, ermB and ermC genes⁷⁷. MRSA isolates from clinical samples were resistant to penicillin $(94.6\%)^{76}$ erythromycin (61, 77, 78.2 and 100%)^{70,73,76,77}. clindamycin (79 to 100%)^{70,74}, chloramphenicol (98%), and levofloxacin (85%)⁷⁴, moderately resistant to streptomycin, kanamycin, and fusidic acid (36%)⁷³, while only 2.6% were mupirocin resistant mostly mediated by mupA gene⁷¹. While no most studies reported resistance to vancomycin^{70,76,78,132}, single case of erythrodermic psoriasis developed persistent bacteraemia due to vancomycin-intermediate Staphylococcus aureus (VISA)121, one case of bacteremia in cancer patients was intermediate to vancomycin⁹⁷, and 5 cases out of 139 (3.6%) from Zarqa governorate were VRSA 133. Overall, 25% of S. aureus isolates were MDR and 67% were extensively drug-resistant (XDR)⁷⁴. S. aureus resistance to linezolid, daptomycin, fifth generation cephalosporins, and other new antibiotics was not investigated in Jordan.

Clinical isolates exhibited a high prevalence of virulence genes, toxin genes, and adhesion genes^{78,134}. Isolates contained at least 4 toxin

genes, and 60% of them contained 12-13 genes⁷⁸. Seventy-eight percent had the PVL gene, 84% carried the exfoliative toxin gene, 19 to 26% had the Toxic Shock Syndrome Toxin gene^{73,81}, and 23 to 39% had enterotoxin genes^{135,136}.

CoPS, including 88.57% *S. aureus*, 6.8% *S. intermedius*, and 4.57% *S. hyicus*, were isolated from humans (26% nose, 16% nail, and 73% clinical), and animals (6.25% nose, 17.1% meat, and 8% milk). Five isolates were resistant to vancomycin, including two isolates from humans and three isolates from animal meat. The MDR rate was higher in clinical samples and animal meat and milk ⁷⁵.

CoNS are common commensals on the skin and mucous membranes and can cause a wide variety of opportunistic and nosocomial infections¹³⁷. CoNS have been isolated from bovine samples and samples from sheep with mastitis⁵⁶⁻⁶³, the hands and mobile phones of university students³³, air samples^{138,139} and health care workers' uniforms in ICUs¹⁴⁰. The most common CoNS species isolated from clinical samples in Jordan were S. epidermidis and S. haemolyticus¹⁴¹, and these were isolated from neonates with septicaemia^{92,93,142-144}, nosocomial septic arthritis patients¹¹⁴, cancer patients with bacteremia and neutropenia^{97,145}, patients with bloodstream infections^{132,141}, patients with nosocomial infections 100, patients with UTIs 102,104,106,107,146-148, patients with otitis externa¹¹⁰, children with bacterial infections following autologous hematopiotic stem cell transplantation¹⁴⁹, patients with surgical site infections following coronary artery bypass graft surgery¹⁵⁰, and patients with endocarditis¹¹⁵.

Methicillin-resistant-CoNS (MR-CoNS) carriage was 54.2% (nose 48.5% and skin 12.3%) in a healthy Jordanian population with *S.*

epidermidis SCCmec type IVa predominating³⁰. MR-CoNS isolates were susceptible tetracycline gentamicin (97.4%),(90.8%),norfloxacin (84.9%), and clindamycin (79.6%), while 52.6% were resistant to erythromycin, and 7.2% had inducible clindamycin resistance³⁰. Nasal colonization by CoNS among hospitalized patients was 14.8%, mostly by S. haemolyticus and S. sciuri with 73.3% of MR-CoNS harboring the mecA gene. Isolates were highly resistant to benzylpenicillin, erythromycin, fosfomycin, and imipenem, but they were all sensitive to vancomycin and were negative for the vanA and vanB genes²⁷. Multi-drug resistant nasal CoNS were higher in non-cephalosporin plant workers compared to the cephalosporin plant workers $(Table 1)^{151}$.

Among CoNS clinical isolates, MR-CoNS rate was 31% ¹³², high resistance was reported for ampicillin, penicillin, ceftriaxone, cefazolin, gentamicin, cefepime, amoxicillin-clavulanic acid, and erythromycin ^{132,141,143}, while very low or no resistance was reported for imipenem, rifampin, nitrofurantin, mupirocin, linezolid, teicoplanin, and vancomycin ^{71,132,141,143}. Antibiotic resistance genes, including *mecA* and *van* genes, have not been investigated in clinical infections with CoNS in Jordan.

Streptococcus

Streptococcus is a Gram-positive coccus belongs to the family Streptococcaceae and classified based on capsular carbohydrate structure and ability to induce hemolysis of blood agar. It causes many infections including pharyngitis, infections, meningitis, eye endocarditis, dental caries, and pneumonia. Antibiotic resistance in Streptococci has increased in recent years including resistance to penicillin, beta-lactam cephalosporins, macrolides, and fluoroquinolones¹⁵².

Streptococcus spp was isolated from animals with mastitis in Jordan including bovine and ovine animals^{55,56,153}, camels^{40,50}, dairy cattle ^{57,58}, dairy cows⁵², Awassi sheep⁵⁹⁻⁶¹, and heifers⁶³. Furthermore, it was isolated from pneumonic sheep lung⁶⁴ and camels' samples from cutaneous abscesses⁶⁵, lung diseases ^{66,154,155}, nasal cavity¹⁵⁴, liver abscesses^{154,155}, and arthritic joints (Table 1)⁶⁷.

Streptococcus spp was also isolated from table eggs⁴⁸, hot springs ¹⁵⁶, the dominant hand and mobile phones of University students³³, university student's mobile phones, contact lens storage cases, and conjunctiva of contact lenses users³⁴, and nurses and health care workers uniforms in intensive care units (ICU)¹⁴⁰ in Jordan.

Streptococci was a common cause of otitis media in children⁸⁶, bacterial infections in children after transplantation of autologus hematopiotic stem cell¹⁴⁹, infections in adults with cancer⁹⁸, and endocarditis patients¹¹⁵. It was a rare causative agent of bacteremia in children^{89,91}, UTI ^{102,105,147}, young Jordanians¹⁵⁷, proptosis in poststreptococcal glomerulonephritis and rheumatic fever¹⁵⁸. Group D Streptococcus (S. bovis) was isolated from surgical site infections⁸³, group B, C, and G were isolated from pharyngitis¹⁵⁹, S. oralis was isolated from health care associated blood stream infections⁷⁹, S. fecalis was isolated from neonatal septicemia⁹³, and S. milleri was isolated from UTI 146. β-hemolytic Streptococcus was isolated from otitis externa¹⁰⁸, and UTI¹⁰¹, while α-hemolytic Streptococcus was isolated from neonatal sepsis¹⁴³ and community acquired UTI (Table 1)¹⁶⁰.

S. pneumoniae is an asymptomatic colonizer of the nasopharynx of healthy individuals¹⁶¹. Colonization was variable ranging from 14% to 55% according to location and age of the studied population in Jordan; including 55.1%

of children aged 1 to 50 months in Amman¹⁶², 14.0% in Amman and 41.2% in Madaba in children 2 to 144 months¹⁶³, 29.0% in Irbid and 37.4% in Madaba in children 2–4 years¹⁶⁴, 33.8 to 37.8% in children under 5 years of age in north Jordan^{161,165}, and 19.5% in children from and pediatric clinics kindergartens Amman¹⁶⁶. High resistance rates of S. pneumoniae nasopharyngeal isolates were documented in Jordanian studies for penicillin (52% to 91.8%), erythromycin (46.7% to 61.5%), clarithromycin (54.7% to 81.3%), oxacillin (64.4% and 90.6%), trimethoprimsulfamethoxazole (54.7% to 100%), and tetracycline (32.3% and 53.8%). Low resistance rates were noted for clindamycin (19.5% and 33.8%), cefotaxime (0% and 29.2%), ceftriaxone (2.3%), chloramphenicole (0% and 6.2%), and ciprofloxacin (6.2%). susceptibility was noted for vancomycin (100%), levofloxacin, amoxicillin (100%), and telithromycin (100%)^{161,162,164,166}. High rates of macrolide resistance, clindamycin resistance, and macrolide licosamide-streptogramin B (MLS_B) resistance were also documented in nasopharyngeal isolates 161,162,164,166. Macrolide resistance was mediated by erm(B), mef(A), and mef(E) genes^{161,162,166}, and was associated with 19F, 6B, and 23F serotypes 161,162,166. Multidrugresistance rates of nasopharyngeal isolates were 34.4% to 43.8% in Amman, 54.4% to 68.9% in Madaba, and 78.9% in Irbid (Table 1) 162-164,166.

S. pneumoniae was the causative agent for a wide variety of life-threatening infections in Jordan including pneumonia, meningitis, and bacteremia^{25,89,90,113,167-170}. S. pneumoniae was most frequently isolated from eye specimens (21.0%), bloodstream infection samples (16.7%), and sputum samples (14.6%) with invasive isolates accounting for 23.6% of all isolates²⁵. In addition, S. pneumoniae was a leading cause of

otitis media¹⁷¹, sinusitis, bronchitis¹⁶², ocular bacterial infections⁸⁷, and lower respiratory tract infections^{88,172}. It was occasionally involved in health care associated blood stream infections⁷⁹ and neonatal septicemia⁹³. Susceptibility test results from 1298 invasive isolates of S. pneumoniae from blood and spinal fluid cultures showed dual non-susceptibility to penicillin and erythromycin in excess of 5% in laboratories from Algeria, Tunisia, Lebanon, Jordan, and Turkey¹⁵. Clinical isolates of S. pneumoniae observed from 1982 to 1999 in Jordan University Hospital (JUH) showed an increase in resistance rates to all antimicrobials tested, except for vancomycin¹⁷³. Similarly, S. pneumoniae isolated from 22.4% outpatient children with otitis media in north Jordan showed a significant decline susceptibility to tobramycin¹⁷¹. MDR was 8.6% among pneumococcal isolates from JUH with an increased prevalence of non-susceptibility to erythromycin, clindamycin and levofloxacin over the study period of 19 years²⁵. The susceptibility of Streptococcus organisms was more than 50% amoxicillin-clavulanic acid, ampicillin, cefaclor, cefixime, cephalothin, cotrimoxazole, ciprofloxacin, cefotaxime, gentamicin, piperacillin, erythromycin, lincomycin, tobramycin, and vancomycin^{25,171,173}, while low susceptibility rates were observed to penicillin (43%-62%)¹⁷³. Resistance to vancomycin reported in one study was unexpected¹⁷¹because other studies reported 100% susceptibility to vancomycin^{25,173}. Antibiotic resistance genes relevant to S. pneumoniae were not investigated in Jordan (Table 1).

Group A streptococcus (GAS) (*S. pyogenes*) was a common colonizer of the nasopharynx¹⁷⁴, the most common cause of URT infections¹⁷²and pharyngitis^{159,174}, and a rare isolate from surgical site infections⁸³ and UTI¹⁰⁷. It was highly resistant to penicillin

(87.9%), and ampicillin (65.7%), moderately resistant to erythromycin (40%), and rarely resistant to cefuroxime (7.4%), vancomycin (9.1%), gentamycin (11.4%), cotrimoxazole (13.5%), and ciprofloxacin (14.5%)¹⁷².

