JORDAN MEDICAL JOURNAL

ORIGINAL ARTICLE

Clinical and Psychological Predictors of Acute Coronary Syndrome Symptom Severity

Fatma Refaat Ahmed¹, Mohannad Eid AbuRuz^{*2}, Nabeel Al-Yateem³, Heba H. Hijazi⁴, Walid Kamal⁵, Rawia Gamil⁶, Richard Mottershead⁷, Heba Mostafa⁸

- ¹ University of Sharjah, College of Health Sciences, Department of Nursing, Sharjah, UAE; Department of Critical Care and Emergency Nursing, Faculty of Nursing, Alexandria University, Alexandria, Egypt.
- ² Department of Clinical Nursing, Faculty of Nursing, Applied Science Private University, Amman, Jordan
- ³ Department of Nursing, College of Health Sciences, University of Sharjah, Sharjah, UAE.
- ⁴ Department of Health Services Administration, College of Health Sciences, University of Sharjah, Sharjah, UAE; Department of Health Management and Policy Faculty of Medicine Jordan University of Science and Technology, Amman, Jordan.
- ⁵ Department of physiotherapy, College of Health Sciences, University of Sharjah, Sharjah, UAE.
- ⁶ Department of Critical Care and Emergency Nursing, Faculty of Nursing, Alexandria University, Alexandria, Egypt.
- Department of Nursing, College of Health Sciences, University of Sharjah, Sharjah, UAE.
- ⁸ Department of Critical Care and Emergency Nursing, Faculty of Nursing, Alexandria University, Alexandria, Egypt.

*Corresponding author: mohannadeid@yahoo.com

Received: August 5, 2024 Accepted: May 27, 2025

DOI:

https://doi.org/10.35516/jmj.v59i3.3108

Abstract

Introduction: Egypt is a low-income country which accounted for 16% of the MENA region's 1.3 million CVD mortalities in 2015. Traditional Egyptian cultural, social contexts and religious beliefs are different from those in high-income Western counties where most CVD research is conducted, which may have significant impacts on patients' psychological responses to acute illness. Therefore, this study aimed to identify the clinical and psychological predictors early during ACS course of disease.

Method: In this cross-sectional study, the symptoms of 255 acute coronary syndrome patients at three university hospitals in Alexandria, Egypt, were measured using the Arabic Anxiety and Stress Subscales of Depression, Anxiety and Stress Scale (DASS-21) and Arabic Controlled Attitude Scale (CAS-R). Multiple linear regression analysis was used to identify clinical and psychological predictors of symptom severity.

Results: History of diabetes, hypertension, and hyperlipidemia, perceived control, anxiety, and stress scores were independent predictors for all studied symptoms (chest pain, fatigue, and dyspnea). The models described variance of 15% for chest pain, 29% for fatigue, and 16% for dyspnea.

Conclusion: This study revealed that anxiety and stress levels are predictors of increased symptoms severity, whereas history of DM, HTN, and hyperlipidemia, and perceived control level were independent predictors for all symptoms (chest pain, fatigue, and dyspnea).

Keywords: Acute coronary syndrome; Anxiety; Egypt; Predictors; Symptoms severity

INTRODUCTION

Acute coronary syndrome (ACS) is a severe type of coronary heart disease (CHD) with acute symptoms [1]. If existent symptoms are not identified or recognized, or become more intense, patients may be at risk

of delayed diagnosis, poor prognosis, increased hospital stay, and increased morbidity and mortality [2]. ACS is commonly under-diagnosed, and diagnosis is complicated by overlap with other cardiac conditions and associated factors. For

instance, patients with stress and anxiety are more likely to experience angina, shortness of breath, dizziness, nausea, and palpitations, all of which overlap with ACS [3-5]. ACS events can cause acute stress disorders (ASDs) like stress and anxiety responses, which can be considered either "appropriate" or "inappropriate". They can be considered appropriate when they are transient, and they inspire motivation for action (e.g., helpseeking behavior, particularly consulting healthcare professionals). In ACS patients (ACSPs), a slight increase in stress and anxiety levels may stimulate individuals to quickly seek treatment when faced with acute symptoms [4-8].

