### **Jordan Medical Journal**



### **ORIGINAL ARTICLE**

### Mineral Supplements' Prescribing Practices in Critically Ill Cancer Patients: A Study Investigating Physicians' Prescribing Practices and Roles of Nutrition Support Pharmacists at a Tertiary Cancer Center

Nadine N. Abdelhadi\*1, Alaa Dabbous2, Mariam Darwish2, Saad M Jaddoua2

<sup>2</sup> Department of Pharmacy, King Hussein Cancer Center. Amman, Jordan

\*Corresponding author:

Nadine abdelhadi@yahoo.com

Received: June 7, 2024

Accepted: August 26, 2024

DOI:

https://doi.org/10.35516/jmj.v59i3.2923

#### **Abstract**

**Objective:** This study aimed to explore physicians' prescribing practices and roles of nutrition support pharmacists in managing mineral deficiencies in critically ill cancer patients admitted to intensive care units (ICU) at a tertiary cancer center.

**Methods:** A retrospective analysis of 9949 electronic records of critically ill cancer patients admitted to the ICU from January 2020 to December 2022 was performed. All mineral supplement prescriptions by physicians and nutrition support pharmacists' interventions were recorded. Analysis was performed utilizing the Jamovi statistical package 2022

**Results:** The study population comprised pediatric patients and adult patients. Major minerals were most frequently prescribed in ICU cancer patients, followed by trace minerals. Potassium was the most prescribed mineral supplement, followed by Sodium, Calcium, and Magnesium. The least prescribed was Lithium. The most frequent intervention of pharmacists was initiating mineral supplement use, followed by discontinuing mineral supplement use. The acceptance rate of interventions by physicians was 88%.

Conclusion: Potassium was the most prescribed mineral supplement in critically ill cancer patients at a tertiary cancer center. Nutrition support pharmacists' interventions were highly accepted by physicians. The prevailing intervention was the initiation of mineral supplement use. Further studies are needed to explore the barriers to implementing nutrition support services in different healthcare settings.

Keywords: Clinical pharmacy, nutrition support pharmacy, minerals, critical care

<sup>&</sup>lt;sup>1</sup> Faculty of Pharmacy, Aqaba University of Technology, Aqaba 11191, Jordan

### INTRODUCTION

Clinical pharmacy is an area of pharmacy practice focused on the philosophy of pharmaceutical care [1]. It aims to optimize pharmacotherapy, improving patient outcomes [2]. The Board of Pharmacy Specialties (BPS) administers certifications in various specialties such as oncology, critical care, and nutrition support pharmacy [2].

Critical care clinical pharmacists are essential members of intensive care teams. They ensure the safe and efficacious use of medications in this vulnerable population [3-11]. Clinical pharmacists also provide nutrition support pharmacy services, including evaluating nutritional status and managing micro-nutrient deficiencies [12-20].

Clinical pharmacy services enhance patient outcomes and reduce healthcare-related expenditures [12-20]. They provide various services which lead to optimizing pharmacotherapy in intensive care units (ICU). Clinical pharmacists also provide nutrition support pharmacy services. These activities improve patients' quality of life, reduce mortality and morbidity, improve patient outcomes, and decrease treatment-related costs [12-20]. Timely nutritional therapy should be considered for cancer patients at risk of malnutrition [12-29].

Micronutrients are nutrients the body needs in minute amounts. However, deficiency in micronutrients can affect the body's overall health and can lead to severe and even life-threatening conditions [21,32].

Minerals and vitamins are the classes most community pharmacists recommend for complementary and alternative medicines [33,34]. Few studies explored the role of clinical pharmacists in managing mineral use in critical care settings [35].

A limited number of studies explore the role of nutrition support pharmacy services in the Middle East, and none were conducted in Jordan [36].

This study aimed to explore physicians' prescribing practices and roles of nutrition support pharmacists in managing mineral deficiencies in critically ill cancer patients admitted to intensive care units (ICU) at a tertiary cancer center in Jordan.