Group B streptococcus (GBS) (S. agalactia) can normally colonize the vagina and cause infections in both the mother and the fetus including chorioamnionitis, neonatal septicemia, meningitis and osteomyelitis 92,94,112,144. Vaginalrectal swabs from women who presented for labor and delivery at Al-Bashir Hospital showed that 19.5% were positive for GBS with serotype group III being the most common¹⁷⁵, while about 30.4% had positive vaginal and rectal colonization during late pregnancy¹⁷⁶. GBS was associated with UTI^{102,106,177} and surgical site infections^{83,150}. 33% of multi-drug resistant serious bacterial infections in the first 90 days of life in King Abdullah University Hospital (KAUH) were caused by Gram-positive bacteria with GBS being the most common¹⁷⁸. There are reports emerging in the MENA region of increasing erythromycin and clindamycin resistance in GBS (Table 1)¹⁷⁵.

Viridans group streptococci (VGS) commonly colonize the oral cavity, cause dental caries, and are an opportunistic pathogen leading to subacute infective endocarditis and bacteremia¹⁷⁹⁻¹⁸¹. Eighty-one out of 146 oral swaps from patients attending periodontal clinic at JUH had VGS including S. mitis (27%), S. mutans (13.6%) and S. salivarius (12.3%). Twenty-three of the VGS isolates were erythromycin-resistant, harbored erythromycin resistance genes, and 32% were positive for endocarditis antigen (efaA)¹⁸⁰. VGS was associated with sinusitis with orbital cellulitis¹²², neonatal sepsis^{92,142}, otitis externa infections¹¹⁰, and febrile neutropenia (in a single case in a pediatric cancer patient)¹⁴⁵, and infective endocarditis in two cases¹¹⁵. Vancomycinresistant Streptococcus thoraltensis was isolated from the nasal cavity of a healthy young adult university student in Jordan¹⁸² and was isolated from an abdominal wall abscess in a young female. The sample from the young female showed resistance to ampicillin, oxacillin and gentamycin (Table 1)¹⁸³.

Enterococcus

Enterococci are a common commensal organism of human intestine and increasingly become a major nosocomial pathogen¹⁸⁴. The emergence of vancomycinresistant Enterococci (VRE) is of major concern due to limited treatment options and the possibility of transmission to other species including Staphylococci¹⁰⁰. Multiple studies have documented the wide spread of Enterococci in Jordan. Entrococcus faecalis was isolated form hands, conjunctiva, and mobile phones of Jordanian students^{33,34}, airborne in healthcare setting¹³⁸, oral rinse specimens from dental diseases¹⁸⁵, and were detected in traditional drinks¹⁸⁶, raw cow milk³⁸, commercial chickpea dip¹⁸⁷, and turmus (ready-to-eat lupin seeds)¹⁸⁸ consumed in Jordan. Enterococcus was isolated from dairy cows and Awassi sheep with mastitis (Table 1)52,57,58,61

Enterococcus colonized the intestinal tract of 72% of non-hospitalized infants and 28% of hospitalized infants and was resistant to ampicillin (6.5%, 30%), chloramphenicol (20%, 25.8%), and leveofloxacin (9.7%, 30%) for *E. faecalis* and *E. faecium*, respectively, while susceptible to vancomycin, teicoplanin, and linezolid¹⁸⁹. Enterococci were isolated form different clinical samples¹², bacteremia in children⁸⁹, bloodstream infections^{79,132}, chemotherapy-induced febrile neutropenia with positive blood cultures⁹⁷, bacterial infections in the first 90 days of life¹⁷⁸, skin and soft tissue

infections from ICU patients⁸⁵, wound infections⁸², bile infections⁹⁹, and nosocomial infections¹⁰⁰. It was rarely isolated from UTIs^{101,102,104,106,107,146-148,160,177,190-193}, dental diseases,¹⁸⁵, sinusitis and orbital cellulitis¹²², combat-related traumatic chronic osteomyelitis¹²⁴, and autologous hematopoietic stem cell transplantation in children¹⁴⁹. *E. faecalis* was the most frequent isolate followed by *E. faecium*^{100,189}.

Antibiotic susceptibility pattern of Enterococci showed 0% resistance chloramphenicol, amoxicillin-clavulanic, and teicoplanin, 0-4% to vancomycin, 1% nitrofurantoin, 7.6% to penicillin-G, 0-15% to ampicillin, 17.7% to leveofloxacin, 0-28.6% to ciprofloxacin, 37.5% to erythromycin, 52.17% to streptomycin, 59.2-100 % to gentamicin, 70.1-77.17% to tetracycline, 78.5% to imipenem, 100% trimethoprim/sulfamethoxazole, cefazolin, oxacillin 12,97,100,102,185,193 clindamycin and Molecular studies showed that all VRE strains were harboring vanA gene¹⁰⁰, while all E. faecalis isolates from patients with dental diseases had collagen binding protein (ace) and endocarditis antigen (efaA) genes¹⁸⁵. Intestinal colonization with Enterococci among children, adults or patients, recent data regarding VRE rates among colonization or infection samples, and occurrence of vanB and other van genes were not investigated in Jordan.

Clostridium

Clostridium difficile is an anaerobic, Grampositive, spore-forming toxigenic bacterium, which causes infectious colitis¹⁹⁴. This bacterium might also be carried asymptomatically in the gut, potentially leading to 'silent' transmission¹⁹⁵. Major virulence factors are toxin A and toxin B carried through *tcdA* and *tcdB* genes, respectively, and binary

toxin carried through *cdtA* and *cdtB* genes and detected predominately in more virulent strains like ribotype 027 (RT027)^{194,195}. Resistance against antimicrobials used for *C. difficile* therapy such as metronidazole, vancomycin, fidaxomicin, fluoroquinolones and macrolides have been reported at variable rates worldwide¹⁹⁶.

The prevalence of toxin-positive *C. difficile* in stool samples was 14.63/1000 in discharged patients, 12.65% of patients, and 5.0/1000 patient-hospital day ¹⁹⁷, 9.7% to 13.7% in adult hospitalized patients' stool ^{198,199}, and colonized the gut of 12.9% of Jordanian paediatric patients ²⁰⁰. *C. difficile* isolates had moderate resistance to fluoroquinolones, low resistance to macrolides, and no or very low resistance to metronidazole and vancomycin. *GyrA* and /or *gyrB* was detected in about 40% of isolates ^{199,200}. *C. difficile* isolates had 54 to 73% *tcdA* and/or *tcdB* toxin genes, one isolate had the binary toxin gene, while no ribotyping studies were reported in Jordan (Table 1) ^{199,200}.

Clostridium perfringens isolates reported from broiler chicken flocks and sheep flocks^{201,202}, lambs and kids in sheep and goat farms⁶⁸, slaughterhouse goat carcasses and liver abscesses⁵¹, and liver abscesses of Awassi sheep in Jordan²⁰³. C. perfringens intestinal colonization rate among Jordanian infants was 27.2%, predominantly of genotype A, with resistance rates of 20% to metronidazole and erythromycin, 16.7% to levofloxacin, and 6.7% vancomycin²⁰⁴. Enterotoxigenic perfringens was isolated from 2% of acute diarrhea patients reporting to hospitals and health centers in northern Jordan²⁰⁵ and burn wound infections⁹⁶.

Clostridial infections were reported in goats with pneumonia⁵¹ and increased neonatal mortality in small ruminants²⁰⁶. *C. colinum* was

isolated from broiler flocks with digestive disease²⁰⁷. Also, *C. tetani* causing tetanus following a burn injury was reported in an 18-month-old girl ²⁰⁸. Also, both *C. tetani* and *C. septicum* were isolated from burn wound infections⁹⁶. No studies on *Clostridium botulinum* were reported in Jordan.

Listeria

Listeria species are small rod-shaped Grampositive bacteria that include 17 recognized species of them. *Listeria monocytogenes* is the most common. Listeria causes food poisoning, meningoencephalitis, abortion, and septicemia. Although antibiotic resistance in Listeria species remains low, multidrug-resistant strains have been documented in food, animal, and human isolates²⁰⁹.

L. monocytogenes was isolated from different food sources in Jordan including 1.5%, 2.7%, 5.3%, 17.1%, 18.2%, and 21.9% of Ready-to-Eat (RTE), raw, and processed chicken and beef²¹⁰⁻²¹⁴, 31.5% in fish²¹⁵, 7.5%, 11.5% and 45% in raw and bulk tank milk²¹⁶⁻²¹⁸, 4% to 35% in cheese^{47,217,219}, 40% in dry voghurt²¹⁷, and one isolated from egg shell surface⁴⁸. Other Listeria species including L. welshimeri, Listeria ivanovi, L. grayi, and L. innocua were also isolated from RTE meat and chicken products, raw and processed meat dairy products²¹⁰products, milk and ^{214,216,217,219}. L. monocytogenes was isolated from 7 archaeological objects in a Jordanian museum³⁷. L. monocytogenes was prevalent in 7.1% of anorectal mucosal swabs and fecal samples from imported beef cattle in Jordan^{220,221}. The farm-level prevalence of L. monocytogenes among dairy cattle farms in Jordan was 27.9% (Table 1) 218,221 .

Multidrug resistance was exhibited by 96.9% of L. monocytogenes isolates form dairy cattle farms²¹⁸, 57% of isolates from RTE meat products²¹², 73.1% isolates from fish²¹⁵, and 100% of isolates from beef cattle²²⁰. More than 50% of L. monocytogenes isolates from food or animals were resistant to ampicillin, clindamycin, penicillin, erythromycin, quinupristin-dalfopristin, streptomycin, teicoplanin, linezolid, vancomycin, kanamycin, fosfomycin, oxacillin, fusidic acid, neomycin, and tetracycline^{215,218,219}. While more than 90 % of the L. monocytogenes isolates from beef cattle and fish resisted fosfomycin, oxacillin, ampicillin, penicillin and erythromycin, and more than 75% resisted vancomycin^{215,220}. In contrary. L. monocytogenes isolates from raw and processed meat products had low resistance (<10%) to ampicillin, gentamicin, vancomycin, tetracycline, kanamycin, and erythromycin²¹³. Despite the high of multidrug occurrence resistant-L. monocytogenes in food and animal studies, the prevalence and antibiotic susceptibility of L. monocytogenes from clinical isolates were not reported in Jordan.

Causes of increased antibiotics resistance in Jordan and future perspective

Antibiotic misuse, overuse, and improper use, purchasing antibiotics without medical prescriptions, inadequate community knowledge and malpractice^{222,223-227}, improper use of antibiotics in the food industry¹⁶, and improper use with animals^{222,228} all lead to high rates of antibiotics resistance in Jordan. Jordan had the highest reported rate of self-medication with antibiotics among the Euro-Mediterranean region²²⁹.

A high percentage of MDR bacterial colonization exists within hospitals and the community^{33,128,222}. There is a lack of proper phenotypic and molecular diagnostic testing according to guidelines, especially for colistin and vancomycin, where disc diffusion testing is still used^{222,230}. There is a lack of effective surveillance

systems^{16,17,230}. Poor implementation of infection control guidelines²³¹, treatment guidelines²³², regulation to restrict antibiotic access²³³, and antibiotic stewardship programme^{17,234} are all factors in these problems.

Data on antibiotic resistance in the Middle East region are generally scarce with few studies performing genotyping analysis. According to WHO, none of the eastern Mediterranean region countries had national plans or progress reports concerning antimicrobial resistance for the last 5 years, and only 38% of these countries performed surveillance of bacterial resistance 16. In the Mediterranean area, limited data are available on current overall epidemiology of MDR bacteria in livestock, companion, and domestic animals 235. Nationwide studies on antimicrobial resistance are very limited.