However, when stress and anxiety persist or become severe, negative consequences may result in severe chest pain, fatigue, and dyspnea. Persistent stress and anxiety might also result in difficulties in adhering to prescribed treatments and difficulty making recommended lifestyle changes, increased risk for recurrent acute cardiac events. impaired functional ability, and increased risk for in-hospital complications after admission for ACS [9-11]. Notably, the Cardiology European Society of recommended screening for negative emotions as a modifiable risk factor for developing ACS and worsening its prognosis [12]. However, other studies suggested that clinical therapy of ACS does not adequately incorporate assessments of stress and anxiety symptoms [13-14].

A systematic review and meta-analysis by van Oosterhout et al. reported that sex differences in symptom presentation in ACSPs were more instrumental than psychological status [15]. For example, women with ACS have higher odds of presenting with pain between the shoulder blades, nausea or vomiting and shortness of

breath, and lower odds of presenting with chest pain and diaphoresis compared with men with ACS. Age also has a contribution, and working-age younger and middle-aged adults suffer from more severe financial and productivity costs associated with the illness than other age groups [4].

Social support has a role in the ways in which ACS symptoms are perceived. Social support refers to social connections with other individuals, groups, and the larger community. According to the "social support deterioration deterrence model" of Norris, social support acts as a protective "cushion" in stress response, whereby patients who receive social support are less likely to be impacted by stressful events like ACS [3,4,16-18]. The way in which individuals control and cope with negative events in a way that positively influences their nature was defined by Moser et al. as perceived control (PC) [19]. PC was found to be an important factor for health-related quality of life among Japanese ACSPs by Kondo et al., [20] who considered the number of ACS symptoms as a factor that could predict PC levels among such patients.

AbuRuz concluded that depression could increase complications after ACS events, and PC could moderate this relationship [9]. Therefore, he suggested that assessing depression and enhancing PC levels in ACSPs can decrease complications and improve outcomes. However, these previous studies did not investigate if PC could predict the symptoms severity among ACSPs. This study aimed to identify the clinical and psychological predictors early during ACS course of disease for two main reasons. First, prior studies focused on identifying patients reported symptoms to predict the diagnosis of ACS, [21], and the predictors of readmission after ACS [22]. Second, Egypt is the most populous

of the 20 MENA countries, accounting for 16% of the region's 1.3 million CVD deaths in 2015 (GBD, 2015, 2018). Egypt is a low-income MENA country, and the traditional Egyptian cultural, social contexts and religious beliefs are different from those in high-income Western counties where most CVD and ACS research has been conducted. Prevailing sociocultural mores and behaviors may have significant impacts on patients' psychological response to acute illness.

This study specifically addresses the research question of "what are the most important predictors of symptoms severity (chest pain, fatigue, and dyspnea) among patients with ACS?"

METHODS

Research design, settings, and participants

A cross-sectional design was used. This study was conducted at CCUs in three university hospitals in Alexandria, Egypt. These hospitals provide services to many patients living in Alexandria and other governorates across the country. The studied population comprised adult patients (aged 18 years and above) who presented with ACS (ST elevated myocardial non-ST infarction (STEMI). elevated myocardial infarction (NSTEMI), and unstable angina). Patients who were unable to read and write in Arabic and/ or who hemodynamically unstable (i.e., having any life-threatening dysthymias) were excluded from this study. The sample size was calculated by G*Power software using the following criteria: type 1 error of 0.05, a power of 0.95, medium effect size, and using the following statistical tests: multiple linear regression analysis. Based on these assumptions, the required number of participants was 172. Consequently, we recruited up to 255 participants, to account for drop-out and increase the representativeness of the studied population.

Instruments

Arabic Anxiety and Stress Subscales of Depression, Anxiety and Stress Scale (DASS-21)

The Arabic version of the anxiety and stress subscales of the Depression, Anxiety and Stress (DAS) scale was adopted from Ali et al. to measure patients' stress and anxiety [23]. Each of the three DASS-21 scales contains seven items, answerable with four-point Likert scales (with responses ranging from (1) did not apply to me at all, to (3) applied to me very much or most of the time. The scale has high cumulative reliability (0.88) [24].

Symptom severity was measured using a self-reported symptom diary, whereby patients recorded the severity of three symptoms (chest pain, fatigue, and dyspnea) during their hospitalization. Symptom severity was rated using a 10-point numerical analogue scale, with 0 indicating the absence of symptoms, and 10 indicating the worst level of symptoms, categorized into the following ranges: mild (1-3), moderate (4-6), and severe (7-10).