### **METHODS**

A retrospective analysis of electronically reported clinical pharmacist interventions for patients admitted to King Hussein Cancer Centre (KHCC) in Amman, Jordan, was conducted from January 2020 to December 2022. Electronic records of 9949 patients admitted to intensive care units were mineral supplement extracted. A11 prescriptions by physicians and nutrition support pharmacists interventions were recorded. This study was approved by the Ethics Committee (EC) / Institutional Review Board (IRB) at King Hussein Cancer Centre (KHCC) on 25 October 2021 with the approval number RC/2021/153. Enrolled participants were critically ill cancer patients admitted either to the adult or pediatric ICU services from January 2020 to December 2022. Patients' age groups were classified into two categories: the pediatric group for patients 18 years old or less and the adult group for patients older than 18. Descriptive statistics were utilized to evaluate the results in frequencies and percentages.

The Mann-Whitney U test was used to compare the means of the time taken by clinical pharmacists to intervene between the pediatric and adult ICU service groups. Analysis was performed using the Jamovi statistical package 2022 [30,31]. A p-value less than 0.05 was considered significant.

### **RESULTS**

The total number of interventions related to the management of minerals was 300. The study population comprised pediatric patients (n = 96, 32.0 %) and adult patients (n = 204, 68.0 %). Most of the study population were males (n = 151, 50.3 %) (Table 1).

| Table 1: | Charactei | ristics of | participants |
|----------|-----------|------------|--------------|
|----------|-----------|------------|--------------|

|             |        |               |     |        |       | Percentiles |             |             |  |
|-------------|--------|---------------|-----|--------|-------|-------------|-------------|-------------|--|
|             | Gender | Service       | N   | Median | IQR   | 25th        | <b>50th</b> | <b>75th</b> |  |
| Age (years) | F      | ICU-Adult     | 108 | 57.0   | 16.00 | 49.00       | 57.00       | 65.0        |  |
|             |        | ICU-Pediatric | 41  | 9      | 7.00  | 6.00        | 9.00        | 13.0        |  |
|             | M      | ICU-Adult     | 96  | 58.0   | 23.75 | 44.75       | 58.00       | 68.5        |  |
|             |        | ICU-Pediatric | 55  | 10     | 7.00  | 6.00        | 10.00       | 13.0        |  |

### Distribution of participants based on admission date:

Most participants with mineral supplement prescriptions were admitted to the ICU in 2022. The number of patients admitted to the ICU with interventions related to minerals in 2022 was (n = 112, 37.3 %). The number of patients admitted in 2021 was (n = 106, 35.3 %), and in 2020 was (n = 82, 27.3 %).

Analysis of mineral supplements prescribing practices in ICU cancer patients:

Major minerals (n = 282, 94.0 %) were most frequently prescribed in ICU cancer

patients, followed by trace minerals (n = 18, 6.0 %). Potassium was the most prescribed mineral (n = 39, 35.7 %), followed by Sodium (n = 92, 30.7 %), Calcium (n = 66, 22.0 %), and Magnesium (n = 12, 4.0 %). The least prescribed mineral was Lithium (n = 1, 0.3 %). The frequencies of mineral supplement prescriptions are described in Table 2, and the frequencies of minerals' forms are described in Table 3.

**Table 2: Frequencies of mineral supplement prescriptions** 

| Supplement | Counts | % of Total | <b>Cumulative %</b> |
|------------|--------|------------|---------------------|
| Calcium    | 66     | 22.0 %     |                     |
| Iron       | 3      | 1.0 %      |                     |
| Lithium    | 1      | 0.3 %      |                     |
| Magnesium  | 12     | 4.0 %      |                     |
| Phosphate  | 2      | 0.7 %      |                     |
| Potassium  | 107    | 35.7 %     |                     |
| Sodium     | 92     | 30.7 %     |                     |
| Zinc       | 17     | 5.7 %      | _                   |