Future efforts should focus on establishing national surveillance; plans, and research studies on antibiotic resistance; improving diagnostic capacity for antibiotic resistance; implementing infection control guidelines, treatment guidelines, antibiotic prescription regulations, and antibiotic stewardship programmes; and continuous education health care of providers and community²²⁷.

Conclusions

Gram-positive isolates were reported from

the environment, food, animals, birds, and Jordan. Staphylococci humans in Streptococci are common causes of human colonization and infections in Jordan, yet most studies are from a single center on limited numbers. Phenotypic antibiotic susceptibility studies of Gram-positive bacteria showed resistance increased rates to most antimicrobials with limited data available for GBS, VGS. *C*. perfringens and L. monocytogenes. Furthermore, resistance genes among CoNS, S. pneumoniae, S. pyogenes, S. agalactia, C. perfringens, L. monocytogenes, and others were not investigated. Resistance to vancomycin among Gram-positive bacteria in Jordan is limited. Molecular epidemiology studies, a nationwide surveillance program, and the development of an action plan are necessary to fight antibiotic resistance.

Acknowledgments

We would like to thank the Deanship of Scientific Research, Hashemite University, Jordan for their continuous support.

Funding

Not applicable.

Conflict of interest statement

The authors declare no conflicts of interest.

Table 1: Summary of environmental, food, animal/birds, human colonization and infections, and antibiotic resistance studies on Gram-positive bacteria in Jordan. CoNS: Coagulase-negative staphylococci, GAS: group A Streptococcus, GRS: group B Streptococcus, VGS: viridans group streptococci

	Environment	GBS: grou	Animal/	Human		Antibiotic Resistance	
			bird	Colonization	Infection	Phenotype	Genotype
S. aureus	Airborne of Hospitals ³² Mobile phones ³³ Storage cases of contact lenses ³⁴ Organic and inorganic Archaeological objects in Jordanian museum ³⁷ Waterpipe device hoses ³⁶	Traditional dairy products and milk ³⁹⁻⁴⁰ Different types of meat ⁴¹⁻⁴⁵ Imported fish ⁴⁶ Cheddar cheese ⁴⁷ Table eggs ⁴⁸	Dogs ⁴⁹ Camel's ^{40,50,6} 5-67 Cows ⁵² 53,54 Bovine 55,56 Cattles 57,58 Sheep 59- 62,64,68 Goats 51,68 Heifers 63	MRSA nose Adults: 4.3% ³¹ (7.5% ³⁰ , 19% ⁷⁰ , 22.7% ⁸¹ , 24.6% ⁷⁷ . Children's: 7.1% ¹²⁶ , 7.2% ³¹ Infants: 7.9% ¹²⁷ Healthcare workers: 10.1% ³¹ , 5.8% ^{69,129} Medical students 2.4% ¹²⁸ Adult hospitalized patients 6.4% ²⁷ . MRSA stool Infants: 5.3% ¹²⁷ MRSA skin healthy volunteers: 5.7% ³⁰ Others Hands of food handlers ³⁵ Hands and mobile phones of university students 33,34	Mixed clinical samples ⁶⁹⁻⁷⁸ Health careassociated bloodstream infections ⁷⁹ (Wound infections ⁷⁹ (Wound infections ⁸⁰⁻⁸² Surgical site infections ^{83,34} Intensive care infections ⁸⁵ Otitis media ⁸⁶ Ocular bacterial infections ⁸⁷ Lower respiratory tract infections ⁸⁸ Bacteremia ⁸⁹⁻⁹¹ Neonatal septicaemia and septic arthritis ⁹²⁻⁹⁴ Infected burn ^{95,96} . Bacteremia and other infections in cancer patient ^{97,98} Bile infections ⁹⁹ Nosocomial infections ¹⁰⁰ UTIs ¹⁰¹⁻¹⁰⁷ Ventilator associated pneumonia (VAP) ¹¹¹ Otitis externa ¹⁰⁸⁻¹¹⁰ Case studies or few cases ¹¹²⁻¹²⁵ .	MRSA 8.8% ⁶⁹ , 31.6% ⁷⁶ , 49.5% ⁷² , 56% ¹⁴ , 57% ⁷⁰ , 62% ⁷¹ , 67.3% ⁷⁷ , 68% ⁷⁴ , 73.2% ⁷⁸ iMLSB 76.7%, MSB 4.7%, 18.6% cMLSB ⁷⁷ . High resistance: penicillin, erythromycin, clindamycin chloramphenicol, and levofloxacin ^{70,73,74,77} Moderate resistance: streptomycin, kanamycin, and fusidic acid ⁷³ , Low/no resistance: mupirocin and vancomycin ^{70,71,77,78,97,121,132,133}	Genotype mecA gene ^{27,31,70,71,77,77} , 1,128 ermA, ermB and ermC genes ⁷⁷ mupA gene ⁷¹ .
CoNS	Airborn 138,139 Mobile phones of university students 33 Health care workers' uniforms in ICUs 140	NA	Bovine, heifers, cattle and sheep mastitis ⁵⁶⁻⁶³	MR-CoNS nose Healthy: 48.5% ³⁰ Hospitalized patients: 73.3% ²⁷ MR-CoNS skin Healthy 12.3% ³⁰	Neonatal septicaemia 92/93,142-144 Nosocomial septic arthritis ¹¹⁴ Bacteremia in cancer patient with febrile neutropenia ^{97,145} Blood stream 132,141 Nosocomial infections ¹⁰⁰ UTIs ^{102,104,106,107,14} 6-148 Otitis externa ¹¹⁰ Bacterial infections in children following transplantation of autologus hematopiotic stem cell ¹⁴⁹ Surgical site infection ¹⁵⁰ Endocarditis ¹¹⁵ .	MR-CoNS 31% ¹³² Highly resistance: ampicillin, penicillin, ceftriaxone, cefazolin, gentamicin, ciprofloxacin,cefepime, amoxicillin-clavulanic acid, and erythromycin ^{132,141,143} Low/no resistance: imipenem, rifampin, nitrofurantin, mupirocin, linozolid, teicoplanin, and vancomycin ^{132,141,143}	NA

	Environment	Food	Animal/ bird	Human		Antibiotic Resistance	
S. pneumonia e	Environment Dominant hand and mobile phone ³³ .	NA	Animai/ bird	Colonization Nasopharyngeal Colonization 55.1% 162, 14.0- 41.2% 163, 29.0% and 37.4% 164, 33.8161, 37.8% 165, 19.5% 166	Infection Mixed clinical samples ²⁵ Pneumonia, meningitis and bacteremia ^{25,89,90,113,167-170} Otitis media ¹⁷¹ Sinusitis, bronchitis ¹⁶² Ocular bacterial infections ⁸⁷ Lower respiratory tract infections ^{88,172} Health care associated blood	Antibiotic Resist Phenotype >50% susceptibility to Amoxicillin-clavulanic acid, ampicillin, cefaclor, cefixime, cephalothin, cotrimoxazol, ciprofloxacin, cefotaxime, gentamicin, piperacillin, erythromycin, lincomycin, and tobramycin ^{25,171,173} Vancomycin (susceptibility about 100%) ^{25,171,173} Penicillin susceptibility (43%-62%) ¹⁷³ Dual non-susceptibility to penicillin and	Stance Genotype NA
GAS	Student's university mobile phones, contact lenses storage cases, and conjunctiva of contact lenses users ³⁴	NA	NA	Nasopharynx colonization ¹⁷⁴	stream infections ⁷⁹ Neonatal septicemia ⁹³ Upper respiratory tract infections ¹⁷² Pharyngitis ^{159,174} Surgical site infections ⁸³ UTI ¹⁰⁷	Highly resistant to: penicillin (87.9%), and ampicillin (65.7%) ¹⁷² Moderately resistant to: erythromycin (40%) ¹⁷² Rarely resistant to: cefuroxime (7.4%), vancomycin (9.1%), gentamycin (11.4%), cotimoxazole (13.5%), and	NA
GBS	NA	NA	Awassi sheep ^{59,61} Bovine and ovine ¹⁵³ Dairy cattle ^{57,58} Dairy cows ⁵² Camels ⁴⁰	Vaginal colonization ^{94,175}	Chorioamnioniti s, neonatal septicemia, meningitis and osteomyelitis 92,94,112,144 UTI 102,106,177 Surgical site infections 83,150 Serious bacterial infections in the first 90 days of life 178	ciprofloxacin (14.5%) ¹⁷² NA	NA
VGS	Nurses and health care workers uniform in intensive care unite ¹⁴⁰	NA	Camels ¹⁵⁴ 155	Oral cavity colonization ¹⁷⁹	Subacute infective endocarditis and bacteremia ^{115,181} Sinusitis with orbital cellulitis ¹²² Neonatal sepsis ^{92,142} Otitis externa infections ¹¹⁰ Febrile neutropenia in pediatric cancer patients ¹⁴⁵	NA	NA

	Environment	Food	Animal/ bird	Human		Antibiotic Resistance	
				Colonization	Infection	Phenotype	Genotype
Enterococc us	Mobile phones of Jordanian students ^{33,34} Airborne in healthcare setting ¹³⁸	Traditional drinks ¹⁸⁶ Raw cow milk ³⁸ Commercial chickpea Dip ¹⁸⁷ Turmus (ready-to- eat lupin seeds) ¹⁸⁸	Dairy cows and Awassi sheep with mastitis 52.57.58 .61	Hands and conjunctiva of Jordanian students ^{33,34} Oral rinse specimens from dental diseases ¹⁸⁵ Intestinal colonization ¹⁸⁹	Mixed clinical samples 12 Bacteremia 79,89,97,132 Bacterial infections in the first 90 days of life 178 Skin and soft tissue infections 85 Wound infection 82 Bile infections 99 Nosocomial infections 100 UTIs 101,102,104,106,107,146 -148,160,177,190-193 Dental diseases 185 Sinusitis and orbital cellulitis 122 Combat-related traumatic chronic osteomyelitis 115 Autologous hematopoietic stem cell transplantation in children 149	High resistance: streptomycin, tetracyclin, cefazolin, trimethoprim/sulfamethoxa zole 100,102,193 Moderate resistance: penicilin-G, gentamicin 100,102,193 Low/no resistance: ampicillin, chloramphenicol, leveofloxacin, ampicillin amoxicillin-clavulanic, ciprofloxacin, gentamicin, nitrofurantoin, tetracycline, vancomycin, teicoplanin 12,97,100,185	vanA gene ¹⁰⁰
C. difficile	NA	NA	NA	Colonized the gut of paediatric patients ²⁰⁰	Hospitalized patient with diarrhea ¹⁹⁷⁻¹⁹⁹	Moderate resistance: ciprofloxacin levofloxacin ¹⁹⁹ Low/no resistance: metronidazole vancomycin	gyrA and gyrE genes ¹⁹⁹
C. perfringen s	NA	NA	Broiler chicken and sheep ^{201,202} Lambs and kids in sheep and goat farms ⁶⁸ Slaughterhou se goats with carcasses and liver abscesses ⁵¹ Liver abscesses of Awassi sheep ²⁰³	Intestinal colonization in infants ²⁰⁴	Acute diarrhea ²⁰⁵ Burn wound infection ⁹⁶	NA	NA
L. monocytog enes	Archaeological objects in Jordanian museum ³⁷	Ready-to- Eat, raw, and processed chicken and beef ²¹⁰⁻²¹⁴ Fish ²¹⁵ Raw and bulk tank milk ²¹⁶⁻²¹⁸ Cheese ^{47,217,219} Dry yoghurt ²¹⁷ Egg shell surface ⁴⁸	Beef cattle ^{220,221} Dairy cattle ^{218,221}	NA	NA	NA	NA

