JORDAN MEDICAL JOURNAL

ORIGINAL ARTICLE

The Effect of Mobile Device Usage on SDQ Scores for Children Aged 6–12 in Jordan

Batool Al-Ajaleen¹, Nizar Heissat^{2*}, Raghda Al-Droubi¹, Raghad Al-Shalaldh¹, Mariam Ababneh¹, Marwa Abozour¹, Khaldoun Al-Darabseh¹, Abdul Rahman Al-Sayyed¹, Tareq Hussein¹ and Osama Abu-Salah³

¹Faculty of Medicine, Al-Balqa Applied University

²Anesthesia and intensive care Unit, Islamic Hospital, Amman, Jordan.

³Neaonatal Unit, Queen Alia Military Hospital, Amman, Jordan.

*Corresponding author: Nezar.yaya1997@gmail.com

Received: January 6, 2023

Accepted: August 14, 2023

DOI:

https://doi.org/10.35516/jmj.v58i3.785

Abstract

Objective: This study aimed to assess the effects of mobile device use on the Strengths and Difficulties Questionnaire (SDQ) scores of children aged 6–12 years in Jordan, and to examine the factors that led the children to experience such effects. Our goal was to provide useful recommendations on how and when to use such devices to minimize harm and maximize benefit.

Methods: An online, anonymous, cross-sectional, observational study was conducted between May and June 2022. It involved a self-administered web-based questionnaire completed by parents of children, using social media platforms for distribution. The inclusion criteria were residency in Jordan and being aged 6–12 years. A total of 829 responses were received from participants; with 553 responses analyzed.

Results: Children who used mobile devices for more than two hours daily had a higher risk of emotional symptoms (p=.002), behavior problems (p=.001), hyperactivity (p=.010), peer problems (p=.000) and prosocial problems (p=.015). Additionally, children who began using mobile devices at or before the age of two years, as well as those who used mobile devices before bedtime, were more likely to have abnormal scores (52.3% and 44.6%, respectively).

Conclusion: Our study demonstrated the negative effects of improper mobile devices use on children's health and psychological development. therefore, it is necessary to investigate these conditions and the extent of the resulting effects more broadly, in order to create a safer environment for the children's growth.

Keywords: SDQ score, Children, Behavior, Smartphones, Jordan

INTRODUCTION

The COVID-19 period and beyond saw an increase in the use of smart devices and elearning, urging the need to research the effects of this development and its potential impact on children's lives and health. Screen

time, which includes watching television or movies, playing video games, and using computers, is a common sedentary behavior among children [1]. According to the latest recommendations from the American Academy of Pediatrics (AAP), children under the age of two should not use electronic media at all, and children over two should limit their use to less than two hours per day [2]. Emotional, psychological, and social well-being are all included in the concept of mental health [3]. To have a good quality of life and function well at home, school, and in their communities, children must meet normal developmental and emotional milestones during childhood [4].

Mobile devices may affect children's moods in both positive and negative ways. Some of these positive effects lie in creating a type of connectedness with peers, making new friends, and feeling less alone. Recently, mobile devices have become increasingly available for children, anytime and anywhere, as they use them for various purposes, such as playing games, doing schoolwork, chatting with friends, and surfing the internet [5, 6]. However, excessive screen time can lead to several problems, the most significant of which are sleep disorders. These disorders can impair a child's ability to focus and contribute to developmental problems. Using electronic devices before bed increases autonomic activation in children, as bright screens can increase hyperarousal or disrupt melatonin production [7, 8]. Smartphone addiction has become a widespread problem globally [9]. Addiction to smartphones adversely affects users' thoughts, behaviors, feelings and sense calmness and peacefulness Smartphone addiction can manifest in various ways, including distraction and preoccupation, tolerance, lack of control, withdrawal, mood changes, struggle, conflict, lies, excessive use and loss of interest [11].

