Mediterranean Saltbush (Atriplex halimus L.): A promising Halophyte for Combating Desertification in Jordan
DOI:
https://doi.org/10.35516/JJAS.4764Keywords:
Atriplex halimus, drought, salinity, water stress, Desertification, Halophytes, XerophytesAbstract
Mediterranean saltbush (Atriplex halimus L.) belongs to the family Amaranthaceae. It is a halophyte and perennial shrub, which is a resilient and versatile plant species native to the Mediterranean basin. It has remarkable adaptation to arid and semi-arid environments. Jordan is considered one of the poorest countries in the world in terms of natural water resources, and the desert areas occupy more than three-quarters of the country. Considering the conditions of global warming, desertification, lack of rainfall, and scarcity of pastures and green fodder, A. halimus is promising to confront these challenges. This review presents the scientific classification of A. halimus, its geographical distribution, its presence in Jordan, its uses, and its anatomical and phenotypic characteristics. The study sheds light on its most important characteristics that make it an adapted plant to a desert environment. It can be concluded that by leveraging the unique properties of A. halimus, Jordan can address critical environmental challenges while supporting sustainable practices. This aligns with the nation's long-term goals of water conservation, land reclamation, and food security.
Downloads
References
Abu-Zanat MMW, Al-Ghaithi AK, and Akash MW. (2020). Effect of Planting Atriplex seedlings in micro-catchments on attributes of natural vegetation in arid rangelands. Journal of Arid Environments,180: 104199.
Al-Eisawi D. (1996). Vegetation of Jordan. UNESCO, Regional Office for Science and Technology for the Arab States, Cairo, Egypt.
Al-Hamad MN, Alrababah MA und Athamneh HI. (2021). Improving Revegetation of Degraded Dryland Using Zeolitic Tuff and Saltbush Species. Agriculturae Conspectus Scientificus, 86(4): 317-322.
Al-Kofahi SD, Sawalhah MN, and Dkhineh AEA. (2024). Vegetation diversity and composition in relation to different grazing intensity levels in an arid environment in Jordan. African Journal of Range & Forage Science., 41(3), 170-181.
Allen MF. (2007). Mycorrhizal fungi: highways for water and nutrients in arid soils. Vadose Zone Journal, 6(2): 291-297.
Alotibi MM, AL-Huqail AA, Ghoneim AM, and Eissa MA. (2023). Seasonal Variations in Yield and Biochemical Composition of the Mediterranean Saltbush (Atriplex halimus L.) Under Saline Agriculture in Semi-Arid Regions. Journal of Soil Science and Plant Nutrition, 23(3): 3834-3844.
Al-Qinna MI, Hammouri NA, Obeidat MM, and Ahmad FY. (2011). Drought analysis in Jordan under current and future climates. Climatic change. 106(3): 421-440.
Al-Satari, YAR, and Dalbouh MOA. (2014). Study the reproductivity of rangeland planted with Atriplex halimus shrubs in the northern Badia of Jordan. International Journal of Humanities, Arts, Medicine and Sciences, 2 (5):15-20.
Al-Satari Y, Al-Ramamneh EAD, Ayad J, Dalbouh MA, Amayreh I and Khreisat Z. (2018). Impact of seedling age on the survival and productivity of Atriplex halimus shrubs in drought-affected rangelands of Jordan. The Rangeland Journal, 40(3): 287-296.
Ayad J. (2010). Comparative Effects of CaCl2 and NaCl Salinity on Growth and Ion Partitioning of Atriplex halimus L. Dirasat, Agricultural Sciences, 37(2):82-90.
Ayad JY, Talhouni MN, and Saoub H. (2010). Variation in growth and water uptake of Atriplex halimus and Atriplex nummularia plants in relation to water deficit. Dirasat, Agricultural Sciences, 37(2):91-100.
Bajji M, Kinet JM, and Lutts S. (1998). Salt stress effects on roots and leaves of Atriplex halimus L. and their corresponding callus cultures. Plant science, 137(2): 131-142.
Balasubramaniam T, Shen G, Esmaeili N, and Zhang H. (2023). Plants’ response mechanisms to salinity stress. Plants., 12(12): 2253.
Banerjee A and Roychoudhury A. (2015). WRKY proteins: signaling and regulation of expression during abiotic stress responses. The Scientific World Journal, 2015(1): 807560.
Barger NN, Belnap J, Ojima DS, and Mosier A. (2005). NO gas loss from biologically crusted soils in Canyonlands National Park, Utah. Biogeochemistry, 75: 373-391.