Arabic Controlled Attitude Scale (CAS-R)

PC was measured using the Arabic version of Controlled Attitude Scale (CAS-R), adopted from AbuRuz [25]. It includes eight items answerable with a five-point Likert scale, with responses ranging from (1) *strongly disagree* to (5) *strongly agree*. The Cronbach's alpha of the scale is 0.85. According to previous studies, there are no published mean norms for this tool, so researchers conventionally use the median of their samples as a cut-off point to classify patients as having high or low PC [19,26].

Socio-demographic and general clinical characteristics

Other demographic and clinical variables that might predict the severity of symptoms status (after reviewing the literature) were collected through patient's chart review: age, sex, residence, marital status, presence of social support, Body Mass Index (BMI), family history of CHD, current history of smoking, history of comorbidities e.g., diabetes mellitus (DM), hypertension (HTN), and heart failure etc.

Ethical considerations

The study was approved by Alexandria University's Faculty of Nursing Research Ethics Committee (approval number: 2022-9-34) and the selected hospitals prior to commencing data collection. Written approval obtained from the administrative authorities in each hospital, after providing them with a full explanation of the study's purpose. Confidentiality and the right to refuse to participate in the study for all patients were assured. Informed consent was signed from each patient before their participation, after a full explanation of the study purpose and participant rights, including the right to withdraw without their healthcare services or statutory rights being affected. The consent process included permission to review participants' medical records.

Data collection

Eligible patients were recruited from the selected units after obtaining their consent and checking their hemodynamics at the time of data collection within a week after an episode of ACS. It was planned that if any patients experienced any instability or discomfort, the questionnaire would be suspended, and a cardiologist would be called; however, no such cases arose during the data collection process. Patients were asked to self-report DASS to rate their stress and anxiety levels. After completion the researcher provided patients with a symptom diary to rate their symptoms post-ACS event, and the patients were monitored frequently to

ensure that they completed the diary.

Data analysis

Data was analyzed using SPSS (v. 26.0) and descriptive statistics (means, standard deviations. numbers. and frequency distributions). Participants were divided into groups of low or high anxiety levels (median = 15), and groups low or high stress levels (median = 20). Despite the DASS providing a clear scoring category, this classification was for the total scores of the three subscales, while we used only two subscales of the Participant characteristics scale. were compared between two groups using independent t-test for continuous variables, and chi-square test was used for categorical variables. The study's main research question was answered by multiple linear regression statistical analysis.

RESULTS

Participant characteristics

A total of 255 patients participated in this study, comprising 186 males and 69 females, with a mean age of 52 years old. More than two-thirds of the sample was married, and 70.2% resided in urban cities. Nearly half of them were diagnosed with STEMI (48.2%), and most had a family history of CHD (58.4%). The patient's mean BMI was 28.17, and their mean PC score was 28.17 (Table 1).

Patient symptoms

As shown in Table 2, the mean scores for the ACS-related physical symptoms were 2.70 ± 0.46 for chest pain, 2.84 ± 0.37 for fatigue, and 2.94 ± 0.25 for dyspnea. The mean scores for psychological symptoms during ACS event were 19.84 ± 6.9 for stress, and 14.83 ± 4.6 for anxiety. Severe symptoms were reported by the majority of participants for chest pain (70.6%), fatigue (83.9%), and dyspnea (94.5%) (Figure 1).

Table (1): Sociodemographic and clinical characteristics of the participants (N = 255)

Characteristic	M±SD or N (%)				
Age	52.4±6.80				
Sex					
Male	186 (72.9)				
Female	69 (27.1)				
Marital status					
Married	161 (63.1)				
Single/divorced/widowed	94 (36.9)				
Residence					
Rural	76 (29.8)				
Urban	179 (70.2)				
Diagnosis					
Unstable angina	54 (21.2)				
NSTEMI	78 (30.6)				
STEMI	123 (48.2)				
Presence of co-morbidities	251 (98.4)				
Current smoker	136 (53.3)				
Family history of CHD	149 (58.4)				
Presence of social support					
Yes	176 (69.0)				
No	79 (31.0)				
BMI	28.17±6.41				
PC score	27.56±2.39				

Note. BMI: body mass index; NSTEMI: non-ST elevated myocardial infarction; STEMI: ST elevated myocardial infarction; CHD: coronary heart disease; PC: perceived control; CCU: Coronary care unit; LOS: Length of stay. Values are M±SD or n (%).