One study reported that high levels of smartphone addiction are associated with low self-esteem, loneliness, a persistent feeling of sadness, a loss of enthusiasm and timidity [12]. Smartphone addiction is also reported to induce

deficits because more cognitive impairments typically interfere with education, job and family [13]. Addiction is more likely to happen in adolescents rather than older people, with one Turkish study finding that higher levels of smartphone overuse are more common in younger individuals [14]. A study in Austria found that inconvenient mobile device usage had an association with chronic stress, emotional instability, the female gender, young age and depression [14]. In Taiwan, adolescents diagnosed with severe depression were found to exhibit more than three symptoms of problematic cellphone usage [15]. Moreover, the rise of cyberbullying, using digital technologies to harm others, has increased the risk of depression to a greater risk of and low self-esteem among children [16]. The World Health Organization (WHO) has also highlighted the link between excessive screen time and the development of sedentary lifestyle in elementary school children. Therefore, it is crucial to reduce screen time and encourage non-screen-based activities with a caregiver [17].

METHODOLOGY

An online, anonymous, cross-sectional, observational study was conducted between May and June 2022. A self-administered webbased questionnaire was filled in by parents and conducted using social media platforms. Inclusion criteria were residency in Jordan, being 6–12 years of age, and consenting to participate. All children with chronic diseases were excluded. The total responses reached 829 participants; 276 were excluded because they did not fit the inclusion criteria, and 553 responses were analyzed.

Ethical Considerations

This study adhered to the principles of the 1975 Declaration of Helsinki and was

approved by the Institutional Review Board at Al-Balga Applied University. The first page of the survey provided a brief explanation of the research aim and the types of questions required, requested consent, and clarified the participation was optional. Data was collected and securely stored in a locked file, with access restricted to the research team. No personal information or contact details were collected. For the first part of the online survey, all participants' parents were required to sign an electronic informed consent form. This form provided detailed information on the study goals, objectives, methods, supervisor contact information, and IRB approval.

Participants were informed that participation was voluntary and that they might stop the survey at any stage. Data confidentiality was ensured by stripping all and no identifiable information -related questions such as participant name or city of residence were asked. A study-specific unique identifier was generated for each participant, and the corresponding file was locked, password-protected, and accessible only to the research team for viewing, and analysis. All subsequent sharing, analyses were conducted on this anonymized file. Participants did not receive compensation reward for or their participation in the study.

Online Sampling Process

According to statistics from the Ministry of Education, the total number of both public and private schools in Jordan is 7,434 and the total number of school children aged 6–12 years is 1,281,935. The authors computed a sample size using the Raosoft calculator with a margin of error set to up to 5% and a confidence value of 95%; 385 respondents or

more were considered acceptable. To increase the response rate and reach the target population, the online survey was sent to a list of emails and social media platforms (e.g., Facebook and WhatsApp) using the convenience non-probability sampling method.

Survey Instruments

The survey was constructed based on the Arabic version of the SDQ. It was compiled using Google Forms and took five minutes to complete. The first page dealt with consent and other ethical considerations. Participants who consented to proceed by pressing 'OK' were allowed to answer subsequent questions. The second page focused on the baseline characteristics of participants such as age, gender, order in family, number of siblings, health status of the child and type of his/her school. It also inquired about the governorate where the child lives.

The third section related to using mobile devices and included a list of available electronic devices and their type, ownership, exposure duration, age at first exposure, content watched (videos, applications, social media account, games) and use while in bed. The fourth and fifth sections of the questionnaire covered all the SDQ. Thirty people were asked to fill in a pilot version of the survey before we commenced officially collecting data.

Data Management and Analysis Plan

Children aged 6–12 were assessed using the parent form of the SDQ. The assessment was divided into five subscales: conduct problem, hyperactivity, emotional symptoms, peer problems and pro-social behavior; each has five items [18].

Items were rated on a three-point Likert scale, with 0 representing 'Not true' and 2 representing 'Certainly true'. The internal consistency and construct validity were rated as adequate [19, 20, 21]. We divided participants into normal, borderline, and

abnormal groups [21]. The grading system used in the current study is shown in Table 1. The overall score depended on four subscales (emotional, conduct problems, hyperactivity, and peer problems).

Table 1. Categorizing SDQ scores for 4–17-year-olds

SDQ subscales	Original three-band categorization				
SDQ subscales	Normal	Borderline	Abnormal		
Emotional problems score	0–3	4	5–10		
Conduct problems score	0–2	3	4–10		
Hyperactivity score	0–5	6	7–10		
Peer problems score	0–2	3	4–10		
Total difficulties score	0–13	14–16	17–40		
Prosocial score	6–10	5	0–4		
Impact score	0	1	2–10		

An impact score was created by summing the items related to overall distress and impairment. When respondents answered 'No' for item 26 ('Overall, do you think that your child has difficulties in any of the following areas: emotions, concentration, behavior or being able to get along with other people?'), they were not asked to complete the questions on resultant distress or impairment; the impact score was automatically scored zero in these circumstances.