References

- Strachan CR, Davies J. The whys and wherefores of antibiotic resistance. Cold Spring Harb Perspect Med. 2017;7:a025171.
- Lobanovska M, Pilla G. Focus: drug development: penicillin's discovery and antibiotic resistance: lessons for the future?. Yale J Biol Med. 2017;90:135.
- Perry J, Waglechner N, Wright G. The prehistory of antibiotic resistance. Cold Spring Harb Perspect Med. 2016;6:a025197.
- 4. Frieri M, Kumar K, Boutin A. Antibiotic resistance. J Infect Public Health. 2017;10:369-378.
- WHO. 2014. Available at http://apps.who.int/iris/bitstream/10665/112642/1/ 9789241564748_eng.pdf?ua=1
- WHO. 2019. Available at https://www.who.int/antimicrobialresistance/interagency-coordinationgroup/IACG_final_report_EN.pdf?ua=1.
- 7. Balsalobre LC, Dropa M, Matté MH. An overview of antimicrobial resistance and its public health significance. Braz J Microbiol. 2014;45:1-6.
- Carlet J, Pulcini C, Piddock LJ. Antibiotic resistance: a geopolitical issue. Clin Microbiol Infect. 2014;20:949-53.
- Gandra S, Barter D, Laxminarayan R. Economic burden of antibiotic resistance: how much do we really know?. Clin Microbiol Infect. 2014;20:973-80.
- Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health. 2015;109:309-18.
- 11. Roca I, Akova M, Baquero F, Carlet J, Cavaleri M, Coenen S, Cohen J, Findlay D, Gyssens I, Heuer OE, Kahlmeter G, Kruse H, Laxminarayan R, Liébana E, López-Cerero L, MacGowan A, Martins M, Rodríguez-Baño J, Rolain JM, Segovia C, Sigauque B, Tacconelli E, Wellington E, Vila J. The global threat of antimicrobial resistance: science for intervention. New Microbes New

- Infect. 2015;6:22-29.
- 12. Borg M, Scicluna E, De Kraker M, Van De Sande-Bruinsma N, Tiemersma E, Gür D, Ben Redjeb S, Rasslan O, Elnassar Z, Benbachir M, Pieridou Bagatzouni D, Rahal K, Daoud Z, Grundmann H, Monen J. Antibiotic resistance in the southeastern Mediterranean–preliminary results from the ARMed project. EuroSurveill. 2006;11: 164:167.
- 13. Borg M, Van De Sande-Bruinsma N, Scicluna E, De Kraker M, Tiemersma E, Monen J, Grundmann H; Armed Project Members And Collaborators. Antimicrobial resistance in invasive strains of Escherichia coli from southern and eastern Mediterranean laboratories. Clin Microbiol Infect. 2008;14:789-796.
- 14. Borg MA, De Kraker M, Scicluna E, van de Sande-Bruinsma N, Tiemersma E, Monen J, Grundmann H; Armed Project Members And Collaborators. Prevalence of methicillin-resistant Staphylococcus aureus (MRSA) in invasive isolates from southern and eastern Mediterranean countries. J Antimicrob Chemother. 2007;60:1310-1315.
- 15. Borg M, Tiemersma E, Scicluna E, Van De Sande-Bruinsma N, De Kraker M, Monen J, Grundmann H; Armed Project Members And Collaborators. Prevalence of penicillin and erythromycin resistance among invasive Streptococcus pneumoniae isolates reported by laboratories in the southern and eastern Mediterranean region. Clin Microbiol Infect. 2009;15:232-237.
- 16. El Moujaber G, Osman M, Rafei R, Dabboussi F, Hamze M. Molecular mechanisms and epidemiology of resistance in Streptococcus pneumoniae in the Middle East region. J Med Microbiol. 2017;66:847-58.
- Tokajian S. New epidemiology of Staphylococcus aureus infections in the Middle East. Clin Microbiol Infect. 2014;20:624-628.
- 18. Abbara A, Rawson TM, Karah N, El-Amin W, Hatcher J, Tajaldin B, Dar O, Dewachi O, Abu Sitta

- G, Uhlin BE, Sparrow A. A summary and appraisal of existing evidence of antimicrobial resistance in the Syrian conflict. Int J Infect Dis. 2018;75:26-33.
- Erdem H, Pahsa A. Antibiotic resistance in pathogenic Streptococcus pneumoniae isolates in Turkey. J Chemother. 2005;17:25-30.
- 20. Akhter J, Frayha H, Qadri S. Current status and changing trends of antimicrobial resistance in Saudi Arabia. J Med Liban. 2000;48:227-232.
- 21. Yezli S, Shibl AM, Livermore DM, Memish ZA. Antimicrobial resistance among Gram-positive pathogens in Saudi Arabia. J Chemother. 2012;24:125-136.
- Yezli S, Memish ZA. Tuberculosis in Saudi Arabia: prevalence and antimicrobial resistance. J Chemother. 2012;24:1-5.
- Abdallah M, Al-Saafin M. Overview of prevalence, characteristics, risk factors, resistance, and virulence of vancomycin-resistant enterococci in Saudi Arabia. Microb Drug Resist. 2019;25:350-358.
- 24. Memish Z, Osoba A, Shibl A, Mokaddas E, Venkatesh S, Rotimi V. Emergence and trends of penicillin non-susceptible Streptococcus pneumoniae in Saudi Arabia and Kuwaitperspective and outstanding issues. J Chemother. 2007;19:471-481.
- 25. Sallam M, Abbadi J, Natsheh A, Ababneh NA, Mahafzah A, Özkaya Şahin G. Trends in Antimicrobial Drug Resistance of Streptococcus pneumoniae Isolates at Jordan University Hospital (2000–2018). Antibiotics. 2019;8:41.
- Foster TJ. Antibiotic resistance in Staphylococcus aureus. Current status and future prospects. FEMS Microbiol Rev. 2017;41:430-449.
- 27. Al-Tamimi M, Abu-Raideh J, Himsawi N, Khasawneh A, Hawamdeh H. Methicillin and vancomycin resistance in coagulase-negative Staphylococci isolated from the nostrils of hospitalized patients. J Infect Dev Ctries. 2020;14:28-35.
- 28. Al-Tamimi M, Himsawi N, Abu-Raideh J,

- Khasawneh AI, Jazar DA, Al-Jawaldeh H, Hawamdeh H. Phenotypic and molecular screening of nasal S. aureus from adult hospitalized patients for methicillin-and vancomycin-resistance. Infect Disord Drug Targets. 2020. doi: 10.2174/1871526520666200109143158.
- 29. WHO. Antibacterial Agents in Clinical Development: an Analysis of the Antibacterial Clinical Development Pipeline, Including Tuberculosis. World Health Organization, Geneva, Switzerland. 2017.
- Al-Bakri A, Al-Hadithi H, Kasabri V, Othman G, Kriegeskorte A, Becker K. The epidemiology and molecular characterization of methicillin-resistant staphylococci sampled from a healthy Jordanian population. Epidemiol Infect. 2013;141:2384-2391.
- Aqel AA, Alzoubi HM, Vickers A, Pichon B, Kearns AM. Molecular epidemiology of nasal isolates of methicillin-resistant Staphylococcus aureus from Jordan. J Infect Public Health. 2015;8:90-97.
- 32. Saadoun I, Al Tayyar IA, Elnasser Z, Ababneh Q. Frequency of MecA gene and Susceptibility Pattern in Airborne Methicillin Resistant Staphylococcus aureus Isolated from Different Hospitals in North of Jordan. Sebha Medical Journal. 2013;12:65-72.
- 33. Al Momani W, Khatatbeh M, Altaany Z. Antibiotic susceptibility of bacterial pathogens recovered from the hand and mobile phones of university students. GERMS. 2019;9:9-16.
- 34. Waleed A, Lua'i A, Wisam S, Sana J. Antimicrobial susceptibility of bacterial isolates from the conjunctiva, storage cases and mobile phones of university students using contact lenses. Cont Lens Anterior Eye. 2019;10:139.
- Alrabadi N. Bacterial Contamination of the Hands of Food Handlers: Evidence from Jordanian Diary Industries. Int.J.Curr.Microbiol.App.Sci. 2017;6:1078-1084.
- 36. Masadeh MM, Hussein EI, Alzoubi KH, Khabour O, Shakhatreh MAK, Gharaibeh M. Identification,

- characterization and antibiotic resistance of bacterial isolates obtained from waterpipe device hoses. Int J Environ Res Public Health. 2015;12:5108-5115.
- 37. Elserogy A, Kanan G, Hussein E, Abd Khreis S. Isolation, characterisation and treatment of microbial agents responsible for the deterioration of archeological objects in three Jordanian museums. Mediterranean Archaeol Archaeomet. 2015;16:117-126.
- 38. Al-Tarazi Y, Al-Zamil A, Shaltout F, Abdel-Samei H. Sanitary status of raw cow milk marketed in northern Jordan. Assiut Vet Med J. 2003;49:180-194.
- 39. AL-Tahiri R. A comparison on microbial conditions between traditional dairy products sold in Karak and same products produced by modern dairies. Pak J Nutr. 2005;4:345-348.
- 40. Al-Majali AM, Ismail ZB, Al-Hami Y, Nour AY. Lactoferrin concentration in milk from camels (Camelus dromedarius) with and without subclinical mastitis. Intern J Appl Res Vet Med. 2007;5:120.
- 41. Al-Tarazi YH, Albetar MA, Alaboudi AR. Biotyping and enterotoxigenicity of Staphylococci isolated from fresh and frozen meat marketed in Jordan. Food Res Int. 2009;42:374-379.
- 42. Alaboudi AR, Jaradat ZW, Shatnawi MM. Biotypes and enterotoxigenicity of staphylococci isolated from camel's meat in Jordan. Brit Microbiol Res J. 2012;2:23.
- 43. Jaradat Z, Aboudi AA, Shatnawi M, Ababneh Q. Staphylococcus aureus isolates from camels differ in coagulase production, genotype and methicillin resistance gene profiles. J Microbiol Biotechnol Food Sci.2013;2:2455-2461.
- 44. Jaradat ZW, Tarazi YH, Ababneh QO. Molecular characterization of Staphylococcus aureus isolated from meat and their antibiotic resistance profiles. Pak Vet J. 2014;34:58-62.
- 45. Nimri L, AL-Dahab FA, Batchoun R. Foodborne bacterial pathogens recovered from contaminated shawarma meat in northern Jordan. J Infect Dev

- Ctries. 2014;8:1407-1414.
- 46. Obaidat MM, BANI SALMAN AE, Lafi SQ. Prevalence of Staphylococcus aureus in imported fish and correlations between antibiotic resistance and enterotoxigenicity. J Food Prot. 2015;78:1999-2005.
- Al-Groom R. Extant of microbial contamination of cheddar cheese from markets and restaurants in Amman-Jordan. J Pure Appl Microbiol. 2017;11:1427-1433.
- 48. Al Momani W, Janakat S, Khatatbeh M. Bacterial contamination of table eggs sold in Jordanian markets. Pak J Nutr. 2018;17:15-20.
- 49. Tarazi YH, Almajali AM, Ababneh MMK, Ahmed HS, Jaran AS. Molecular study on methicillinresistant Staphylococcus aureus strains isolated from dogs and associated personnel in Jordan. Asian Pac J Trop Biomed. 2015;5:902-908.
- Hawari A, Hassawi D. Mastitis in one humped shecamels (Camelus dromedarius) in Jordan. J Biol Sci. 2008;8:958-961.
- 51. Al-Qudah KM, Al-Majali AM, Obaidat MM. A study on pathological and microbiological conditions in goats in slaughterhouses in Jordan. Asian J Anim Vet Adv. 2008;3:269-274.
- 52. Hawari AD, Al-Dabbas F. Prevalence and distribution of mastitis pathogens and their resistance against antimicrobial agents in dairy cows in Jordan. Am J Animal Vet Sci. 2008;3: 36–39.
- 53. Ismail ZAB, Dickinson C. Alterations in coagulation parameters in dairy cows affected with acute mastitis caused by E. coli and S. aureus pathogens. Vet Res Commun. 2010;34:533-539.
- 54. Ismail ZB. Molecular characteristics, antibiogram and prevalence of multi-drug resistant Staphylococcus aureus (MDRSA) isolated from milk obtained from culled dairy cows and from cows with acute clinical mastitis. Asian Pac J Trop Biomed. 2017;7:694-697.
- 55. Al-Tarazi YH, Chakiso AY, Lafi SQ. Prevalence and distribution of bovine mastitis pathogens and their antimicrobial resistance in primiparous dairy heifers in Northern Jordan. Jordan J Agric Sci.