Bechtold U. (2018). Plant life in extreme environments: how do you improve drought tolerance? Frontiers in Plant Science, 9: 543.
Bita CE and Gerats T. (2013). Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Frontiers in plant science.4: 273.
Bouda S, Haddioui A, Baaziz M, Del Campo FF, and Hernandez LE. (2006). Genetic diversity characterization of genus Atriplex using RAPD markers. Second International Congress of Biochemistry. Agadir, Morocco.
Brignone NF, Pozner RE, and Denham SS. (2019). Origin and evolution of Atriplex (Amaranthaceae sl) in the Americas: unexpected insights from South American species. Taxon., 68(5): 1021-1036.
Buchanan Bob B, Wilhelm Gruissem, and Russell L. Jones. (2015). Second edition. Biochemistry and molecular biology of plants. John Wiley & Sons, Ltd, Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK.
Čalasan AŽ, Hammen S, Sukhorukov AP, McDonald JT, Brignone NF, Böhnert T, and Kadereit G. (2022). From continental Asia into the world: Global historical biogeography of the saltbush genus Atriplex (Chenopodieae, Chenopodioideae, Amaranthaceae). Perspectives in Plant Ecology, Evolution and Systematics, 54:125660.
Calone R, Cellini A, Manfrini L, Lambertini C, Gioacchini P, Simoni A and Barbanti L. (2021). The C4 Atriplex halimus vs. the C3 Atriplex hortensis: similarities and differences in the salinity stress response. Agronomy., 11(10): 1967.
Chaudhry UK, Gökçe ZNÖ and Gökçe AF. (2021). The influence of salinity stress on plants and their molecular mechanisms. In Biology and Life Sciences Forum, 11(1): 31.
Chaves MM, Flexas J and Pinheiro C. (2009). Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Annals of botany, 103(4): 551-560.
Damhoureyeh S. (2017). Effects of simulated grazing (clipping) on plant population responses and resource allocation patterns in semi-arid environments. Pak. J. Bot., 49(3): 981-986.
Demmig‐Adams B and Adams III WW. (2006). Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytologist. 172(1): 11-21.
Downton WJS, Berry JA, and Seemann JR. (1984). Tolerance of photosynthesis to high temperature in desert plants. Plant Physiology, 74(4): 786-790.
El-Amier YA and El Hayyany LY. (2020). Floristic composition and species diversity of plant communities associated with genus Atriplex in the Nile Delta coast, Egypt. Asian Journal of Conservation Biology, 9(1): 11-24.
El Shaer MH and Attia-Ismail SA. (2002). Halophytes as animal feeds: Potentiality, constraints, and prospects. In Proceedings of the International Symposium on Optimum Utilization in Salt-Affected Ecosystems in Arid and Semi-arid Regions (pp. 411-418).
El‐Shatnawi, MDKJ, and Turuk, M. (2002). Dry matter accumulation and chemical content of saltbush (Atriplex halimus) grown in Mediterranean desert shrublands. New Zealand Journal of Agricultural Research, 45(3): 139-144.
El-Shatnawi, MDKJ, and Mohawesh, YM. (2000). Seasonal chemical composition of saltbush in semiarid grasslands of Jordan. Journal of Range Management, 53(2): 211-214.
Essafi NE, Mounsif M, Abousalim A, Bendaou M, Rachidai A, and Gaboune F. (2006). Impact of water stress on the fodder value of Atriplex halimus L. New Zealand Journal of Agricultural Research, 49(3): 321-329.
Fayyaz A, Raza A., Akram NA, and Ashraf M.(2014). Heat stress-induced morpho-physiological changes in plants. Plant Physiology and Biochemistry, 78, 19-22.
Finkelstein RR, Gampala SS, Rock CD. .(2002). Abscisic acid signalling in seeds and seedlings. Plant Cell., 14: S15–S45.
Flowers, T.J., and Colmer, T.D. (2015). Plant salt tolerance: adaptations in halophytes. Annals of botany, 115(3): 327-331.
Flowers, TJ, and Colmer TD. (2008). Salinity tolerance in halophytes. New Phytologist. 179: 945-963.
Freiwan M and Kadioglub M. 2008. Spatial and temporal analysis of climatological data in Jordan. International Journal of Climatology, 28: 521–535.
Gharibeh OE, Shiyab SM, and Saoub H. (2023). Atriplex (Atriplex halimus): Distribution, Morphology, Physiological Tolerance to Salinity and Drought: A Review. International Journal of Membrane Science and Technology,10, (3): 860-868.
Grigore MN, Ivanescu L, and Toma C. (2014). Halophytes: an integrative anatomical study, first ed. Springer International Publishing Switzerland.