Table (2): Patients' physical and psychological symptoms

Symptoms	Mean (SD)	
ACS-related physical symptoms		
Chest pain	2.70 (.46)	
Fatigue	2.84 (.37)	
Dyspnea	2.94 (.25)	
Psychological symptoms during ACS event		
Stress	19.84 (6.9)	
Anxiety	19.84 (6.9) 14.83 (4.6)	

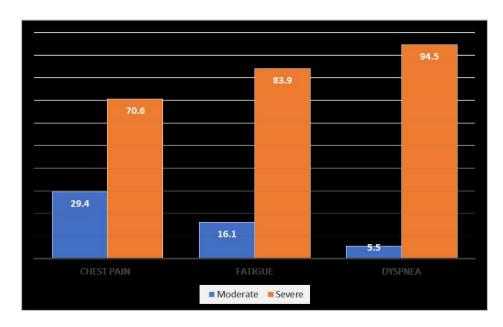


Figure (1): Symptoms severity

As shown in Table 3, all participants experienced negative emotions in the form of stress and anxiety, including 109 with low anxiety level (42.7%), and 146 with high anxiety level (57.3%). Participants differed

significantly in family history of CHD between groups with low (p = .006) and high (p = .003) anxiety levels; and PC level differed significantly between groups with low (p = .004) and high (p = .000) stress levels.

Table (3): Comparison of main study variables with categorical demographic/clinical variables

Variable		Anxiety level		+ 112	Stress level		+ 1/2
		Low (n = 109)	High (n = 146)	t, χ2, P	Low (n = 112)	High (n = 143)	t, χ2, P
Gender	Male	80 (73.4%)	106 (72.6%)	0.20	85 (75.9%)	101 (70.6%)	0.882
	Female	29 (26.6%)	40 (27.4%)	0.888	27 (24.1%)	42 (29.4%)	0.348
Presence of	Yes	107(98.2%)	144 (98.6%)	0.087	112 (100%)	139 (97.2%)	3.183
co- morbidities	No	2 (1.8%)	2 (1.4%)	0.768	0 (0.00%)	4 (2.8%)	0.074
History of	Yes	55 (50.5%)	81(55.5%)	0.632	60 (53.6%)	76 (53.1%)	0.005
smoking	No	54 (49.5%)	65 (44.5%)	0.427	52 (46.4%)	67 (46.9%)	0.946
Family	Yes	57 (52.3%)	92 (63.1%)	2.953	60 (53.6%)	89 (62.2%)	1.94
history of CHD	No	52 (47.7%)	54 (36.9%)	0.006*	52 (46.4%)	54 (37.8%)	0.003*
Presence of	Yes	76 (69.7%)	100 (68.5%)	0.044	93 (83.1%)	83 (58.1%)	18.35
social support	No	33 (30.3%)	46 (31.5%)	0.83	19 (16.9%)	60 (41.9%)	0.000*
PC level		27.97±2.02	27.18±2.55	-2.65 0.004*	27.35±2.54	27.65±2.22	-0.979 0.05*

Note. t: t-test; χ 2: chi-square; P, *P < .05.

Symptoms status predictors

As shown in Table 4, history of DM, HTN, and hyperlipidemia; PC level; and anxiety and stress scores were found to be independent predictors for all symptoms (chest pain, fatigue, and dyspnea). The presence of social support was found to be an independent predictor for chest pain (when social support

is available, the severity of chest pain decreases). Female sex was an independent predictor for both chest pain and fatigue, whereby females experienced more pain levels than male patients. Previous AMI was an independent predictor for only chest pain. The models described 15% of chest pain, 29% of fatigue, and 16% of dyspnea variance.

Table (4): Stepwise linear regression analysis for symptoms status predictors

Predictors	Standardized B	T	Model statistics			
Chest pain	•					
Gender: Female	.200*	2.32	$R^2 = 15.2\%,$ $F_{(10,244)} = 4.36,$ $P = .000$			
History of DM	.190*	2.56				
History of heart failure	.216*	2.85				
History of hyperlipidemia	.225**	3.49				
Previous AMI	.161*	2.22				
PC level	173*	2.15	r – .000			
Presence of social support	196**	-2.78				
Anxiety score	.201*	2.42				
Stress score	.198*	2.14				
Fatigue						
Gender: Female	200*	2.32				
History of DM	.259**	3.52	R2 = 28.9%			
History of HTN	.174**	2.82	F (10,244) = 9.93,			
History of hyperlipidemia	.114*	1.93	P=.000			
PC level	293**	-4.82	1 –.000			
Anxiety score	.364**	5.43				
Stress score	.246*	3.54				
Dyspnea						
History of DM	.177 *	2.25				
History of HTN	.133*	2.02	R2 = 16%,			
History of hyperlipidemia	.225**	2.22	F(10,244) = 5.74,			
PC level	195**	-2.99 $P = .000$				
Anxiety score	.318**	4.44				
Stress score	.231*	4.01				

Note. *P<0.05, **P<0.01.