**Table 3: Frequencies of supplement form** 

| Supplement form               | Counts | %of Total |   |
|-------------------------------|--------|-----------|---|
| Calcium Carbonate             | 9      | 3.0 %     |   |
| Calcium Chloride              | 1      | 0.3 %     |   |
| Calcium Gluconate             | 36     | 12.0 %    |   |
| Calcium Polystyrene Sulfonate | 20     | 6.7 %     |   |
| Iron Sucrose                  | 3      | 1.0 %     |   |
| Lithium                       | 1      | 0.3 %     |   |
| Magnesium Chloride            | 2      | 0.7 %     |   |
| Magnesium Oxide               | 2      | 0.7 %     |   |
| Magnesium Sulfate             | 8      | 2.7 %     |   |
| Phosphate                     | 2      | 0.7 %     |   |
| Potassium Acetate             | 1      | 0.3 %     |   |
| Potassium Chloride            | 92     | 30.7 %    |   |
| Potassium Glucoheptonate      | 5      | 1.7 %     |   |
| Potassium Phosphate           | 10     | 3.3 %     |   |
| Sodium Alginate               | 4      | 1.3 %     |   |
| Sodium Bicarbonate            | 22     | 7.3 %     |   |
| Sodium Chloride               | 37     | 12.3 %    |   |
| Sodium Hyaluronate            | 2      | 0.7 %     |   |
| Sodium Phosphates             | 26     | 8.7 %     | _ |
| Zinc Oxide                    | 12     | 4.0 %     |   |
| Zinc Sulfate                  | 5      | 1.7 %     |   |

# Analysis of pharmacists' interventions for managing mineral use:

The acceptance rate of nutrition support pharmacists' interventions by physicians was 88 %. The initiation of mineral use (n = 88, 29.3 %) was found to be the most frequent

intervention of pharmacists in the management of minerals in critically ill cancer patients admitted to ICU, followed by discontinuation of mineral use (n=67, 22.3%). Table 4 depicts the frequencies of interventions.

**Table 4: Frequencies of Intervention** 

| Intervention                                         | Counts | % of<br>Total | Cumulative % |
|------------------------------------------------------|--------|---------------|--------------|
| Allergy Information Clarified                        | 3      | 1.0 %         |              |
| Clarification of orders                              | 8      | 2.7 %         |              |
| Conversion from intravenous (IV)- to- oral (PO) done | 4      | 1.3 %         |              |
| Discontinuation of mineral use                       | 67     | 22.3 %        |              |
| Dose clarified/evaluated.                            | 41     | 13.7 %        |              |
| Drug Information provided                            | 1      | 0.3 %         |              |
| Drug levels monitored                                | 3      | 1.0 %         |              |
| Duration of RX Order Clarified                       | 35     | 11.7 %        |              |

| Intervention                        | Counts | % of<br>Total | Cumulative % |
|-------------------------------------|--------|---------------|--------------|
| Fluid type clarification            | 5      | 1.7 %         |              |
| Infusion Rate clarified             | 2      | 0.7 %         |              |
| Initiation of mineral use           | 88     | 29.3 %        |              |
| Lab Evaluation                      | 25     | 8.3 %         |              |
| Medication reconciliation/Discharge | 2      | 0.7 %         |              |
| Medication reconciliation/Admission | 3      | 1.0 %         |              |
| Medication start date clarified     | 1      | 0.3 %         |              |
| Route of administration clarified   | 7      | 2.3 %         |              |
| Therapeutic duplication avoided     | 5      | 1.7 %         |              |

# Analysis of time taken by pharmacists to intervene:

The clinical pharmacist performed 300 interventions related to the management of mineral use. The sum of the times taken was

3902 minutes. The minimum time was 1, and the maximum time was 40 minutes. Table 5 describes the distribution of intervention time taken according to the type of intervention.