The data were collected using Microsoft Forms and downloaded into Excel for coding and de-identification before being imported into the Statistical Package for Social Science (IBM SPSS Statistics for Windows, version 25, IBM Corp., Armonk, N.Y., USA) for analysis.

RESULTS

Results of the present study are representative of the 553 Jordanian children included in the research. The tables present the demographic characteristics of the participants, their SDQ scores, and the association between

the overall SDQ score and variables related to the nature of mobile device use. The demographics of our study sample are summarized in Table 2 and were analyzed based on daily usage duration. Males made up 61.6% of the sample, with 46.3% classified as a greater user compared to 43.4% of females. Most participants had two or more siblings (61.3%), and the largest group were medium mobile users (51.9%).

Some 73.8% were the youngest among their siblings, and the highest percentage were greater mobile users (55%). Most mothers were less than 40 years old (68.2%), while most fathers were over 40 years old (59.5%). 57.7% of the mothers were homemakers or non-employees; on the other hand, 92.9% of the fathers were employees. Most of the participating mothers and fathers held bachelor's degrees (51.7 and 45.8%, respectively). studying After the relationships between this group of variables with the duration of mobile use, we found a significant association between the duration of use with the order of the child in the family (p=.00), the age of the mother and the father (p=.00) for both), and the educational degree obtained by the mother and father (p=.007)

and .038, respectively). However, we did not find any significant associations between the duration of mobile use and other variables.

Table 2. Participant characteristics (*n*=553)

	Total		Medium use		Long use					
			(2 hours or less)		(> 2 hours)		<i>p</i> -value			
	n	%	n	%	n	%				
Sex							~ 0			
Male	341	61.6	183	53.7	158	46.3	.50			
	Female 212 38.4 120 56.6 92 43.4									
Presence of siblings										
No	81	14.6	46	56.8	35		43.2			
1	133	24.1	81	60.9	52	39.1	.175			
2 or more	339	61.3	176	51.9	163	48.1				
			in the far			ı				
Youngest	209	37.8	94	45	115	55	.00			
Middle	151	27.3	84	55.6	67	44.4	.00			
Oldest	193	34.9	125	64.8	68	35.2				
		other a								
<40	377	68.2	233	61.8	144	38.2	.00			
40 or more	176	31.8	70	39.8	106	60.2				
	Fa	ther a	ge							
<40	224	40.5	145	64.7	79	35.3	.00			
40 or more	329	59.5	158	48	171	52				
	Mot	her's v	vork							
Employed	234	42.3	120	51.3	114	48.7	.155			
Unemployed/homemaker	319	57.7	183	57.4	136	42.6				
Father's work										
Employed	514	92.9	283	55.1	231	44.9	.648			
Unemployed/homemaker	39	7.1	20	51.3	19	48.7				
Mother's education										
Compulsory education	64	11.6	29	45.3	35	54.7				
Upper secondary school	162	29.3	75	46.3	87	53.7	.007			
Bachelors	286	51.7	175	61.2	111	38.8				
Post-graduate studies	41	7.4	24	58.5	17	41.5	ı			
Father's education										
Compulsory education	76	13.7	37	48.7	39	51.3				
Upper secondary school	181	32.7	87	48	94	52	.038			
Bachelors	253	45.8	152	60.1	101	39.9				
Post-graduate studies	43	7.8	27	62.8	16	37.2				

Table 3 presents a summary of the association between the daily time spent using

mobile devices and the five subscales of the SDQ. More than half of the participants who

used a mobile for more than two hours a day had abnormal scores regarding conduct problems (52%), while 47.6% suffered from peer problems; in addition, high percentages of greater users recorded abnormal scores in emotional symptoms and hyperactivity and 25.2%, (38.8% respectively). findings suggest that children who use mobile devices for more than two hours daily have a higher risk of emotional symptoms (p=.002), conduct problems (p=.001), hyperactivity (p=.010), peer problems (p=.000) and prosocial problems (p=.015) compared with those who spent two hours or less.