Guerrero-Campo J, Palacio SARA, Pérez-Rontome C and Montserrat-Marti G. (2006). Effect of root system morphology on root-sprouting and shoot-rooting abilities in 123 plant species from eroded lands in north-east Spain. Annals of Botany, 98(2): 439-447.
Haddad M, Strohmeier SM, Nouwakpo K, Rimawi O, Weltz M, and Sterk G. (2022). Rangeland restoration in Jordan: Restoring vegetation cover by water harvesting measures. International Soil and Water Conservation Research, 10(4): 610-622.
Hamdani F, Derridj A, and Rogers HJ. (2017). Multiple mechanisms mediate growth and survival in young seedlings of two populations of the halophyte Atriplex halimus (L.) subjected to long single-step salinity treatments. Functional Plant Biology, 44(8): 761-773.
Hassine AB and Lutts S. (2010). Differential responses of saltbush Atriplex halimus L. exposed to salinity and water stress in relation to senescing hormones abscisic acid and ethylene. Journal of Plant Physiology, 167(17): 1448-1456.
Hcini, Kheiria, Ferchichi Ouerda H, and Bouzid S. (2007). Morphological variability of fruit and chromosome numbers in Tunisian populations of Atriplex halimus L. (Chenopodiaceae). Caryologia, 60(3): 203–211.
Hossain MA, Lee Y, Cho JI, Ahn CH, Lee SK, and Jeon JS.(2010). The bZIP transcription factor OsABF1 is an ABA-responsive element-binding factor that enhances abiotic stress signaling in rice. Plant Mol Biol.,72:557–560.
Imene B and Khouloud M. (2024). Study of Atriplex halimus leaves polymorphism belonging to two bioclimatic conditions of the Tébessa région. University Larbi Tébessi, Tébessa, Algeria.
Ishtiyaq S, Kumar H, D’Souza RJ, Varun M, Favas PJ, and Paul MS. (2023). Physiological responses and adaptations of the halophyte Atriplex halimus to soil contaminated with Cd, Ni, and NaCl. Soil Systems., 7(2): 46.
Jordan BR. (2002). Molecular response of plant cells to UV-B stress. Functional Plant Biology, 29(8): 909-916.
Kadereit G, Mavrodiev EV, Zacharias EH, and Sukhorukov AP. (2010). Molecular phylogeny of Atripliceae (Chenopodioideae, Chenopodiaceae): implications for systematics, biogeography, flower and fruit evolution, and the origin of C4 photosynthesis. American Journal of Botany, 97(10): 1664-1687.
Ounaissia K, Ailane L, Laredj H, Bennadja S, and Smati D. (2019). Anatomical Study of Atriplex halimus L.(Guettaf) Growing under the Climatic Conditions of Biskra-Algeria. International Journal of Innovative Approaches in Agricultural Research, 3(4):698-705.
Keil DJ and Taylor DW. (2018). Atriplex flavida (Chenopodiaceae), a new combination for a recently described annual saltbush. Phytoneuron, 65: 1-7.
Khalid MF, Hussain S, Ahmad S, Ejaz S, Zakir I, Ali MA, and Anjum MA. (2019). Impacts of abiotic stresses on the growth and development of plants. In: Hasanuzzaman M, Fujita M, Oku H, Tofazzal Islam M, Plant Tolerance to Environmental Stress: Role of Phytoprotectants. CRC Press, Boca Raton, Florida, pp. 1-8.
Khresat SA, Rawajfih Z, Buck B and Monger HC. (2004). Geomorphic features and soil formation of arid lands in Northeastern Jordan. Archives of Agronomy and Soil Science, 50(6): 607-615.
Lamers J, Van Der Meer T, and Testerink C. (2020). How plants sense and respond to stressful environments. Plant Physiology, 182(4): 1624-1635.
Le Houérou H.H .(1992). The role of saltbushes (Atriplex spp.) in arid land rehabilitation in the Mediterranean Basin: a review. Agrofor. Sys. 18: 107-148.
Mahi Z, Dedaldechamp F, Belkhodja M, and Lemoine R. (2015). Anatomical features of Atriplex halimus L. to Saline Environments.1st International Symposium of Applied Biology, 1 (6): 69-76.
Mandák B, Bímová K, Mahelka V and Plačková I. (2006). How much genetic variation is stored in the seed bank? A study of Atriplex tatarica (Chenopodiaceae). Molecular Ecology, 15(9): 2653-2663.