Table 5: Time taken by clinical pharmacists to intervene

|       | Intervention                    |    | N     | Median | IQR   | 25th  | 50th  | <b>75th</b> |
|-------|---------------------------------|----|-------|--------|-------|-------|-------|-------------|
| Time  | Allergy Information Clarified   | 3  | 10    | 4.000  | 6.00  | 10.00 | 10.00 |             |
| Taken |                                 |    |       |        |       |       |       |             |
|       | Clarification of orders         | 8  | 10.00 | 0.000  | 10.00 | 10.00 | 10.00 |             |
|       | Conversion from intravenous     | 4  | 5.00  | 7.500  | 5.00  | 5.00  | 12.50 |             |
|       | (IV)-to-oral (PO) done          |    |       |        |       |       |       |             |
|       | Discontinuation of mineral use  | 67 | 15    | 0.000  | 15.00 | 15.00 | 15.00 |             |
|       | Dose clarified/evaluated.       | 41 | 10    | 5.000  | 10.00 | 10.00 | 15.00 |             |
|       | Drug Information provided       | 1  | 3     | 0.000  | 3.00  | 3.00  | 3.00  |             |
|       | Drug levels monitored           | 3  | 10    | 5.000  | 10.00 | 10.00 | 15.00 |             |
|       | Duration of RX Order            | 35 | 10    | 2.500  | 7.50  | 10.00 | 10.00 |             |
|       | Clarified                       |    |       |        |       |       |       |             |
|       | Fluid type clarification        | 5  | 10    | 0.000  | 10.00 | 10.00 | 10.00 |             |
|       | Infusion Rate clarified         | 2  | 17.50 | 7.500  | 13.75 | 17.50 | 21.25 |             |
|       | Initiation of mineral use       | 88 | 15.00 | 0.000  | 15.00 | 15.00 | 15.00 |             |
|       | Lab Evaluation                  | 25 | 5     | 5.000  | 5.00  | 5.00  | 10.00 |             |
|       | Medication                      | 2  | 1.50  | 0.500  | 1.25  | 1.50  | 1.75  |             |
|       | reconciliation/Discharge        |    |       |        |       |       |       |             |
|       | Medication                      | 3  | 15    | 0.000  | 15.00 | 15.00 | 15.00 |             |
|       | reconciliation/admission        |    |       |        |       |       |       |             |
|       | Medication start date clarified | 1  | 30    | 0.000  | 30.00 | 30.00 | 30.00 |             |
|       | Route of administration         | 7  | 10    | 0.000  | 10.00 | 10.00 | 10.00 |             |
|       | clarified                       |    |       |        |       |       |       |             |
|       | Therapeutic duplication         | 5  | 5     | 0.000  | 5.00  | 5.00  | 5.00  |             |
|       | avoided                         |    |       |        |       |       |       |             |

# Time taken by clinical pharmacists to intervene in paediatric ICU compared to adult ICU.

The means of time taken by clinical pharmacists to intervene in the pediatric ICU group compared to the adult ICU group using the Mann-Whitney U T-test. The test showed no significant difference between the population means (p-value 0.568).

### **DISCUSSION**

Major minerals were found to be the most used in ICU cancer patients, followed by trace minerals. Potassium was the most used mineral, followed by Sodium, Calcium, and Magnesium. The initiation of mineral use was found to be the most frequent intervention of pharmacists in critically ill cancer patients admitted to ICU, followed by discontinuation of mineral use. The number of clinical nutrition support pharmacists' interventions for managing mineral use was relatively low compared to the total number of clinical pharmacists' interventions in the ICU. This is consistent with a Chinese prospective study [35].

Cancer is an overwhelming problem worldwide and the burden of cancer is increasing. The incidence rate of cancers is increasing among Jordanians and the number of 5-year prevalent cases in Jordan was 34172 in 2022 which leads to increased patient morbidity and mortality [44,45]. Several international studies have shown that clinical pharmacists play an important role in enhancing patients' survival rate, quality of life, and prognosis [35-43]. However, there is a lack of evidence at the local level.

Clinical pharmacists are integral members of the multidisciplinary medical team at the intensive care units. Clinical pharmacists at King Hussein Cancer Center are highly qualified pharmacists holding a Doctor of

Pharmacy (Pharm.D) degree or a master's degree in clinical pharmacy. Some are boardcertified in pharmacotherapy, oncology pharmacy, and nutrition support pharmacy by the American Board of Pharmacy Specialties. They attend medical rounds in the ICU. cooperate with other healthcare professionals, and are available consultation. The interventions of clinical pharmacists were highly accepted by physicians compared to the acceptance rate reported by a recent Dutch study which reflects physicians' confidence and trust in clinical pharmacists at KHCC [43].