- 2011;173:1-22.
- Alekish M, Al-Qudah K, Al-Saleh A. Prevalence of antimicrobial resistance among bacterial pathogens isolated from bovine mastitis in northern Jordan. Rev Med Vet. 2013;164:319-326.
- 57. Lafi S, Al-Rawashdeh O, Ereifej K, Hailat N. Incidence of clinical mastitis and prevalence of subclinical udder infections in Jordanian dairy cattle. Prev Vet Med. 1994;18(2):89-98.
- 58. Lafi S, Al-Rawashdeh O, Na'Was T, Hailat N. National cross-sectional study of mastitis in dairy cattle in Jordan. Trop Anim Health Prod. 1994;26:168-174.
- 59. Lafi S, Al-Majali A, Rousan M, Alawneh J. Epidemiological studies of clinical and subclinical ovine mastitis in Awassi sheep in northern Jordan. Prev Vet Med. 1998;33:171-181.
- Al-Majali AM, Jawabreh S. Period prevalence and etiology of subclinical mastitis in Awassi sheep in southern Jordan. Small Rumin Res. 2003;47:243-248.
- 61. Hawari A, Obeidat M, Awaisheh SS, Al-Daghistani H, Al-Abbadi A, Omar S,Qrunfleh I, Al-Dmoor H, and El-Qudah J. Prevalence of mastitis pathogens and their resistance against antimicrobial agents in Awassi sheep in Al-Balqa province of Jordan. Am J Anim Vet Sci. 2014;9:116-121.
- 62. Alekish MO, Alshehabat MA, Abutarbush SM. The prevalence and etiology of subclinical mastitis in Awassi sheep; emphasis on the relationship between the isolated organisms and the somatic cell count. Euro J Vet Med. 2014;8:1-13.
- 63. Alekish M. The association between the somatic cell count and isolated microorganisms during subclinical mastitis in heifers in Jordan. Vet Med (Praha). 2015;60:71-76.
- 64. El-Sukhon S. Virulence factors in bacterial isolates from pneumonic sheep lungs in Northern Jordan. Assiut. Vet. Med. J. 1995;33:102-109.
- 65. Tarazi YH, Al-Ani FK. An outbreak of dermatophilosis and caseous lymphadenitis mixed infection in camels (Camelus dromedaries) in Jordan. J Infect Dev Ctries. 2016;10(05):506-511.

- 66. Al-Tarazi Y. Bacteriological and pathological study on pneumonia in the one-humped camel (Camelus dromedarius) in Jordan. Revue Élev Méd Vét Pays Trop. 2001;54:93-97.
- 67. Bani Ismail Z, Al Rukibat R, Al Tarazi Y, Al Zghoul M. Synovial fluid analysis and bacterial findings in arthritic joints of juvenile male camel (Camelus dromedarius) calves. J Vet Med A. 2007;54:66-69.
- 68. Sharif L, Obeidat J, Al-Ani F. Risk factors for lamb and kid mortality in sheep and goat farms in Jordan. Bulgarian J. Vet. Med. 2005;8:99-108.
- 69. Na'was TE. Methicillin-resistant Staphylococcus aureus in clinical specimens at a north Jordan hospital. J Hosp Infect. 1993;25: 71-72
- 70. Al-Zu'bi E, Bdour S, Shehabi AA. Antibiotic resistance patterns of mecA-positive Staphylococcus aureus isolates from clinical specimens and nasal carriage. Microb Drug Resist. 2004;10:321-324.
- Aqel A, Ibrahim A, Shehabi A. Rare occurrence of mupirocin resistance among clinical Staphylococcus isolates in Jordan. Acta Microbiol Immunol Hung. 2012;59:239-247.
- 72. Saleh S, Basheti E, Aburuz S, Khoury M, Haddadin R. Comparing prevalence of methicillin-resistant Staphylococcus aureus (MRSA) over the years 2008 to 2010 at a local hospital in Amman, Jordan. Jord J Appl Sci. 2013;11:1-10.
- 73. Harastani HH, Tokajian ST. Community-associated methicillin-resistant Staphylococcus aureus clonal complex 80 type IV (CC80-MRSA-IV) isolated from the Middle East: a heterogeneous expanding clonal lineage. PLoS One. 2014;9:e103715.
- 74. Bazzoun DA, Harastani HH, Shehabi AA, Tokajian ST. Molecular typing of Staphylococcus aureus collected from a Major Hospital in Amman, Jordan. J Infect Dev Ctries. 2014;8:441-447.
- 75. Hasan AA, Hassawi DS, Al-Daghistani HI, Hawari AD. Molecular and biochemical identification of coagulase positive Staphylococcus species isolated

- from human and animal sources in Jordan. Int J Med Sci. 2014;47:1491-1507.
- 76. Al-Zoubi MS, Al-Tayyar IA, Hussein E, Al Jabali A, Khudairat S. Antimicrobial susceptibility pattern of Staphylococcus aureus isolated from clinical specimens in Northern area of Jordan. Iran J Microbiol. 2015;7:265-272...
- 77. Jarajreh Da, Aqel A, Alzoubi H, Al-Zereini W. Prevalence of inducible clindamycin resistance in methicillin-resistant Staphylococcus aureus: the first study in Jordan. J Infect Dev Ctries. 2017;11:350-354.
- 78. Jaradat ZW, Hamdan TA, Hayajneh W, Al Mousa W, Al Shehabi A. Antibiograms, toxin profiling and molecular typing of Staphylococcus aureus isolates from two tertiary hospitals in Jordan. J Infect Dev Ctries. 2017;11:876-886.
- Al-Rawajfah OM, Cheema J, Hweidi IM, Hewitt JB, Musallam E. Laboratory confirmed health careassociated bloodstream infections: a Jordanian study. J Infect Public Health. 2012;5:403-411.
- 80. Abussaud MJ, Meqdem MM. A study of some factors associated with wound infection. J Hosp Infect. 1986;8:300-304.
- 81. Daghistani HI, Issa AA, Shehabi AA. Frequency of nasal and wound isolates of Staphylococcus aureus associated with TSST-1 production in Jordanian population. FEMS Immunol Med Microbiol. 2000;27:95-98.
- 82. Kaplan N, Smadi A, Al Taani M, El Qudah M. Microbiology of wound infection after caesarean section in a Jordanian hospital. East Mediterr Health J. 2003;9:1068-1074.
- 83. Jalil MHA, Hammour KA, Alsous M, Awad W, Hadadden R, Bakri F, Fram K. Surgical site infections following caesarean operations at a Jordanian teaching hospital: frequency and implicated factors. Sci Rep. 2017;7:1-4.
- 84. Hweidi IM, Barbarawi MA, Tawalbeh LI, Alhassan MA, Al-Ibraheem SW. Surgical site infections after craniotomy: a matched health-care cost and length of stay study. J Wound Care.

- 2018;27:885-890.
- 85. Shehabi AA, Baadran L. Microbial infection and antibiotic resistance patterns among Jordanian intensive care patients. East Meditt Health J. 1996; 2:515-520.
- 86. Alshara M. Etiology and antimicrobial susceptibility pattern of otitis media in children at princess Rhamah hospital in Jordan. N Iraqi J Med. 2010;6:27-30.
- 87. Al-Shara M. Etiology and antibacterial susceptibility pattern of bacterial ocular infections in a children hospital in North Jordan (2005-2009). Biomed Pharmacol J. 2015;5:25-31.
- 88. Obeidat N, Bsisu I, Parvez F, Islam Z, Obeidat Z, Altous M, Obeidat N, Ababneh N, Wahbeh A, Farah R. Prevalence of Bacterial Lower Respiratory Tract Infections at a Tertiary Hospital in Jordan. Int Arabic J Antimicrob Agents. 2019;9.
- 89. Nimri L, Rawashdeh M, Meqdam M. Bacteremia in children: etiologic agents, focal sites, and risk factors. J Trop Pediatr. 2001;47:356-360.
- Nimri L, Batchoun R. Community-acquired bacteraemia in a rural area: predominant bacterial species and antibiotic resistance. J Med Microbiol. 2004;53:1045-1049.
- Mohammad A. Bacteremia among Jordanian children at Princess Rahmah Hospital: Pathogens and antimicrobial susceptibility patterns. Iran J Microbiol. 2010;2:22-26.
- 92. Almatti A. The Incidence And The Microbial Pattern Of Neonatal Sepsis In Jordan. Arch. Dis. Childh. 2014;99:A418.
- 93. Nazer H. Neonatal septicaemia at the Jordan University Hospital. J Trop Pediatr. 1981;27:199-204.
- 94. Khriesat W, Al-Zoubi S, Makhloof F, Altaa'ni D, Lataifeh I. Neonatal septic arthritis in the North of Jordan. J Pediatr Infect Dis. 2011;6:117-120.
- 95. Al-Akayleh A. Invasive burn wound infection. Ann Burns and Fire Disasters. 1999;12:204-206.
- 96. Karyoute S. Burn wound infection in 100 patients treated in the burn unit at Jordan University Hospital. Burns. 1989;15:117-119.