DISCUSSION

The purpose of this study was to identify the clinical and psychological predictors and ACS symptoms severity in Egypt. The main findings of this study showed that anxiety score, stress score, history of DM, HTN, and hyperlipidemia, and PC level were independent predictors for all symptoms,

chest pain, fatigue, and dyspnea. The results of this study are consistent with previous literature in regard to symptom severity in ACSPs [27,28]. Our findings also affirm the position that stress and anxiety are associated with symptom severity in ACSPs [6,8].

Anxiety and stress each affect symptom severity in ACSPs through different potential

mechanisms. Physiologically, both stress and anxiety stimulate the sympathetic nervous system, impair platelet functioning, motivate inflammatory processes, and lead to hypercholesteremia [29]. Anxiety increases the mortality rate by increasing the risk from ventricular arrhythmias and consequently sudden cardiac death [30]. Behaviorally, anxious and stressed patients will neglect their self-care and dietary regimen, and fail to follow the prescribed medications [6-11]. Previous studies which did not show a significant relation between stress and anxiety and severity symptom fundamental limitations, including the fact that stress and anxiety measures included confounding somatic symptoms such as fatigue and shortness of breath [5,7,16,31].

Gender is another predictor for symptom severity among ACSPs. The female sex in this study was an independent predictor for both chest pain and fatigue symptoms, whereby females experienced more pain levels than male patients, as reflected in increased stress and anxiety scores among female patients. Limited functional and mental capabilities among female ACSPs could contribute to increased symptom severity [6,8,15].

Social support includes the visible and objective material or emotional support that individuals obtain from their social network relationships and the emotional experience of feeling respected, supported, and understood in society. Many studies have shown that perceived social support is more natural and effective for individuals, and can better predict their mental health levels. In our study, social support was found to be one of the predictors of symptom severity. Previous studies showed that patients who did not receive social support had higher levels of stress and anxiety than patients who did [32-35], and the current study's findings support

a positive relationship between social support and symptoms severity. Stress and anxiety are commonly prevalent in contexts wherein patients have poor social support and isolation, rather than being attributable mainly to biomedical causes *per se* [4,35,36].

PC was found to be an important factor for the health-related quality of life of ACSPs. The results of the current study showed that PC level was independent predictor for symptoms severity, and previous studies reported that patients with high PC may develop low levels of stress and anxiety, which in turn leads to decreased symptoms severity [9,20,31]. Based on these findings, it is highly recommended that ACSPs be screened and treated for stress and anxiety.

Strengths and limitations

This study identified clinical and psychological predictors of symptoms severity among ACSPs, and the findings alert clinicians to the importance of these factors. The outcomes of this study call for more attention to managing ACS symptoms with a more holistic approach, to improve quality of care and disease prognosis. On the other hand, clinical depression was not assessed in this study, because it entails more extensive assessment (during the index of admission, and at 30 days after discharge). Our methods excluded the depression assessment component of the DAS scale, as it was not practically feasible to include this aspect due to the short duration of follow-up. Hence, our findings should be replicated with a larger study, with a longer follow-up period, monitoring clinical depression, in order to guide future screening for depression in ACSPs.

CONCLUSIONS

This study revealed that anxiety and stress levels might be predictors of increase symptoms severity, whereas history of DM, HTN, and hyperlipidemia, and PC level were

independent predictors for all symptoms, chest pain, fatigue, and dyspnea. More attention should be directed by nurse clinicians toward patients' experiences of negative emotions, clinical conditions, and PC levels. It is recommended to integrate the assessment of psychological status and PC level into the daily routine practice. Future research is needed using qualitative methods to understand the perceptions of patients about predictors of ACS symptom severity.

Acknowledgments: Our sincere appreciation goes to all participants of the present study.

Availability of data and materials: All data generated or analysed during this study are available from the corresponding author [Fatma Refaat Ahmed] upon request.

Funding statement: This study received no funds.