Nutrition support pharmacy practices are uncommon practices in Jordanian hospitals and can only be reported at a King Hussein Cancer Center. There are several barriers to applying these services. For instance, the study plans for the pharmacy and medicine undergraduate programs in Jordan do not include a sufficient number of courses in the field of nutrition. More studies are needed to explore the barriers to implementing nutrition support therapy services. More studies are also needed to investigate the impact of nutrition support therapy practices on critically ill patients' outcomes.

The available evidence on the role of pharmacists in managing vitamin and mineral supplements is limited [33,34]. To our knowledge, the present study was the first to investigate pharmacists' interventions in managing mineral deficiencies in critically ill cancer patients admitted to intensive care units in Jordan. It is one of the strengths of the study.

The current practice guidelines recommend assessing and treating nutritional deficiencies in all cancer patients even though the current evidence on the efficacy of most dietary factors appears inadequate to recommend their use [34]. Malnutrition leads

to poor prognosis and decreased quality of life in cancer patients [34]. More research is needed on the effects of micronutrient supplementation on cancer patients' outcomes.

To the best of our knowledge, this is the first study to explore the mean time the nutrition support pharmacists took to intervene in mineral use in ICU cancer patients. It is another strength of the study.

The interventions of specialized nutrition support pharmacists took between 1 and 40 minutes in the present study. In another study conducted at a university hospital, clinical pharmacists' interventions took 15 – 30 minutes to complete [39]. More studies are needed to analyze factors related to optimizing and implementing specialized nutrition support pharmacy services in different patient populations.

The limitations of the current study are the recall bias and incomplete documentation of

### REFERENCES

- Definition of Clinical Pharmacy (2024) ACCP. Available at: https://www.accp.com/stunet/compass/definition. aspx (Accessed: 01 March 2024).
- BPS specialties (2024) Board of Pharmacy Specialties. Available at: https://bpsweb.org/bpsspecialties/ (Accessed: 01 March 2024).
- 3. Hilgarth H, Wichmann D, Baehr M, Kluge S, Langebrake C. Clinical pharmacy services in critical care: results of an observational study comparing ward-based with remote pharmacy services. *Int J Clin Pharm*. 2023;45(4):847-856. doi:10.1007/s11096-023-01559-z
- Borthwick M. The role of the pharmacist in the intensive care unit. J Intensive Care Soc. 2019;20(2):161-164. doi:10.1177/1751143718769043
- 5. Arredondo E, Udeani G, Horseman M, Hintze TD,

interventions due to the retrospective design. **CONCLUSION** 

Potassium was the most prescribed mineral supplement in critically ill cancer patients at a tertiary center. Nutrition support pharmacists' interventions in managing mineral use in critically ill patients admitted to the ICU were highly accepted by physicians. The prevailing intervention was the initiation of mineral use. Further studies are needed to explore the barriers to implementing nutrition support services in different healthcare settings and the factors affecting the needed time to provide these services across different populations and health services.

### **Funding**

No specific funding was obtained for this work.

#### Conflict of interest

No potential conflict of interest relevant to this study was reported.

- Surani S. Role of Clinical Pharmacists in Intensive Care Units. Cureus. 2021;13(9):e17929. Published 2021 Sep 29. doi:10.7759/cureus.17929
- Jurado LV, Steelman JD. The role of the pharmacist in the intensive care unit. Crit Care Nurs Q. 2013;36(4):407-414. doi:10.1097/CNQ.0b013e3182a11057
- Althomali A, Altowairqi A, Alghamdi A, et al. Impact of Clinical Pharmacist Intervention on Clinical Outcomes in the Critical Care Unit, Taif City, Saudi Arabia: A Retrospective Study. Pharmacy (Basel). 2022;10(5):108. Published 2022 Aug 31. doi:10.3390/pharmacy10050108
- 8. Bosma BE, van den Bemt PMLA, Melief PHGJ, van Bommel J, Tan SS, Hunfeld NGM. Pharmacist interventions during patient rounds in two intensive care units: Clinical and financial impact. Neth J Med. 2018;76(3):115-124.