Mann A, Kumar N, Kumar A, Lata C, Kumar A, Meena BL, Gaba S, and Grover M. (2021a). De novo Transcriptomic data of salt-tolerant halophytes, Dichnathium annulatum (Forssk.) Stapf and Urochondra setulosa (Trin.) C.E.Hubb. Data in Brief, 39: 107536.
Mann A, Lata C, Kumar N, Kumar A, Kumar A, and Sheoran P. (2023). Halophytes as new model plant species for salt tolerance strategies. Frontiers in Plant Science, 14: 1137211.
Maun MA. (1998). Adaptations of plants to burial in coastal sand dunes. Canadian Journal of Botany, 76(5): 713-738.
JP M.(2003). Effect of water stress on growth, Na^+ and K^+ accumulation and water use efficiency in relation to osmotic adjustment in two populations of Atriplex halimus L. Plant Growth Regul.,41: 63-73.
Martínez JP, Kinet JM, Bajji M, and Lutts S. (2005). NaCl alleviates polyethylene glycol-induced water stress in the halophyte species Atriplex halimus L. Journal of Experimental Botany, 56(419): 2421-2431.
Ministry of Water and Irrigation MWI. (2009). Annual report of the Water Authority of Jordan. Amman, Jordan
Munns, R. and Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol., 59(1): 651-681.
Musallam A, Abu-Romman S, and Sadder MT. (2023). Molecular Characterization of Dehydrin in Azraq Saltbush among Related Atriplex Species. BioTech., 12(2): 27.
Nada RM and Abogadallah GM. (2015). Developmental acquisition of salt tolerance in the halophyte Atriplex halimus L. is related to differential regulation of salt inducible genes. Plant Growth Regulation., 75: 165-178.
Nada RM, Khedr AHA, Serag MS, El-Qashlan N and Abogadallah GM. (2018). Maturation of Atriplex halimus L. leaves involves changes in the molecular regulation of stomatal conductance under high evaporative demand and high but not low soil water content. Planta., 248: 795-812.
Nakano T, Suzuki K, Fujimura T, and Shinshi H. (2006). Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiol., 140:411–432.
Nawash OS and Ahmad Al-SH. (2011). The most important medicinal plants in the Wadi Araba Desert in Southwest Jordan: a review article. Advances in Environmental Biology, 418-426.
Neef R. (1998). Living in the Desert: Plant Remains from Tall al-Magaßß (‘Aqaba). In: Khalil L and Schmidt K (eds.), Prehistoric 'Aqaba I. Prähistorisches Akaba I. Orient-Archäologie, Rahden/Westfalen, pp. 355-362.
Nemat Alla MM, Khedr AHA, Serag MM, Abu-Alnaga AZ and Nada RM. (2011). Physiological aspects of tolerance in Atriplex halimus L. to NaCl and drought. Acta Physiologiae Plantarum., 33: 547-557.
Nemat Alla MM, Khedr AHA, Serag MM, Abu-Alnaga AZ and Nada RM. (2012). Regulation of metabolomics in Atriplex halimus growth under salt and drought stress. Plant Growth Regulation., 67: 281-304.
Nishiyama Y, Allakhverdiev SI, and Murata N. (2006). A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1757(7): 742-749.
Noy-Meir I. (1973). Desert ecosystems: environment and producers. Annual review of ecology and systematics., 25-51.
Orrego F, Ortiz-Calderón C, Lutts S and Ginocchio R. (2020). Growth and physiological effects of single and combined Cu, NaCl, and water stresses on Atriplex atacamensis and A. halimus. Environmental and Experimental Botany., 169: 103919.
Ortiz-Dorda J, Martínez-Mora C, Correal E, Simón B and Cenis JL. (2005). Genetic structure of Atriplex halimus populations in the Mediterranean Basin. Annals of Botany., 95(5): 827-834.
Parcy F, Giraudat J. (1997). Interactions between the ABI1 and the ectopically expressed ABI3 genes in controlling abscisic acid responses in Arabidopsis vegetative tissues. Plant J.,11:693–702.
Pearce RS. (2001). Plant freezing and damage. Annals of botany, 87(4): 417-424.
Pérez-Romero JA, Mateos-Naranjo E, López-Jurado J, Redondo-Gómez S and Torres-Ruiz JM. (2020). Importance of physiological traits vulnerability in determining halophytes' tolerance to salinity excess: a comparative assessment in Atriplex halimus. Plants., 9(6): 690.