Most of the participants used smartphones daily (73.1%), and video watching apps were their first choice (48.6%). Most participants started using a mobile device after the age of

four years. In addition, 251 of the participants used a mobile before bedtime (45.4%). Statistically, significant effects of the age of starting to use mobiles and use before bedtime on the total difficulties were also identified (p=.000 in both). Children who started using mobile devices during or before the age of two years were more likely to have abnormal scores (52.3%) compared to those who started using mobiles at an older age (Table 4). In addition, those children who used the mobile device before bedtime had a higher percentage of abnormal scores (44.6%). On the other hand, there was no significant relationship between the total score and the most used type of mobile device or the applications for which the mobile device was used (p=.334 and .197, respectively).

Table 3. SDQ scores of participants according to the duration of mobile use (n=553)

	Medium use (2 hours or less)		Lo				
		$\mathbf{n} = 303$		n=250			p -
	Normal	Borderline	Abnormal	Normal	Borderline	Abnormal	value
	n (%)	n (%)	n (%)	n (%)	n (%)	n (%)	
Pro-social	245	28	30	176	33	41	.015
P10-social	(80.9)	(9.2)	(9.9)	(70.4)	(13.2)	(16.4)	.013
IIvm and ativity	219	37	47	153	34	63	010
Hyperactivity	(72.3)	(12.2)	(15.5)	(61.2)	(13.6)	(25.2)	.010
Emotional	180	47	76	116	37	97	002
Symptoms	(59.4)	(15.5)	(25.1)	(46.4)	(14.8)	(38.8)	.002
Conduct	134	58	111	81	39	130	001
Problems	(44.2)	(19.1)	(36.6)	(32.4)	(15.6)	(52)	.001
Peer	134	76	93	83	48	119	000
Problems	(44.2)	(25.1)	(30.7)	(33.2)	(19.2)	(47.6)	.000
Total	164	42	07	0.4	5.0	110	
Difficulties	164	42	97	84	56	110	.000
Score	(54.1)	(13.9)	(32)	(33.6)	(22.4)	(44)	
SDQ Impact	190	20	93	131	20	99	050
Score	(62.7)	(6.6)	(30.7)	(52.4)	(8)	(39.6)	.050

Table 4. The association between overall SDQ score and variables related to the nature of use (n=553)

		0					
	Total n (%)	Normal	Borderline	Abnormal	<i>p</i> -value		
		n (%)	n (%)	n (%)			
Most used device							
Smartphone	404 (73.1)	174 (43.1)	72 (17.8)	158 (39.1)	.334		
Tablet/iPad	149 (26.9)	74 (49.7)	26 (17.4)	49 (32.9)			
	Age of starti	ng to use devi	ces				
2 years or less	128 (23.1)	41 (32)	20 (15.6)	67 (52.3)	.000		
3–4 years	184 (33.3)	82 (44.6)	31 (16.8)	71 (38.6)	.000		
More than 4 years	241 (43.6)	125 (51.9)	47 (19.5)	69 (28.6)			
Applications used most							
video watching apps	269 (48.6)	107 (39.8)	48 (17.8)	114 (42.4)			
Games Apps	253 (45.8)	123 (48.6)	44 (17.4)	86 (34)	.197		
Social media	17 (3.1)	9 (53)	4 (23.5)	4 (23.5)			
Others	14 (2.5)	9 (64.3)	2 (14.3)	3 (21.4)			
Use before bedtime							
Yes	251 (45.4)	84 (33.5)	55 (21.9)	112 (44.6)	.000		
No	302 (54.6)	164 (54.3)	43 (14.2)	95 (31.5)			