- 97. Al-Sweedan SA, Hyajneh W, Al-Ostath A. Patterns of bacteremia in cancer patient with febrile neutropenia at King Abdullah University Hospital-Jordan 2003--2008. J Pediatr Infect Dis. 2012;7:15-20.
- Awidi AS. Infections in adults with cancer in a developing country: a three year prospective study. Eur J Cancer. 1991;27:424-426.
- 99. Mahafzah AM, Daradkeh SS. Profile and predictors of bile infection in patients undergoing laparoscopic cholecystectomy. Saudi Med J. 2009;30:1044-1048.
- 100.Mahafzah AM, Abu-Khader IB, Bakri FG. Characterization of Enterococci Causing Nosocomial Infections at the Jordan University hospital over a five year period. J Med J. 2008;42:1-9.
- 101.Abu-Elteen K, Awadallah S, Elkarmi A. Antibiotic resistance of bacteria isolates from urine specimens in Amman. Jordan Med J. 2000;34:117-123.
- 102.ABU SETTEH MH. Uropathogens and their susceptibility patterns at King Hussein medical center-Jordan. Gülhane Tip Dergisi. 2004;46:10-14.
- 103.Al-Momani T. Microbiological study of urinary tract infection in children at Princess Haya Hospital in south of Jordan. Middle East J Family Med. 2006;3:2.
- 104.Khleifat KM, Abboud M, Omar S, Al-Kurishy J.
 Urinary tract infection in South Jordanian population. J Med Sci. 2006;6:5-11.
- 105.Alshara M. Uropathogens and their Susceptibility Patterns in Childrenat Princess Rhmah Hospital, Jordan. Jordan Med J. 2011;171:1-14.
- 106.Faris NS. Community-Acquired Urinary Tract Infection(etiology and bacterial susceptibility). J Biol Agric Healthc. 2013;3:36-41.
- 107.Al-Asoufi A, Khlaifat A, Tarawneh AA, Alsharafa K, Al-Limoun M, Khleifat K. Bacterial Quality of Urinary Tract Infections in Diabetic and Non Diabetics of the Population of Ma'an Province, Jordan. Pak J Biol Sci: PJBS. 2017;20:179-188.
- 108.Al-Asaaf SM, Farhan MJ. Otitis externa in a localized area at the South of Jordan, Saudi Med J.

- 2000;21:928-930.
- 109.Battikhi MN, Ammar SI. Otitis externa infection in Jordan. Clinical and microbiological features. Saudi Med J. 2004;25:1199-1203.
- 110.ALjaafreha LY, Tawalbeh M, Shehabi AA. Otitis External Infections Among Jordanian Patients with Emphasis on Pathogenic Characteristics of Isolates. Open Microbiol J. 2019;13:293-296.
- 111.Al Serhan A, Mashaleh M, Shobaki K, Shabaneh M. Prevalence of Ventilator Associated Pneumonia (VAP) in Critical Care Unit at Royal Medical Services, Amman, Jordan. Rawal Med J. 2014;39:243-245.
- 112.Daoud A, Al-Sheyyab M, Abu-Ekteish F, Obeidat A, Ali A, El-Shanti H. Neonatal meningitis in northern Jordan. J Trop Pediatr. 1996;42:267-270.
- 113.Masri A, Alassaf A, Khuri-Bulos N, Zaq I, Hadidy A, Bakri FG. Recurrent meningitis in children: etiologies, outcome, and lessons to learn. Childs Nerv Syst. 2018;34:1541-1547.
- 114. Abuekteish F, Daoud A, Mesmar M, Obeidat A. Nosocomial neonatal septic arthritis. Eur J Pediatr. 1996;155:102-105.
- 115.Wadi J, Hammoudeh A, Abashour W, Naser A, Murad M, El Sha'er S. Short Term Outcome of Medical Therapy in Community-Acquired Left-Sided Native Valve Infective Endocarditis. Rev Tunisienne d'Infectiologie. 2013;7:14-7.
- 116.Bakri FG, Hadidy AM, Hadidi F, Ryalat N, Saket L, Shurbasi N, and Melhem J. Bilateral primary psoas abscesses due to methicillin-resistant Staphylococcus aureus in a neutropenic patient: a case report. J Med Case Rep. 2016;10:1-4.
- 117.Al-Salem KM, Alsarayra FA, Somkawar AR. Neonatal orbital abscess. Indian J Ophthalmol. 2014;62:354-357.
- 118.Hassan FOA, Shannak A. Primary pyomyositis of the paraspinal muscles: a case report and literature review.Eur Spine J. 2008;17:239-242.
- 119.Al-Najar M, Obeidat F, Ajlouni J, Mithqal A, Hadidy A. Primary extensive pyomyositis in an immunocompetent patient: case report and literature

- review. Clin Rheumatol. 2010;29:1469-1472.
- 120.Al Barbarawi M, Khriesat W, Qudsieh S, Qudsieh H, Loai AA. Management of intramedullary spinal cord abscess: experience with four cases, pathophysiology and outcomes. Eur Spine J. 2009;18:710-117.
- 121.Bakri FG, Abu Al-Hommos N, Shehabi A, Naffa RG, Cui L, Hiramatsu K. Persistent bacteraemia due to methicillin-resistant Staphylococcus aureus with reduced susceptibility to vancomycin in a patient with erythrodermic psoriasis. Scand J Infect Dis. 2007;39:457-460.
- 122.Haddadin A, Saca E, Husban A. Sinusitis as a cause of orbital cellulitis. East Mediterr Health J. 1999;5:556-559.
- 123.Al-jawamis FM, Khalifeh L, Todd DJ. Tufted hair folliculitis in Jordanian patients. Int J Dermatol. 1996;35:280-281.
- 124. Wadi JA, Alastal Y, Tayyem H, Moh'd J A-H. Treatment of combat-related traumatic chronic osteomyelitis with tigecycline: a case series. Int Arab J Antimicrob Agents. 2013;3.
- 125.Al Ramahi JAW, Yacoub AF, Shanab LA. A Patient with autoimmune hepatitis and transverse myelitis presented with persistent Staphylococcus aureus bacteremia, the discrepancies in assessing susceptibility; VISA versus Non-VISA. Int Arab J Antimicrob Agents. 2015;5.
- 126.Alzoubi HM, Aqel AA, Al-Sarayreh SA, Al-Zayadneh E. Methicillin-resistant Staphylococcus aureus nasal carriage among primary school-aged children from Jordan: prevalence, antibiotic resistance and molecular characteristics. J Egypt Public Health Assoc. 2014;89:114-118.
- 127.Shehabi AA, Abu-Yousef R, Badran E, Al-Bakri AG, Abu-Qatouseh LF, Becker K. Major characteristics of S taphylococcus aureus colonizing J ordanian infants. Pediatr Int. 2013;55:300-304.
- 128.Al-Tamimi M, Himsawi N, Abu-Raideh J, Aljawaldeh H, Mahmoud SAH, Hijjawi N, Hawamdeh H. Nasal colonization by methicillin-

- sensitive and methicillin-resistant Staphylococcus aureus among medical students. J Infect Dev Ctries. 2018;12:326-335.
- 129.Na'Was T, Fakhoury J. Nasal carriage of methicillin-resistant Staphylococcus aureus by hospital staff in north Jordan. J Hosp Infect. 1991;17:223-229.
- 130.H Alzoubi H, Aqel A, Abu-Helalah M. Prevalence of Methicillin Resistant Staphylococcus aureus Nasal Carriage and its Antibiogram in Healthcare Workers from South of Jordan. Journal of High Institute of Public Health. 2013;43:1-12.
- 130.Khalil W, Hashwa F, Shihabi A, Tokajian S. Methicillin-resistant Staphylococcus aureus ST80-IV clone in children from Jordan. Diagn Microbiol Infect Dis. 2012;73:228-230.
- 131.Sabri I, Adwan K, Essawi TA, Farraj MA. Molecular characterization of methicillin-resistant Staphylococcus aureus isolates in three different Arab world countries. Eur J Microbiol Immunol (Bp). 2013;3:183-187.
- 132.Al-Qwasmeh S, Abu Ashor W, Wadi J. Prevalence and Antimicrobial Susceptibility Patterns of Bloodstream Isolates at Jordan Hospital Intensive Care Unit: Three years Experience. J. Royal Med. 2011; ;18:80-86.
- 133.Bataineh HA. Resistance of staphyiococcus aureus to vancomycin in Zarqa, Jordan. Pak J Med Sci. 2006:22:144-148.
- 134.Bawadi AM, Bdour S, Mahasneh A. Sap11/Sap12 and egc Associated Toxin Genes are Dominant in Slime Forming Clinical Staphylococcus Aureus Isolates Harboring icaABCD-Operon. Jordan J Biol Sc. 2009;2:97-102.
- 135.Naffa RG, Bdour SM, Migdadi HM, Shehabi AA. Enterotoxicity and genetic variation among clinical Staphylococcus aureus isolates in Jordan. J Med Microbiol. 2006;55:183-187.
- 136.El-Huneidi W, Bdour S, Mahasneh A. Detection of enterotoxin genes seg, seh, sei, and sej and of a novel aroA genotype in Jordanian clinical isolates of Staphylococcus aureus. Diagn Microbiol Infect

- Dis. 2006;56:127-132.
- 137.Becker K, Heilmann C, Peters G. Coagulasenegative staphylococci. Clin Microbiol Rev. 2014;27:870-926.
- 138.Qudiesat K, Abu-Elteen K, Elkarmi A, Hamad M, Abussaud M. Assessment of airborne pathogens in healthcare settings. Afr J Microbiol Res. 2009;3:66-76.
- 139.Saadoun I, Al Tayyar IA, Elnasser Z. Antibiotic Susceptibility and Concentration of Airborne Coagulase Negative Staphylococci (CoNS) in the Intensive Care Units (ICU) of Different Hospitals in Northern Jordan. Journal of Sebha University-(Pure and Applied Sciences). 2013;12:14-24.
- 140.Abu Radwan M, Ahmad M. The microorganisms on nurses' and health care workers' uniforms in the intensive care units. Clin Nurs Res. 2019;28:94-106.
- 141.Al Tayyar IA, Al-Zoubi MS, Hussein E, Khudairat S, Sarosiekf K. Prevalence and antimicrobial susceptibility pattern of coagulase-negative staphylococci (CoNS) isolated from clinical specimens in Northern of Jordan. Iran J Microbiol. 2015;7:294-301.
- 142.Al Dasoky HA, Al Awaysheh FN, Kaplan NM, Al Rimawi HA, Agha R, Abu-Setteh M. Risk factors of neonatal sepsis in tertiary hospital in Jordan. JRMS. 2009;16:16-19.
- 143. Younis NS. Neonatal Sepsis in Jordan: Bacterial Isolates and Antibiotic SusceptibilityPatterns.Rawal Med J. 2011;36:169-72.
- 144.Yusef D, Shalakhti T, Awad S, Algharaibeh Ha, Khasawneh W. Clinical characteristics and epidemiology of sepsis in the neonatal intensive care unit in the era of multi-drug resistant organisms: a retrospective review. Pediatr Neonatol. 2018;59:35-41.
- 145.Al Omar S, Nazer L, Alkayed K. A prospective study of febrile neutropenia in pediatric cancer patients in Jordan. J Pediatr Hematol Oncol. 2013;35:614-617.
- 146.Al-Fraijat B, Al-Tawarah NM, Khlaifat AM, Qaralleh H, Khleifat KM, Al-Zereini W, Al-

- Limoun MO. Urinary tract infection and non-ruptured acute appendicitis association: Uropathogens findings. Tropical Biomedicine. 2019;36:620-629.
- 147.Yusuf M, Utum M. Female Urinary Tract infections in Northern Jordan. Abhath Al-Yarmouk, Basic Science and Engineering. 1997;6:57-66.
- 148.Hirmas N, Mubarak S, Sultan I. Patterns of microbial growth in urine cultures in a pediatric hematology/oncology unit over a one-year period: a single institution study. Int J Pediatr Adolesc Med. 2017;4:95-99.
- 149.Hussein AA, Al-Antary ET, Najjar R, Al-Zaben A, Frangoul H. Incidence and risk factors of bacterial infections in children following autologous hematopoietic stem cell transplantation: Singlecenter experience from Jordan. Pediatr Transplant. 2016;20:683-686.
- 150.Al Zaru IM, AbuAlRub R, Musallam EA. Economical and clinical impact of surgical site infection following coronary artery bypass graft surgery in north Jordan. Int J Nurs Pract. 2011;17:117-125.
- 151.Haddadin RN, Saleh SA, Ayyash MA, Collier PJ. Occupational exposure of pharmaceutical workers to drug actives and excipients and their effect on Staphylococcus spp. nasal carriage and antibiotic resistance. Int J Occup Environ Health. 2013;19:207-214.
- 152.Haenni M, Lupo A, Madec JY. Antimicrobial Resistance in Streptococcus spp. Antimicrobial Microbiol Spectr. 2018:159-84.
- 153.Lafi SQ, Hailat NQ. Bovine and ovine mastitis in Dhuleil valley of Jordan. Veterinarski Arhiv. 1998;68:51-57.
- 154.Al-Ani F, Sharrif L, Al-Rawashdeh O, Al-Qudah K, Al-Hammi Y, editors. Camel diseases in Jordan. Proceedings of the Third Annual Meeting for Animal Production Under Arid Conditions. 1998:2:77-92.
- 155.Al-Rawashdeh OF, Al-Ani FK, Sharrif LA, Al-