REFERENCES

- Roth GA, Mensah GA, Johnson CO, Addolorato G, Ammirati E, Baddour LM, et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update From the GBD 2019 Study. J Am Coll Cardiol 2020; 76(25):2982-3021.
- Masaebi F, Salehi M, Kazemi M, Vahabi N, Azizmohammad Looha M, Zayeri F. Trend analysis of disability adjusted life years due to cardiovascular diseases: results from the Global Burden of Disease Study 2019. BMC Public Health 2021; 21(1):1268.
- Jacquet-Smailovic M, Tarquinio C, Alla F, Denis I, Kirche A, Tarquinio C, et al. Posttraumatic stress disorder following myocardial infarction: a systematic review. J Trauma Stress 2021; 34(1):190-9.
- Wu M, Wang W, Zhang X, Li J. The prevalence of acute stress disorder after acute myocardial infarction and its psychosocial risk factors among young and middle-aged patients. Sci Rep 2022;

Conflict of Interest Statement: There is no conflict of interest or personal relationship between the authors that could have appeared to influence the work reported in this paper.

Ethics approval statement: This study has been contacted according to the Declaration of Helsinki 1964. The study was approved by the Research Ethics Committee of the Faculty of Nursing, Alexandria University.

Patient consent statement: Each participant signed informed consent before participating in this study.

Permission to reproduce material from other sources: Not applicable.

Clinical trial registration:

Not applicable

This submission is not under consideration and has not been published in any other journal – in whole or in part.

12(1):7675.

- Wu M, Wenqin W, Xingwei Z, Junhua L. Assessment of acute stress disorder of young and middle-aged patients with acute myocardial infarction and analysis of the influencing factors. Res Squ 2021. doi: 10.21203/rs.3.rs-1185822/v1.
- AbuRuz ME, Masa'Deh R. Gender differences in anxiety and complications early after acute myocardial infarction. J Cardiovasc Nurs 2017; 32(6):538-43.
- 7. Santos H, Santos M, Paula SB, Figueiredo M, Almeida I, Miranda H, et al. Acute coronary syndrome and stress: is there a relationship? Rev Port Cardiol 2023; 42(1):9-17.
- 8. Turen S, Turen S. Gender differences in early complications after STEMI and their associations with anxiety and depression. Eur Rev Med Pharmacol Sci 2023; 27(7):2936-45.
- AbuRuz ME. Evidence of Arabic Version of the Control Attitude Scale-Revised efficacy to

- measure perceived control in acute myocardial infarction patients. J Nurs Meas 2019; 27(2):247-58.
- Ciric-Zdravkovic SV, Zikic OV, Stanojevic DM, Petrovic-Nagorni SM. Anxiety in patients with acute coronary syndromes. Eur J Psychiatry 2014; 28(3):165-71.
- 11. von Känel R, Meister-Langraf RE, Zuccarella-Hackl C, Schiebler SLF, Znoj H, Pazhenkottil AP, et al. Sleep disturbance after acute coronary syndrome: a longitudinal study over 12 months. PLoS One 2022; 17(6):e0269545.
- 12. Vaccarino V, Badimon L, Bremner JD, Cenko E, Cubedo J, Dorobantu M, et al. Depression and coronary heart disease: 2018 position paper of the ESC Working Group on Coronary Pathophysiology and Microcirculation. Eur Heart J 2020; 41(17):1687-96.
- 13. Egholm CL, Helmark C, Rossau HK, Munkehøj P, Brøndum S, Pedersen SS, et al. Implementation of systematic screening for anxiety and depression in cardiac rehabilitation: real world lessons from a longitudinal study. J Psychosom Res 2022; 158:110909.
- 14. Hare DL, Stewart AGO, Driscoll A, Mathews S, Toukhsati SR. Screening, referral and treatment of depression by Australian cardiologists. Heart Lung Circ 2020; 29(3):401-4.
- 15. van Oosterhout REM, de Boer AR, Maas A, Rutten FH, Bots ML, Peters SAE. Sex differences in symptom presentation in acute coronary syndromes: a systematic review and meta-analysis. J Am Heart Assoc 2020; 9(9):e014733.
- 16. Albus C, Waller C, Fritzsche K, Gunold H, Haass M, Hamann B, et al. Significance of psychosocial factors in cardiology: update 2018: position paper of the German Cardiac Society. Clin Res Cardiol 2019; 108(11):1175-96.
- 17. Rashighi M, Harris JE. Myocardium extract from suckling rat. Physiol Behav 2017; 176(3):139–48.
- 18. Serrano-Rosa M, León-Zarceño E, Giglio C, Boix-Vilella S, Moreno-Tenas A, Pamies-Aubalat L, et al. Psychological state after an acute coronary