DISCUSSION

This study evaluated the effect of using mobile devices on the SDQ scores of 553 Jordanian children aged 6-12 years in an online cross-sectional survey. It also examined the impact of demographic characteristics on the duration of mobile use and the relationship between various factors related to the nature of mobile use on the SDQ score of the participants. Males constituted 61% of the sample; we found an insignificant relationship between gender and mobile device use, similar to the results found in a previous study [22]. We found that the youngest child in the family used mobiles the longest, which may be explained by what is called 'the youngest child syndrome,' whereby the youngest child is more spoiled by the parents compared to their other children [23]. This opens the way for the child to use a mobile for more extended periods. There were significant associations

between the education of the mother and father and the duration of mobile use, consistent with a study conducted in Japan [24]. Similarly, Hinkley et al. identified no association between parental employment, the presence of siblings, and screen time for preschool children. [25]. In our study, we found that using mobiles (smartphones or tablets), was associated with an increased emotional possibility of symptoms, hyperactivity difficulties, conduct and peer problems. These findings are consistent with recent systematic reviews of aggregated electronic screen time in children and adolescents, which reported that increased use of mobile was associated with attention problems [26], concentration problems [26, 27], conduct problems [28], hyperactivity symptoms [27], and hostility [29], and that frequent mobile use without educational content may be associated with behavioral problems [24]. According to a cohort study, after a year, young children who

reported using mobile devices more frequently had higher scores on the parentreported **SDO** subscales measuring hyperactivity and behavioral problems [30]. For general mobile use, there are proven links between mobile use and depressive symptoms [31].

In line with prior research, we discovered a significant correlation between using a mobile device just before bed and the overall SDQ score. Bedtime use was significantly associated with worse mental health, including higher levels of internalizing symptoms, according to cross-sectional studies [32–34]. However, two of these studies discovered that the link between bedtime use and internalizing symptoms (depression, anxiety, suicidal ideation/ selfharm) persisted even after adjusting for sleep duration [32, 33]. Notably, more prolonged and frequent bedtime use was linked to higher levels of depression [33, 34], anxiety symptoms [33], suicidal thoughts, and selfinjury. [32].

Some parents allow their children to use mobiles to give them time to do housework, to keep the child calm or to put them to sleep [35], without realizing the potential harm of using mobiles at such a young age. Our research revealed a significant correlation between the children's first mobile use age and their overall SDQ scores, with 52% of children under the age of two scoring abnormally compared to those over that age (Table 4). There is general agreement that exposure to screens during infancy (under two years old) negatively impacts executive functions assessed in early childhood. Young children who were regularly exposed to screens as infants perform worse on tests of thinking, problem-solving, and language ability and exhibit greater difficulty in controlling their emotions. They also score higher on measures of demanding behaviors like fussiness [36–39].

Despite studies showing the detrimental effects of gaming applications, we could not detect a statistically significant relationship between the mobile phone application used and the overall SDQ scores. According to one study, children who play violent video games become more aggressive and exhibit less social behavior [40]. The type of game, which our study did not specify, as well as the characteristics of the sample—56.5% of gamers use their mobile devices for less than two hours, and 59% of their mothers and 56% of their fathers have college degrees—are to blame for the discrepancy.

RECOMMENDATIONS

After looking at the results of our study, we recommend that the use of mobile phones for the age group of 6–12 years should be less than two hours per day, which is consistent with Canadian [41], Australian [42], and AAP [43] recommendations. Our results also call for preventing the use of mobiles for children under two years of age, which is consistent with the recommendations of the AAP [44]. The results of our study also support the AAP's recommendation not to use a mobile at least an hour before bedtime [43].

CONCLUSION

Under the recent conditions of the closures resulting from the COVID-19 pandemic, people's lifestyles have changed and dependence on electronic devices and elearning has increased, which has brought about some psychological and social changes for individuals, especially children, and this has been proven through this study. Thus, it is necessary to focus on studying these

conditions more broadly and the extent of the resulting effect in order to educate parents and provide a safe environment for the growth of children.

Authors' Notes

The manuscript has been seen and approved by all authors and has not been

REFERENCES

- Carson V, Janssen I. Associations between factors within the home setting and screen time among children aged 0–5 years: a cross-sectional study. BMC public health. 2012 Dec;12 (1):1-8.
- Domingues-Montanari S. Clinical and psychological effects of excessive screen time on children. Journal of paediatrics and child health. 2017 Apr;53 (4):333-8.
- What is mental health? [Internet]. What Is Mental Health? | MentalHealth.gov. [cited 2022Sep29]. Available from:

https://www.mentalhealth.gov/basics/what-ismental-health

- 4. What is children's mental health? [Internet]. Centers for Disease Control and Prevention. Centers for Disease Control and Prevention; 2022 [cited 2022Sep29]. Available from:
 - https://www.cdc.gov/childrensmentalhealth/basics.html
- Dore I, Caron J. Mental health: concepts, measures, determinants. Sante mentale au quebec. 2017 Jan 1;42 (1):125-45.
- Vandewater EA, Lee SJ. Measuring children's media use in the digital age: issues and challenges. American Behavioral Scientist. 2009 Apr;52 (8):1152-76.
- Kabanov AV, Batrakova EV, Alakhov VY. Pluronic® block copolymers as novel polymer therapeutics for drug and gene delivery. Journal of controlled release. 2002 Aug 21;82 (2-3):189-212.
- 8. Higuchi S, Motohashi Y, Liu Y, Maeda A. Effects of playing a computer game using a bright display

published, or is being considered for publication, elsewhere. The authors transfer all copyright and ownership to the Jordan Medical Journal.

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

- on presleep physiological variables, sleep latency, slow wave sleep and REM sleep. Journal of sleep research. 2005 Sep;14 (3):267-73.
- Olson JA, Sandra DA, Colucci ÉS, Al Bikaii A, Chmoulevitch D, Nahas J, Raz A, Veissière SP. Smartphone addiction is increasing across the world: A meta-analysis of 24 countries. Computers in Human Behavior. 2022 Apr 1; 129:107138.
- 10. DOCOMO GN. Children's use of mobile phones—An international comparison 2011. GSM Association and Mobile Society Research Institute. 2018.
- 11. Harwood J, Dooley JJ, Scott AJ, Joiner R. Constantly connected—The effects of smart-devices on mental health. Computers in Human Behavior. 2014 May 1; 34:267-72.
- Edition F. Diagnostic and statistical manual of mental disorders. Am Psychiatric Assoc. 2013;21 (21):591-643.
- 13. Lee H, Kim JW, Choi TY. Risk factors for smartphone addiction in Korean adolescents: smartphone use patterns. Journal of Korean medical science. 2017 Oct 1;32 (10):1674-9.
- 14. Augner C, Hacker GW. Associations between problematic mobile phone use and psychological parameters in young adults. International journal of public health. 2012 Apr;57 (2):437-41.
- 15. Yen CF, Tang TC, Yen JY, Lin HC, Huang CF, Liu SC, Ko CH. Symptoms of problematic cellular phone use, functional impairment and its association with depression among adolescents in Southern Taiwan. Journal of adolescence. 2009 Aug 1;32 (4):863-73.
- 16. Choi SW, Kim DJ, Choi JS, Ahn H, Choi EJ, Song

- WY, Kim S, Youn H. Comparison of risk and protective factors associated with smartphone addiction and Internet addiction. Journal of behavioral addictions. 2015 Dec 21;4 (4):308-14.
- 17. To grow up healthy, children need to sit less and play more [Internet]. World Health Organization. World Health Organization; [cited 2022Sep18]. Available from:

https://www.who.int/news/item/24-04-2019-to-grow-up-healthy-children-need-to-sit-less-and-play-more

18. What is SDQ? [Internet]. Sdqinfo.org. [cited 2022Sep15]. Available from:

https://www.sdqinfo.org/a0.html

- 19. Goodman R, Scott S. Comparing the Strengths and Difficulties Questionnaire and the Child Behavior Checklist: is small beautiful? Journal of abnormal child psychology. 1999 Feb;27 (1):17-24.
- 20. Goodman R, Ford T, Simmons H, Gatward R, Meltzer H. Using the Strengths and Difficulties Questionnaire (SDQ) to screen for child psychiatric disorders in a community sample. The British journal of psychiatry. 2000 Dec;177 (6):534-9.
- 21. Matsuishi T, Nagano M, Araki Y, Tanaka Y, Iwasaki M, Yamashita Y, Nagamitsu S, Iizuka C, Ohya T, Shibuya K, Hara M. Scale properties of the Japanese version of the Strengths and Difficulties Questionnaire (SDQ): a study of infant and school children in community samples. Brain and Development. 2008 Jun 1;30 (6):410-5.
- 22. Chen B, Liu F, Ding S, Ying X, Wang L, Wen Y. Gender differences in factors associated with smartphone addiction: a cross-sectional study among medical college students. BMC psychiatry. 2017 Dec;17 (1):1-9.
- 23. Newton A. Youngest child syndrome: Characteristics [Internet]. Healthline. Healthline Media; 2016 [cited 2022Oct18]. Available from: https://www.healthline.com/health/parenting/youngest-child-syndrome#Does-Birth-Order-Really-Matter?
- 24. Kucuk IG, Eser U, Cevik M, Ongel K. Mobile