- Qudah KM, Al-Hami Y, Frank N. A survey of camel (Camelus dromedarius) diseases in Jordan. J Zoo Wildl Med. 2000;31:335-8.
- 156.Khalil AB, Anfoka GH, Bdour S. Isolation of plasmids present in thermophilic strains from hot springs in Jordan. World J Microb Biot. 2003;19:239-241.
- 157.Al-Salem M, Obedat H, Maayaaeh A, Haboob H, Al-Khyel AA. Aetiology and management of proptosis in young Jordanians. Ann Trop Paediatr. 1996;16:161-167.
- 158.Akasheh M, al-Lozi M, Affarah H, Hajjiri F, al-Jitawi S. Rapidly progressive glomerulonephritis complicating acute rheumatic fever. Postgrad Med J. 1995;71:553-4.
- 159.Shehabi AA, Al-Samarrae S, Nazer H. Diagnostic value of a single Streptozyme test for screening streptococcal sore throat infection. Serodiagn Immunother Infect Dis. 1988;2:411-414.
- 160.Farah N, Murshidi M. Urinary tract infections in adult and adolescent females of a developing community: pattern, bacteriology and genitourinary predisposing factors. Int Urol Nephrol. 1996;28:319-325.
- 161.Swedan S, Hayajneh W, Bshara G. Genotyping and serotyping of macrolide and multidrug resistant Streptococcus pneumoniae isolated from carrier children. Indian J Med Microbiol. 2016;34:159-165.
- 162.Al-Lahham A, van der Linden M. Streptococcus pneumoniae carriage, resistance and serotypes among Jordanian children from Wadi Al Seer District, Jordan. Int Arab J Antimicrob Agent. 2015;4(2).
- 163.Al-Lahham A, Khanfar N. Resistance of Streptococcus pneumoniae in Jordanian pediatric carriers, 2015-2016. Int J Infect Dis. 2016;53:36.
- 164.Al-Lahham A. Carriage of Streptococcus pneumoniae in ages 2–4 years in the winter season of 2017-2018 in the local cities of Jordan. Int J Infect Dis. 2019;79:45-46.
- 165.Masaadeh A, Hayajneh W, Al Azzam I, Alkhatib

- A. Prevalence of Streptococcus pneumoniae Serotypes (Nasopharyngeal Colonization) in Children in North Jordan: Genotypic and Phenotypic Characteristics. Res J Biol Sci. 2016;11:23-33.
- 166.Al-Kayali R, Khyami-Horani H, van der Linden M, Al-Lahham A. Antibiotic resistance patterns and risk factors of Streptococcus pneumoniae carriage among healthy Jordanian children. Eur Int J Sci Technol. 2016;5:55-76.
- 167.Daoud A, Abuekteish F, Obeidat A, El-Nassir Z, Al-Rimawi H. The changing face of neonatal septicaemia. Ann Trop Paediatr. 1995;15:93-96.
- 168.Al-Ali MK, Batchoun RG, Al-Nour TM. Etiology of community-acquired pneumonia in hospitalized patients in Jordan. Saudi Med J. 2006;27:813-816.
- 169.Marji S. Bacterial meningitis in children. Rawal Med J. 2007;32:109-111.
- 170.Al-Tawfiq JA, Al-Ali MK. Etiology of community-acquired pneumonia in hospitalized patients in Jordan. Saudi Med J. 2007;28:307
- 171.Al-Shara M. A five-year review on the etiology and antimicrobial susceptibility pattern of otitis media pathogens in Jordanian children. Oman Med J. 2012;27:358-363.
- 172.Faris NS. Respiratory tract bacterial infection etiological agents and susceptibility testing. Euro Sci J. 2014:10.
- 173.Mahafzah A, Shehabi A. Antimicrobial susceptibility among clinical isolates of Streptococcus pneumoniae at the Jordan University Hospital over an eighteen-year period. Jordan Med J. 2000;34:109-112.
- 174.Na'was T, Mawajdeh S. The role of day care givers in the identification and prevention of infections. Soc Sci Med. 1991;33:859-862.
- 175.Clouse K, Shehabi A, Suleimat AM, Faouri S, Khuri-Bulos N, Al Jammal A, Chappell J, Fortner KB, Chamby AB, and Randis TM. High prevalence of Group B Streptococcus colonization among pregnant women in Amman, Jordan. BMC pregnancy and childbirth. 2019;19:1-8.

- 176.Sunna E, el-Daher N, Bustami K, Na'was T. A study of group B streptococcal carrier state during late pregnancy. Trop Geogr Med. 1991;43:161-164.
- 177.Albaramki J, Al-lawama M, Jarra M, Alqaisi R, Jadallah R, Al-Mustafa A, Badran E, AKL K. Neonatal Urinary Tract Infection in a Tertiary Care Center in Amman, Jordan. Iranian Journal of Neonatology. 2020;11:17-23.
- 178.Yusef D, Jahmani T, Kailani S, Al-Rawi R, Khasawneh W, Almomani M. Community-acquired serious bacterial infections in the first 90 days of life: a revisit in the era of multi-drug-resistant organisms. World J Pediatr. 2019;15:580-585.
- 179.Rawashdeh R, Malkawi HI, Al-Hiyasat A, Hammad M. A fast and sensitive molecular detection of Streptococcus mutans and Actinomyces viscosus from dental plaques. Jordan J Biol Sci. 2008;1:135-139.
- 180. Abu-zineh R, Dar-Odeh N, Shehabi A. Macrolide resistance genes and virulence factors of common viridans Streptococci species colonizing oral cavities of patients in Jordan. Oral Health Dent Manag. 2015;14:337-341.
- 181.Swedan SF, Obeidat HM, Ali M, Shakhatreh K. Molecular Typing and Detection of Collagen Binding Genes among Streptococcus mutans Isolated from Diabetic and Non-diabetic Individuals in Northern Jordan. Jordan J Biol Sci. 2018;11:293-300.
- 182.Al-Tamimi M, Himsawi N, Abu-Raideh J, Abu Jazar D, Al-Jawaldeh H. Isolation of Fully Vancomycin-Resistant Streptococcus thoraltensis from the Nasal Cavity of a Healthy Young Adult. Microb Drug Resist. 2019;25:421-426.
- 183.Bustami N, Mismar A, Obeidat F. Isolation of Streptococcus thoraltensis from an Abdominal Wall Abscess in a Young Female: A Case Report. J Clin Case Rep. 2019;9:2.
- 184.O'Driscoll T, Crank CW. Vancomycin-resistant enterococcal infections: epidemiology, clinical manifestations, and optimal management. Infect Drug Resist. 2015;8:217-230.

- 185.Salah R, Dar-Odeh N, Hammad OA, Shehabi AA.

 Prevalence of putative virulence factors and antimicrobial susceptibility of Enterococcus faecalis isolates from patients with dental Diseases.

 BMC oral Health. 2008;8:1-7.
- 186.Nassereddin RA, Yamani MI. Microbiological quality of sous and tamarind, traditional drinks consumed in Jordan. J Food Prot. 2005;68:773-777.
- 187.Yamani MI, Al-Dababseh BA. Microbial quality of hoummos (chickpea dip) commercially produced in Jordan. J Food Prot. 1994;57:431-435.
- 188.Yamani MI, Abu Tayeh SJ, Salhab AS. Aspects of microbiological and chemical quality of turmus, lupin seeds debittered by soaking in water. J Food Prot. 1998;61:1480-1483.
- 189.Alnasra NA, Badran EF, Dajan N, Shehabi AA.
 Antimicrobial susceptibility and virulence factors of Enterococci colonizing intestinal tract of infants.
 Int Arab J Antimicrob Agents. 2016;6.
- 190.Murshidi MS, Farah NB. Urinary tract infections in adult and adolescent males of a developing community: pattern, bacteriology and genitourinary predisposing factors. Arch Esp Urol. 2002;55:288-293.
- 191.Nimri L. Community-acquired urinary tract infections in a rural area in Jordan: predominant uropathogens, and their antimicrobial resistance. Webmed Cnetral Microbiol. 2010;1:1-10
- 192.Khassawneh MY, Khriesat WM, Saqan RM, Hayajneh WA. Resistant bacteria cause urinary tract infection in graduates of neonatal unit. J Pediatr Infect Dis. 2013;8:87-91.
- 193.Haddad M. Antimicrobial resistance of uropathogens and rationale for empirical therapy in Jordan. Biomed Pharmacol J. 2014;7:01-8.
- 194.Burke KE, Lamont JT. Clostridium difficile infection: a worldwide disease. Gut liver. 2014;8:1-6.
- 195.Martin JS, Monaghan TM, Wilcox MH. Clostridium difficile infection: epidemiology, diagnosis and understanding transmission. Nat Rev Gastroenterol Hepatol. 2016;13:206-216.
- 196.Freeman J, Vernon J, Pilling S, Morris K,

- Nicholson S, Shearman S, Longshaw C, Wilcox MH. The ClosER study: results from a three-year pan-European longitudinal surveillance of antibiotic resistance among prevalent Clostridium difficile ribotypes, 2011–2014. Clin Microbiol Infect. 2018;24:724-731.
- 197.Wadi J, Ayesh AS, Shanab LA, Harara B, Petro H, Rumman A, Alaskar M, Maswadeh M, Tadbir M. Prevalence of Clostridium diffiile infections among hospitalized patients in Amman, Jordan: A Multi-Center Study. Int Arab J Antimicrob Agents. 2015;5:1-9.
- 198.Shehabi A, Abu Ragheb H, Allaham N. Prevalence of Clostridium difficile-associated diarrhoea among hospitalized Jordanian patients. East Mediterr Health J. 2001;7:750-755.
- 199.Nasereddin LM, Bakri FG, Shehabi AA. Clostridium difficile infections among Jordanian adult hospitalized patients. Am J Infect Control. 2009;37:864-866.
- 200.Abu-Khader EN, Badran EF, Shehabi AA. Epidemiological Features of Clostridium difficile Colonizing the Intestine of Jordanian Infants. Int J Microbiol. 2017;2017:2692360.
- 201. Younan M, Both H, Müller W. Frequency of Clostridium perfringens types in Jordanian sheep. Zent Bakteriol. 1994;281:240-7.
- 202.Gharaibeh S, Al Rifai R, Al-Majali A. Molecular typing and antimicrobial susceptibility of Clostridium perfringens from broiler chickens. Anaerobe. 2010;16:586-589.
- 203.Al-Qudah K, Al-Majali A. Bacteriologic studies of liver abscesses of Awassi sheep in Jordan. Small Ruminant Res. 2003;47:249-253.
- 204.Al Radaideh AJ, Badran EF, Shehabi AA. Diversity of toxin genotypes and antimicrobial susceptibility of Clostridium perfringens isolates from feces of infants. Germs. 2019;9:28.
- 205.Na'was TE, Abo-Shehada MN. A study of the bacterial and parasitic causes of acute diarrhoea in northern Jordan. J Diarrhoeal Dis Res. 1991:305-309.
- 206.Aldomy F, Abu Zeid N. Neonatal mortality of