Reis RR, Brito da Cunha BAD, Martins PK, Martins MTB, Alekcevetch JC, Chalfun-Júnior A, Andrade AC, Ribeiroa AB, Qind F, Mizoie J, Yamaguchi-Shinozakie K, Nakashima K, Carvalho JFC, Ferreira de Sousa CA, Nepomuceno AL, Kobayashi AK and Molinaria HBC.(2014). Induced over-expression of AtDREB2A CA improves drought tolerance in sugarcane. Plant Sci., 221(222):59–68.
Roeber VM, Bajaj I, Rohde M, Schmülling T, and Cortleven A.(2021). Light acts as a stressor and influences abiotic and biotic stress responses in plants. Plant Cell & Environment, 44(3): 645-664.
Rostan NAS and Manshoor N. (2024). Traditional Uses and Pharmacological Properties of Anastatica hierochuntica. Research Journal of Pharmacognosy, 11(4): 67-78.
Rushton PJ, Somssich IE, Ringler P, and Shen QJ. (2010). WRKY transcription factors. Trends in plant science, 15(5): 247-258.
Sada AA, Abu-Allaban M, and Al-Malabeh A. (2015). Temporal and spatial analysis of climate change at Northern Jordanian Badia. Jordan Journal of Earth and Environmental Sciences, 7(2): 87-93.
Sadder MT and Al-Doss AA. (2014). Characterization of dehydrin AhDHN from Mediterranean saltbush (Atriplex halimus). Turkish Journal of Biology, 38(4): 469-477.
Sadder MT, Anwar F, and Al-Doss AA. (2013). Gene expression and physiological analysis of Atriplex halimus (L.) under salt stress. Australian Journal of Crop Science, 7(1): 112-118.
Salahat MA and Al-Qinna MI.(2015). Rainfall fluctuation for exploring desertification and climate change: new aridity classification. Jordan Journal of Earth and Environmental Sciences,7(1): 27-35.
Saoub HM, Al-Tabini R, Al-Khalidi K und Ayad JY. (2011). Effect of three water harvesting techniques on forage shrub and natural vegetation in the Badia of Jordan. International Journal of Botany, 7(3):230-236.
Schwinning S and Ehleringer JR. (2001). Water use trade‐offs and optimal adaptations to pulse‐driven arid ecosystems. Journal of Ecology, 89(3): 464-480.
Shabala S, Bose J, and Hedrich R. (2014). Salt bladders: do they matter? Trends in Plant Science, 19(11): 687-691.
Sung DY, Kaplan F, Lee KJ, and Guy CL. 2003. Acquired tolerance to temperature extremes. Trends in Plant Science, 8(4): 179-187.
Sun Y, Wang C, Chen HY, and Ruan H. (2020). Response of plants to water stress: a meta-analysis. Frontiers in Plant Science, 11: 978.
Tadros, K. (2000). Fodder shrubs in Jordan. In: Gintzburger G, Bounejmate M, and Nefzaoui A, Fodder shrub development in arid and semi-arid zones. International Center for Agricultural Research in the Dry Areas (ICARDA), Aleppo, Syria, pp. 122-133.
Taifour H and El-Oqlah A. (2014). Jordan plant red list (Vol. 1), First ed. Royal Botanic Garden, Amman, Jordan.
Taiz L and Zeiger E. (2002). Plant physiology, 3rd. Sinauer Associates, England.
Talamali A, Dutuit P, Le Thomas A, and Gorenflot R. (2001). Polygamie chez Atriplex halimus L. (Chenopodiaceae). Comptes Rendus de l'Académie des Sciences-Séries III-Sciences de la Vie, 324(2) : 107-113.
Walker DJ and Lutts S. (2014). The tolerance of Atriplex halimus L. to environmental stresses. Emirates Journal of Food & Agriculture (EJFA),26 (12): 1081-1090.
Walker DJ, Lutts S, Sánchez-García M and Correal E. (2014). Atriplex halimus L.: Its biology and uses. Journal of Arid Environments, 100: 111-121.
Xi JJ, Chen HY, Bai WP, Yang RC, Yang PZ, Chen RJ and Wang SM. (2018). Sodium-related adaptations to drought: New insights from the xerophyte plant Zygophyllum xanthoxylum. Frontiers in Plant Science, 9: 1678.
Zervoudakis G, Angelopoulos K, Salahas G, and Georgiou CD. (1998). Differences in cold inactivation of phosphoenolpyruvate carboxylase among C4 species: the effect of pH and of enzyme concentration. Photosynthetica, 35: 169-175.
Zimmermann P, Hirsch-Hoffmann M, Hennig L and Gruissem W. (2004). GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant physiology, 136(1): 2621-2632.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jordan Journal of Agricultural Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Accepted 2025-11-12
Published 2025-12-01