- Fideles GM, de Alcântara-Neto JM, Peixoto Júnior AA, et al. Pharmacist recommendations in an intensive care unit: three-year clinical activities. Rev Bras Ter Intensiva. 2015;27(2):149-154. doi:10.5935/0103-507X.20150026
- 10. Muñoz-Pichuante D, Villa-Zapata L. Benefit of Incorporating Clinical Pharmacists in an Adult Intensive Care Unit: A Cost-saving Study. J Clin Pharm Ther. 2020;45(5):1127-1133. doi:10.1111/jcpt.13195
- 11. Al Dali S, Al-Badriyeh D, Gulied A, et al. Characteristics of the clinical pharmacist interventions at the National Center for Cancer Care and Research Hospital in Qatar. Journal of Oncology Pharmacy Practice. 2023;0(0). doi:10.1177/10781552231187305
- 12. ASPEN, What Is Nutrition Support Therapy?

  Nutritioncare.org. 2024 [Accessed: 01 March 2024]. Available from: https://www.nutritioncare.org/About\_Clinical\_Nutrition/What\_is\_Nutrition\_Support\_
- 13. ASPEN | What Is a Nutrition Support Professional [Internet]. Nutritioncare.org. 2024 [Accessed: 01 March 2024]. Available from: https://www.nutritioncare.org/what-is-a-NSP/
- 14. McClave S, DiBaise J, Mullin G, Martindale R. ACG Clinical Guideline: Nutrition Therapy in the Adult Hospitalized Patient. American Journal of Gastroenterology. 2016;111(3):315-334.
- 15. American Society Health-System Pharmacists. ASHP guidelines on the safe use of automated compounding devices for the preparation of parenteral nutrition admixtures. Am J Health-Syst Pharm. 2000;57:1343—8
- 16. ASPEN Board of Directors and the clinical guidelines task force. Guidelines for the use of parenteral and enteral nutrition in adult and pediatric patients. J Parenter Enteral Nutr. 2002; 26: 1SA—138SA
- 17. 2016 Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically III Patient JPEN 2016 Vol 40, Issue 2, pp. 159 211
- 18.2014 ASPEN Clinical Guidelines: Parenteral

- Nutrition Ordering, Order Review, Compounding, Labeling, and Dispensing JPEN 2014, Vol 38, Issue 3, pp. 334–377
- 19. Nutrition Screening, Assessment, and Intervention in Adults JPEN 2011, Vol 35, Issue 1, pp. 16 24
- 20. Clinical Guidelines for the Use of Parenteral and Enteral Nutrition in Adult and Pediatric Patients JPEN 2009, Vol 33, Issue 3, pp. 255 - 259
- 21. Definition of vitamins (2024) National Cancer Institute. Available at: https://www.cancer.gov/publications/dictionaries/cancer-terms/def/vitamin (Accessed: 08 April 2024).
- 22. Vitamins and minerals (2024) The Nutrition Source. Available at: https://nutritionsource.hsph.harvard.edu/vitamins/ (Accessed: 25 May 2024).
- 23. Yalcin S, Gumus M, Oksuzoglu B, Ozdemir F, Evrensel T, Sarioglu A et al. Nutritional Aspect of Cancer Care in Medical Oncology Patients. Clinical Therapeutics. 2019; 41(11):2382-2396.
- 24. Sioson M, Martindale R, Abayadeera A, Abouchaleh N, Aditianingsih D, Bhurayanontachai R et al. Nutrition therapy for critically ill patients across the Asia–Pacific and Middle East regions: A consensus statement. Clinical Nutrition ESPEN. 2018; 24:156-164.
- 25. Value of Nutrition Support Therapy: Impact on Clinical and Economic Outcomes in the United States. Journal of Parenteral and Enteral Nutrition. 2020; 44(3):395-406
- 26. Rollins C, Durfee SM, Holcombe BJ, et al. Standards of practice for nutrition support pharmacists. Nutr Clin Pract. 2008;23(2):189—94.
- 27. Holcombe BJ, Thorn DB, Strausburg KM, et al. Analysis of the practice of nutrition support pharmacy specialists. Pharmacotherapy. 15(6):806—13.
- 28. Ukleja A, Freeman KL, Gilbert K, et al. Standards for nutrition support: adult hospitalized patients. Nutr Clin Pract. 2010;25(4):403—14.
- 29. Pharmaceutical compounding: sterile preparations, the United States pharmacopoeia, 30th rev, and the National Formulary. 25th ed. Rockville MD: The