- syndrome: impact of physical limitations. Int J Environ Res Public Health 2021; 18(12):6473.
- 19. Moser DK, Dracup K. Psychosocial recovery from a cardiac event: the influence of perceived control. Heart Lung 1995; 24(4):273-80.
- 20. Kondo A, Oki T, Otaki A, Abuliezi R, Eckhardt AL. Factors related to perceived control and health-related quality of life of patients after acute coronary syndrome during admission and after discharge. Jpn J Nurs Sci 2021; 18(2):e12404.
- 21. Zègre-Hemsey JK, Burke LA, DeVon HA. Patient-reported symptoms improve prediction of acute coronary syndrome in the emergency department. Res Nurs Health 2018; 41(5):459-68.
- 22. Bustea C, Tit DM, Bungau AF, Bungau SG, Pantea VA, Babes EE, et al. Predictors of readmission after the first acute coronary syndrome and the risk of recurrent cardiovascular events seven years of patient follow-up. Life 2023; 13(4):950.
- 23. Ali AM, Ahmed A, Sharaf A, Kawakami N, Abdeldayem SM, Green J. The Arabic Version of The Depression Anxiety Stress Scale-21: Cumulative scaling and discriminant-validation testing. Asian J Psychiatr 2017; 30:56-8.
- 24. Ali AM, Green J. Factor structure of the depression anxiety stress Scale-21 (DASS-21): Unidimensionality of the Arabic version among Egyptian drug users. Subst Abuse Treat Prev Policy 2019; 14(1):40.
- 25. AbuRuz ME. Patients with ST segment elevation myocardial infarction: moderating effect of perceived control on the relationship between depression and in-hospital complications. BMC Cardiovasc Disord 2019; 19(1):143.
- 26. McKinley S, Fien M, Riegel B, Meischke H, Aburuz ME, Lennie TA, et al. Complications after acute coronary syndrome are reduced by perceived control of cardiac illness. J Adv Nurs 2012; 68(10):2320-30.
- 27. Araújo C, Laszczyńska O, Viana M, Melão F, Henriques A, Borges A, et al. Sex differences in presenting symptoms of acute coronary syndrome: the EPIHeart cohort study. BMJ open 2018;

- 8(2):e018798.
- 28. Asghari E, Gholizadeh L, Kazami L, Taban Sadeghi M, Separham A, Khezerloy-Aghdam N. Symptom recognition and treatment-seeking behaviors in women experiencing acute coronary syndrome for the first time: a qualitative study. BMC Cardiovasc Disord 2022; 22(1):508.
- 29. Li J, Ji F, Song J, Gao X, Jiang D, Chen G, et al. Anxiety and clinical outcomes of patients with acute coronary syndrome: a meta-analysis. BMJ Open 2020; 10(7):e034135.
- 30. Batelaan NM, Seldenrijk A, van den Heuvel OA, van Balkom A, Kaiser A, Reneman L, et al. Anxiety, mental stress, and sudden cardiac arrest: epidemiology, possible mechanisms and future research. Front Psychiatry 2021; 12:813518.
- 31. AbuRuz ME. Perceived control moderates the relationship between anxiety and in-hospital complications after ST segment elevation myocardial infarction. J Multidiscip Healthc 2018; 11:359-65.
- 32. Kazukauskiene N, Bunevicius A, Gecaite-

- Stonciene J, Burkauskas J. Fatigue, social support, and depression in individuals with coronary artery disease. Front Psychol 2021; 12:732795.
- 33. Nuraeni A, Suryani S, Trisyani Y, Pramukti I. Social and Emotional Support Highly Associated with Helplessness among Coronary Heart Disease Patients. Open Access Maced J Med Sci 2021; 9(T6):1-6.
- 34. Roohafza H, Talaei M, Pourmoghaddas Z, Rajabi F, Sadeghi M. Association of social support and coping strategies with acute coronary syndrome: a case-control study. J Cardiol 2012; 59(2):154-9.
- 35. Wang M, Norris CM, Graham MM, Santana M, Liang Z, Awosoga O, et al. Trajectories of perceived social support in acute coronary syndrome. Qual Life Res 2019; 28(5):1365-76.
- 36. Shiba K, Yazawa A, Kino S, Kondo K, Aida J, Kawachi I. Depressive symptoms in the aftermath of major disaster: Empirical test of the social support deterioration model using natural experiment. Wellbeing Space Soc 2020; 1:100006.