- phone usage characteristics of children at school and parents' approach. Medicine. 2020;9 (2):503-8.
- 25. Hinkley T, Salmon J, Okely AD, Trost SG. Correlations of sedentary behaviors in preschool children: a review. International Journal of Behavioral Nutrition and Physical Activity. 2010 Dec;7 (1):1-0.
- 26. Mortazavi SM, Atefi M, Kholghi F. The pattern of mobile phone use and prevalence of self-reported symptoms in elementary and junior high school students in Shiraz, Iran. Iranian journal of medical sciences. 2011 Jun;36 (2):96.
- 27. Söderqvist F, Carlberg M, Hardell L. Use of wireless telephones and self-reported health symptoms: a population-based study among Swedish adolescents aged 15–19 years. Environmental Health. 2008 Dec;7 (1):1-0.
- 28. Hosokawa R, Katsura T. Association between mobile technology use and child adjustment in early elementary school age. PloS one. 2018 Jul 25;13 (7):e0199959.
- 29. Calpbinici P, Tas Arslan F. Virtual behaviors affecting adolescent mental health: The usage of Internet and mobile phone and cyberbullying. Journal of Child and Adolescent Psychiatric Nursing. 2019 Aug;32 (3):139-48.
- 30. Poulain T, Vogel M, Neef M, Abicht F, Hilbert A, Genuneit J, Körner A, Kiess W. Reciprocal associations between electronic media use and behavioral difficulties in preschoolers. International journal of environmental research and public health. 2018 Apr;15 (4):814.
- 31. Khouja JN, Munafò MR, Tilling K, Wiles NJ, Joinson C, Etchells PJ, John A, Hayes FM, Gage SH, Cornish RP. Is screen time associated with anxiety or depression in young people? Results from a UK birth cohort. BMC public health. 2019 Dec;19 (1):1-1.
- 32. Oshima N, Nishida A, Shimodera S, Tochigi M, Ando S, Yamasaki S, Okazaki Y, Sasaki T. The suicidal feelings, self-injury, and mobile phone use after lights out in adolescents. Journal of pediatric

- psychology. 2012 Oct 1;37 (9):1023-30.
- 33. Mei X, Hu Z, Zhou D, Zhou Q, Li X, Wang X, Jing P. Sleep patterns, mobile phone use and psychological symptoms among adolescents in coastal developed city of China: an exploratory cross-sectional study. Sleep and Biological Rhythms. 2019 Apr;17 (2):233-41.
- 34. Lemola S, Perkinson-Gloor N, Brand S, Dewald-Kaufmann JF, Grob A. Adolescents' electronic media use at night, sleep disturbance, and depressive symptoms in the smartphone age. Journal of youth and adolescence. 2015 Feb;44 (2):405-18.
- 35. Kabali HK, Irigoyen MM, Nunez-Davis R, Budacki JG, Mohanty SH, Leister KP, Bonner Jr RL. Exposure and use of mobile media devices by young children. Pediatrics. 2015 Dec;136 (6):1044-50.
- 36. Wilkinson C, Low F, Gluckman P. Screen time: The effects on children's emotional, social, and cognitive development.
- 37. McHarg G, Ribner AD, Devine RT, Hughes C, NewFAMS Study Team. Infant screen exposure links to toddlers' inhibition, but not other EF constructs: A propensity score study. Infancy. 2020 Mar;25 (2):205-22.
- 38. Lopez-Leon S, Wegman-Ostrosky T, Perelman C, Sepulveda R, Rebolledo PA, Cuapio A. More than 50 Long-term effects of COVID-19: a systematic review and meta-analysis. medRxiv. 2021 Jan 30. Preprint. 2021.