- United States Pharmacopeial Convention; 2007: 334—51
- 30. The jamovi project (2022). *jamovi*. (Version 2.3) [Computer Software]. Retrieved from <a href="https://www.jamovi.org">https://www.jamovi.org</a>.
- 31. R Core Team (2021). R: A Language and environment for statistical computing. (Version 4.1) [Computer software]. Retrieved from https://cran.r-project.org. (R packages retrieved from MRAN snapshot 2022-01-01).
- 32. Dresen E, Pimiento JM, Patel JJ, Heyland DK, Rice TW, Stoppe C. Overview of oxidative stress and the role of micronutrients in critical illness. *JPEN J Parenter Enteral Nutr.* 2023;47 Suppl 1:S38-S49. doi:10.1002/jpen.2421)
- 33. Joanna E. Harnett, Carolina Oi Lam Ung, Hao Hu, Mustafa Sultani, Shane P. Desselle, Advancing the pharmacist's role in promoting the appropriate and safe use of dietary supplements, Complementary Therapies in Medicine, Volume 44,2019, Pages 174-181, ISSN 0965 2299, https://doi.org/10.1016/j.ctim.2019.04.018.
- 34. Joanna E. Harnett, Carolina Oi Lam Ung, Towards defining and supporting pharmacists' professional role associated with traditional and complementary medicines A systematic literature review, Research in Social and Administrative Pharmacy, Volume 19, Issue 3,2023, Pages 356-413, ISSN 1551-7411 https://doi.org/10.1016/j.sapharm.2022.11.001.)
- 35. Zhou X, Qiu F, Wan D, et al. Nutrition support for critically ill patients in China: role of the pharmacist. Asia Pac J Clin Nutr. 2019;28(2):246-251. doi:10.6133/apjcn.201906\_28(2).0006
- 36. Katoue MG, Al-Taweel D. Role of the pharmacist in parenteral nutrition therapy: challenges and opportunities to implement pharmaceutical care in Kuwait. Pharm Pract (Granada). 2016;14(2):680. doi:10.18549/PharmPract.2016.02.680
- 37. Giancarelli, A. and Davanos, E., 2014. Evaluation of Nutrition Support Pharmacist Interventions. Journal of Parenteral and Enteral Nutrition, 39(4), pp.476-481.