المؤشرات السريرية والنفسية وشدة أعراض متلازمة الشريان التاجي الحادة

فاطمة رفعت أحمد 1 ، مهند عيد أبو الرز 2 ، نبيل اليتيم 3 ، هبة حجازي 4 ، وليد كمال 5 ، ربتشارد موترشيد 7 ، هبة مصطفى 8

الملخص

التمريض، الشارقة، الإمارات العربية المتحدة؛ قسم تمريض العناية المركزة والطوارئ، كلية التمريض، جامعة الإسكندرية، مصر ² قسم التمريض السريري، كلية التمريض، جامعة العلوم التطبيقية الخاصة، عمان، الأردن ³ قسم التمريض، كلية العلوم الصحية، جامعة الشارقة، الشارقة، الإمارات العربية المتحدة ⁴ قسم إدارة الخدمات الصحية، كلية العلوم

أجامعة الشارقة، كلية العلوم الصحية، قسم

السارقة السارقة الإمارات العربية المتحدة قسم إدارة الخدمات الصحية، كلية العلوم الصحية، جامعة الشارقة، الشارقة، الإمارات العربية المتحدة؛ قسم إدارة وسياسات الصحة، كلية الطب، جامعة العلوم والتكنولوجيا الأردنية، عمان، الأردن.

⁵ قسم العلاج الطبيعي، كلية العلوم الصحية، جامعة الشارقة، الشارقة، الإمارات العربية المتحدة ⁶ قسم تمريض الرعاية الحرجة والطوارى، كلية التمريض، جامعة الإسكندرية، الإسكندرية، مصر ⁷ قسم التمريض، كلية العلوم الصحية، جامعة الشارقة، الشارقة، الإمارات العربية المتحدة ⁸ قسم تمريض الرعاية الحرجة والطوارى، كلية التمريض، جامعة الإسكندرية، الإسكندرية، مصر

Received: August 5, 2024 Accepted: May 27, 2024

DOI:

https://doi.org/10.35516/jmj.v59i3.3

خلفية الدراسة والأهداف: تُعدّ مصر دولة منخفضة الدخل، حيث شكّلت 16% من وفيات أمراض القلب والأوعية الدموية في منطقة الشرق الأوسط وشمال أفريقيا، والبالغة 1.3 مليون حالة، عام 2015. وتختلف السياقات الثقافية والاجتماعية والمعتقدات الدينية المصرية التقليدية عن تلك السائدة في الدول الغربية ذات الدخل المرتفع، حيث تُجرى معظم أبحاث أمراض القلب والأوعية الدموية، مما قد يُؤثّر بشكل كبير على الاستجابات النفسية للمرضى للمرض الحاد. لذلك، هدفت هذه الدراسة إلى تحديد العوامل السريرية والنفسية المُتنبئة في مرحلة مُبكرة من مسار مرض متلازمة الشريان التاجى الحادة.

منهجية الدراسة: في هذه الدراسة المقطعية، قيست أعراض 255 مريضًا بمتلازمة الشريان التاجي الحادة في ثلاثة مستشفيات جامعية بالإسكندرية، مصر، باستخدام المقاييس الفرعية للقلق والتوتر للكتئاب والقلق والتوتر (CAS-R) ومقياس المواقف العربية المُتحكّم بها (CAS-R) واستُخدم تحليل الانحدار الخطي المُتعدد لتحديد العوامل السريرية والنفسية المُتنبئة لشدة الأعراض.

النتائج: كان تاريخ الإصابة بمرض السكري، وارتفاع ضغط الدم، وفرط شحميات الدم، ودرجات التحكم المدركة، والقلق، والتوتر، مُتنبئات مستقلة لجميع الأعراض المدروسة (ألم الصدر، والتعب، و16% وضيق التنفس). وقد أظهرت النماذج تباينًا بنسبة 15% لألم الصدر، و29% للتعب، و16% لضيق التنفس.

الاستنتاجات: كشفت هذه الدراسة أن مستويات القلق والتوتر تُنبئ بزيادة شدة الأعراض، بينما كان تاريخ الإصابة بمرض السكري، وارتفاع ضغط الدم، وفرط شحميات الدم، وبرجة التحكم المُدركة، مُنبئات مستقلة لجميع الأعراض (ألم الصدر، والتعب، وضيق التنفس).

الكلمات الدالة: متلازمة الشربان التاجي الحادة؛ القلق؛ مصر؛ المُنبئات؛ شدة الأعراض.