- small ruminants in Jordan. Bulgarian J Vet Med. 2007;10:195-199.
- 207.Roussan D, Al Rifai R, Khawaldeh G, Totanji W. Flock-level prevalence of Clostridium colinum in broiler flocks with digestive disease in Jordan by polymerase chain reaction. Poult Sci. 2009;88:1639-1642.
- 208.Karyoute SM, Badran IZ. Tetanus following a burn injury. Burns. 1988;14:241-3.
- 209.Luque Sastre L, Arroyo C, Fox EM, McMahon BJ, Bai L, Li F, Fanning S. Antimicrobial resistance in Listeria species. Microbiol Spectr. 2018:6:237-259.
- 210.Awaisheh S. Incidence and contamination level of Listeria monocytogenes and other Listeria spp. in ready-to-eat meat products in Jordan. J Food Prot. 2010;73:535-540.
- 211.Osaili TM, Alaboudi AR, Nesiar EA. Prevalence of Listeria spp. and antibiotic susceptibility of Listeria monocytogenes isolated from raw chicken and ready-to-eat chicken products in Jordan. Food Control. 2011;22(3-4):586-590.
- 212.Osaili TM, Al-Nabulsi AA, Shaker RR, Jaradat ZW, Taha M, Al-Kherasha M,Meherat M, Holley R. Prevalence of Salmonella serovars, Listeria monocytogenes, and Escherichia coli O157: H7 in Mediterranean ready-to-eat meat products in Jordan. J Food Prot. 2014;77:106-111.
- 213.Al-Nabulsi AA, Osaili TM, Awad AA, Olaimat AN, Shaker RR, Holley RA. Occurrence and antibiotic susceptibility of Listeria monocytogenes isolated from raw and processed meat products in Amman, Jordan. Cyta J Food. 2015;13:346-352.
- 214.Awaisheh S. Survey of Listeria monocytogenes and other Listeria sp. contamination in different common ready-to-eat food products in Jordan. Pak J Biol Sci. 2009;12:1491.
- 215.Obaidat M, Bani Salman A, Lafi S, Al-Abboodi A. Characterization of L isteria monocytogenes from three countries and antibiotic resistance differences among countries and L isteria monocytogenes serogroups. LettApplMicrobiol. 2015;60:609-614.
- 216.Al-tahiri R, Omar S, Rewashdeh A. A study of the

- occurrence of Listeria species in raw sheep milk. Int J Dairy Technol. 2008;61:347-351.
- 217.Omar SS, Dababneh BF, Qatatsheh A, Abu-Romman S, Hawari AD, Aladaileh S. The incidence of Listeria species and other indicator bacteria in some traditional foods sold in Karak city, Jordan. J Food Agric Environ. 2011;9:79-81.
- 218.Obaidat MM, Stringer AP. Prevalence, molecular characterization, and antimicrobial resistance profiles of Listeria monocytogenes, Salmonella enterica, and Escherichia coli O157: H7 on dairy cattle farms in Jordan. J Dairy Sci. 2019;102:8710-8720.
- 219.Osaili TM, Al-Nabulsi AA, Taha MH, Al-Holy MA, Alaboudi AR, Al-Rousan WM, and ShakerRR.Occurrence and antimicrobial susceptibility of Listeria monocytogenes isolated from brined white cheese in Jordan. J Food Sci. 2012;77:M528-M32.
- 220.Obaidat MM. Prevalence and antimicrobial resistance of Listeria monocytogenes, Salmonella enterica and Escherichia coli O157: H7 in imported beef cattle in Jordan. Comp Immunol Microbiol Infect Dis. 2020;70:101447.
- 221.Obaidat MM, Kiryluk H, Rivera A, Stringer AP. Molecular serogrouping and virulence of Listeria monocytogenes from local dairy cattle farms and imported beef in Jordan. LWT. 2020:109419.
- 222.Dandachi I, Chaddad A, Hanna J, Matta J, Daoud Z. Understanding the Epidemiology of Multi-drug Resistant Gram-negative Bacilli in the Middle East Using a one Health Approach. Front Microbiol. 2019:10:1941.
- 223.Älgå A, Wong S, Shoaib M, Lundgren K, Giske CG, von Schreeb J, Malmstedt J. Infection with high proportion of multidrug-resistant bacteria in conflict-related injuries is associated with poor outcomes and excess resource consumption: a cohort study of Syrian patients treated in Jordan. BMC Infect Dis . 2018;18:233.
- 224.Shehadeh M, Suaifan G, Darwish RM, Wazaify M, Zaru L, Alja'fari S. Knowledge, attitudes and behavior regarding antibiotics use and misuse

- among adults in the community of Jordan. A pilot study. Saudi Pharm J. 2012;20:125-133.
- 225.Almaaytah A, Mukattash TL, Hajaj J. Dispensing of non-prescribed antibiotics in Jordan. Patient Prefer Adherence. 2015;9:1389-1395.
- 226.Al Baz M, Law MR, Saadeh R. Antibiotics use among Palestine refugees attending UNRWA primary health care centers in Jordan—A cross-sectional study. Travel Med Infect Dis. 2018;22:25-29.
- 227.Haddadin RN, Alsous M, Wazaify M, Tahaineh L. Evaluation of antibiotic dispensing practice in community pharmacies in Jordan: A cross sectional study. PloS one. 2019;14:e0216115.
- 228.Obaidat MM, Salman AEB, Roess AA. High prevalence and antimicrobial resistance of mecA Staphylococcus aureus in dairy cattle, sheep, and goat bulk tank milk in Jordan. Trop Anim Health Prod. 2018;50:405-412.
- 229.Scicluna EA, Borg MA, Gür D, Rasslan O, Taher I, Redjeb SB, Elnassar Z, Bagatzouni DP, Daoud Z.. Self-medication with antibiotics in the ambulatory care setting within the Euro-Mediterranean region; results from the ARMed project. J Infect Public Health. 2009;2:189-197.
- 230.Ahmed MM, Velayati AA, Mohammed SH. Epidemiology of multidrug-resistant, extensively drug resistant, and totally drug resistant tuberculosis in Middle East countries. Int J Mycobacteriol. 2016;5:249-256.
- 231.Alzoubi K, Ayoub N, Al-Sakaji S, Al-Azzam S, Mhaidat N, Masadeh M. Awareness of bacterial resistance among physicians, pharmacists and nurses. Int J Occup Med Environ Health. 2009;22:363-372
- 232.Khreesha L, Bacharouch A, Blackwood RA, Alkhoujah M, Issa MR. The use of practice guidelines in the management of pediatric cases of Acute Otitis Media in Amman, Jordan. Int J Pediatr Otorhinolaryngol. 2017;96:39-46.
- 233.Jarab AS, Mukattash TL, Nusairat B, Shawaqfeh M, Farha RA. Patterns of antibiotic use and administration in hospitalized patients in Jordan.

- Saudi Pharm J. 2018;26:764-770.
- 234.Nathwani D, Varghese D, Stephens J, Ansari W, Martin S, Charbonneau C. Value of hospital antimicrobial stewardship programs [ASPs]: a systematic review. Antimicrob Resist Infect Control. 2019;8:35.
- 235.Dandachi I, Chabou S, Daoud Z, Rolain J-M. Prevalence and emergence of extended-spectrum cephalosporin-, carbapenem-and colistin-resistant gram negative bacteria of animal origin in the Mediterranean basin. Front Microbiol. 2018;9:2299.

الالتهابات البكتيرية موجبة صبغة جرام ومقاومتها للمضادات الحيوية في الأردن

محمد التميمي 1 ، هديل البلوي 1 ، ولاء إسعيد 1 ، أحمد مسلم 1 ، فاطمه قزاز 1 ، محمد العزب 1 ، جمانة أبوريدة 1 ، نسرين هيمصاوي 1 ، جول فوجان 2

أقسم العلوم الطبية الأساسية، كلية الطب البشري، الجامعة الهاشمية، الزرقاء، الأردن 2 قسم الباطني، كلية الطب البشري، الجامعة الهاشمية، الزرقاء، الأردن

الملخص

خلفية البحث: مقاومة المضادات الحيوية تنتشر في كل أنحاء العالم بوتيرة متسارعة؛ إذ إنَّ دول الشرق الأوسط -بما فيها الأردن- تعانى من معدل انتشار عال لمقاومة المضادات الحيوية.

الأهداف: الأهداف الرئيسة من هذه المراجعة العلمية، هي تلخيص الوضع الحالي للالتهابات البكتيري موجبة صبغة جرام ومقاومتها للمضادات الحيوية في الأردن، تحديد نقاط الضعف التي تحتاج إلى مزيد من الدراسة، واقتراح استراتيجيات للتغلب على مقاومة المضادات الحيوي في على المستوى المحلى.

طريقة البحث: مراجعة الأبحاث العلمية بطريقة منهجية بواسطة باحثين مختلفين، وباستخدام مصطلحات عامة وخاصة في محركات البحث امباس، بب ميد، ويب أوف سينس، وجوجل سكولر.

النتائج: بكتيريا المكورات العنقودية والعقدية منتشرة في البيئة والحيوانات والإنسان، بينما البكتيريا العنقودية والمكورات المعدية، وبكتيريا الليستيريا منتشرة في الأطعمة؛ حيث إنّ المكورات العنقودية والعقدية والمعدية منتشرة لدى الإنسان بدرجات مختلفة ولكنها عالية، أمّا المكورات العنقودية الذهبية المقاومة الميثيسيلين، والمكورات العنقودية السلبية المُختَّرة المقاومة الميثيسيلين فهي منشره بكثرة في الأردن، بينما البكتيريا العقدية الرئوية لديها زيادة في مقاومة أغلب المضادات الحيوية، في حين أنّ بكتيريا المكورات المعوية والكوليستريديم لديها مقاومة متوسطة للمضادات الحيوية، ولا يوجد دراسات لمدى مقاومة المضادات الحيوية الدهبية المقاومة المفادة الدهبية المقاومة للمشيريا في الأردن، وجميع المكورات العنقودية الذهبية المقاومة للمشيسيلين والمكورات المعوية المقاومه للفانكوميسين تحتوي على جين مقاومة المضادات الحيوية(ميك إي) بينما لا يوجد دراسات عن جينات مقاومة المضادات الحيوية في الأنواع الأخرى من البكتيريا موجبة الصبغة في الأردن.

الاستنتاج: الالتهابات البكتيرية موجبة صبغة جرام والمقاومة للمضادات الحيوية منتشرة بكثره في الأردن، وهناك ضعف في الدراسات البيئية الجينية على المستوى الوطني، واستحداث برنامج مراقبة وطني، ووضع استراتيجية وطنية لمقاومة المضادات الحيوي أصبح ضرورة ملحة في الأردن.

الكلمات الدالة: الالتهابات، مقاومة المضادات الحيوية، الأردن، البكتيريا موجبة صبغة جرام، البكتيريا متعددة المقاومة للمضادات الحيوية.