- 38. Salman G, Boullata JI. The Value of Nutrition Support Pharmacist Interventions. Crit Care Explor. 2022 Feb 18;10(2):e0650. doi: 10.1097/CCE.0000000000000050. PMID: 35211684; PMCID: PMC8860336.
- 39. Gallagher J, Byrne S, Woods N, Lynch D, McCarthy S. Cost-outcome description of clinical pharmacist interventions in a university teaching hospital. BMC Health Serv Res. 2014;14:177. Published 2014 Apr 17. doi:10.1186/1472-6963-14-177
- 40. Chant, C.; Dewhurst, N.F.; Friedrich, J.O. *Do We Need a Pharmacist in the ICU?* Springer: Berlin/Heidelberg, Germany, 2015; Volume 41, pp. 1314–1320.
- 41. Hisham, M.; Sivakumar, M.N.; Veerasekar, G. Impact of clinical pharmacist in an Indian Intensive Care Unit. Indian J. Crit. Care Med. Peer-Rev. Off. Publ. Indian Soc. Crit. Care Med. 2016, 20, 78.
- 42. Luisetto, M.; Mashori, G.R. Intensive Care Units: The Clinical Pharmacist Role to Improve Clinical Outcomes and Reducing Mortality Rate an Undeniable Function. *J. Clin. Intensive Care Med.* 2017, *2*, 144.
- 43. Zaal RJ, den Haak EW, Andrinopoulou ER, van Gelder T, Vulto AG, van den Bemt PMLA. Physicians' acceptance of pharmacists' interventions in daily hospital practice. Int J Clin Pharm. 2020;42(1):141-149. doi:10.1007/s11096-020-00970-0
- 44. Ferlay J, Ervik M, Lam F, Laversanne M, Colombet M, Mery L, Piñeros M, Znaor A, Soerjomataram I, Bray F (2024). Global Cancer Observatory: Cancer Today. Lyon, France: International Agency for Research on Cancer. Available from: https://gco.iarc.who.int/today, accessed [15 August 2024]
- 45.45.Jordan Cancer Registry Cancer Incidence in Jordan (2018). Ministry ofHealth. https://moh.gov.jo/ebv4.0/root\_storage/ar/eb\_list\_page/accessed [15 August 2024]

### ممارسات وصف مكملات المعادن لمرضى السرطان في العناية الحثيثة: دراسة حول ممارسات الصرف من قبل الأطباء و أدوار صيادلة الدعم الغذائي في مركز سرطان متخصص

نادين عبدالهادي 1 ، ألاء دبوس 2 ، مريم درويش 2 ، سعد جدوعة 2

1 كلية الصيدلة ، جامعة العقبة للتكنولوجيا، العقبة، الأردن.

2 دائرة الصيدلة ، مركز الحسين

للسرطان ، عمان ، الأردن

Received: June 7, 2024

Accepted: August 26, 2024

DOI:

https://doi.org/10.35516/jmj.v59i3.292

الملخص

الخلفية والاهداف : تهدف هذه الدراسة إلى استكشاف ممارسات وصف الأطباء وأدوار صيادلة الدعم الغذائي في معالجة نقص المعادن لدى مرضى السرطان المصابين بأمراض خطيرة الذين يتم إدخالهم إلى وحدات العناية المركزة في مركز سرطان متخصص.

منهجية الدراسة: تم إجراء تحليل بأثر رجعي لـ 9949 سجلا إلكترونيا لمرضى السرطان الذين تم إدخالهم إلى وحدة العناية المركزة من يناير 2020 إلى ديسمبر 2022. تم تسجيل جميع وصفات المكملات المعدنية من قبل الأطباء وتدخلات صيادلة الدعم الغذائي . تم إجراء التحليل باستخدام حزمة جاموفي .

النتائج :تألف مجتمع الدراسة من المرضى الأطفال والمرضى البالغين. تم وصف المعادن الرئيسية في أغلب الأحيان في مرضى السرطان في وحدة العناية المركزة ، تليها المعادن النزرة. كان البوتاسيوم هو المكمل الأكثر وصفا ، يليه الصوديوم والكالسيوم والمغنيسيوم و كان الليثيوم هو المكمل الأقل وصفا . كان التدخل الأكثر شيوعا للصيادلة هو النصيحة حول بدء استخدام المكملات المعدنية ، يليه النصيحة بالتوقف عن استخدام المكملات المعدنية. و قد بلغ معدل قبول التدخلات من قبل الأطباء 88 %.

الاستنتاجات : كان البوتاسيوم أكثر المكملات المعدنية الموصوفة في مرضى السرطان في العناية الحثيثة في مركز سرطان امتخصص. تم قبول تدخلات صيادلة دعم التغذية بشكل كبير من قبل الأطباء. كان التدخل السائد هو النصيحة حول بدء استخدام المكملات المعدنية. هناك حاجة إلى مزيد من الدراسات لاستكشاف الحواجز التي تحول دون تنفيذ خدمات دعم التغذية في أماكن الرعاية الصحية المختلفة.

الكلمات الدالة: الصيدلة السربرية ، صيدلية دعم التغذية ، المعادن ، العناية الحثيثة.