- Radesky JS, Silverstein M, Zuckerman B, Christakis DA. Infant self-regulation and early childhood media exposure. Pediatrics. 2014 May;133 (5):e1172-8.
- 40. Ybarra ML, Diener-West M, Markow D, Leaf PJ, Hamburger M, Boxer P. Linkages between internet and other media violence with seriously violent behavior by youth. Pediatrics. 2008 Nov;122 (5):929-37.
- 41. Children & Description
 41. Children & Description
 41. Children & Description
 42. Septiment Suidelines (Internet)
 44. Available from:
 44. Septiment Suidelines
 44. Septiment Suidelines
 44. Children & Description
 44. Septiment Suidelines
 44. S
 - https://csepguidelines.ca/guidelines/childrenyouth/
- 42. Australian Government Department of Health and Aged Care. For children and young people (5 to 17 years) [Internet]. Australian Government Department of Health and Aged Care. Australian Government Department of Health and Aged Care; 2021 [cited 2022Oct18]. Available from: https://www.health.gov.au/health-topics/physical-activity-and-exercise/physical-activity-and-exercise-guidelines-for-all-australians/for-children-and-young-people-5-to-17-years
- Council On C. Media. Media Use in School-Aged Children and Adolescents. Pediatrics. 2016;138 (5).
- 44. American Academy of Pediatrics. Council on Communications and Media (2016a). Media and young minds. Pediatrics.;138 (5):1-6.

تأثير استخدام الأجهزة المحمولة على نتائج استبيان مواطن القوة و الصعوبات عند الأطفال في الفئة العمرية 6 إلى 12 سنة في الأردن

بتول العجالين 1 ، نزار حياصات 2 ، رغدة الدروبي 1 ، رغد الشلالدة 1 ، مريم عبابنة 1 ، مروة أبو زور 1 ، خلدون الدرابسة 1 ، عبدالرحمن السيد 1 ، طارق حسين 1 ، أسامة أبو صلاح 3

الملخص

2 تخدير وعناية مركزة، المستشفى الاسلامي، عمان، الأردن

أكلية الطب، جامعة البلقاء التطبيقية

³وحدة الخداج، مستشفى الملكة علياء

العسكري، عمان، الأردن.

الخلفية والأهداف: هدفت هذه الدراسة إلى تقييم تأثير استخدام أجهزة الموبايل على نتائج استبيان القوى والصعوبات (SDQ) لدى الأطفال الذين تتراوح أعمارهم بين 6 و12 عامًا في الأردن، وإلى تقييم العوامل التي تؤدي لحدوث هذه التأثيرات، للوصول إلى توصيات مفيدة حول كيفية وقت استخدام هذه الأجهزة بأقل ضرر وأقصى فائدة لصحة الأطفال النفسية و العقلية.

المنهجية: تم اجراء دراسة عبر الإنترنت (cross-sectional study) بين مايو ويونيو 2022. تكونت من استبيان ذاتي التعبئة تم ملؤه من قبل أولياء الأمور للأطفال وتم إجراؤه باستخدام منصات وسائل التواصل الاجتماعي. و شملت معايير الاشتراك الإقامة في الأردن وبلوغ سن 6-12 سنة. بلغ إجمالي الإجابات 829 مشاركًا و تم تحليل 553 إجابة منها.

النتائج: أظهرت النتائج أن الأطفال الذين استخدموا أجهزة الموبايل لأكثر من ساعتين يوميًا كانوا أكثر عرضة للأعراض الانفعالية (P = .000) ومشاكل السلوك (P = .000) ومشاكل السلوك الاجتماعي الايجابي (P = .000) ومشاكل العلاقة مع الاقران .(P = .000) . كان الأطفال الذين بدأوا استخدام أجهزة الموبايل أثناء أو قبل سنتين من العمر ، والذين استخدموا الجهاز المحمول قبل النوم ، أكثر احتمالًا أن يكون لديهم نتائج غير طبيعية (52.3% و 44.6% على التوالي).

الاستنتاجات: ظهرت التأثيرات السلبية للاستخدام الخاطئ لأجهزة الموبايل على صحة وتطور الأطفال بشكل واضح في دراستنا. وبالتالي، من الضروري دراسة هذه الظروف بشكل أوسع و دراسة مدى التأثير الناتج لتوفير بيئة آمنة لنمو الأطفال.

الكلمات الدالة: استبيان مواطن القوة و الصعوبات، الأطفال، السلوك، الأجهزة الذكية، الأردن.

Received: January 6, 2023

Accepted: August 14, 2023

DOI:

https://doi.org/10.35516/jmj.v58i3.785