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Abstract 

Objectives: This study aims to forecast the daily peak electricity load in Jordan using a 

dataset of hourly peak load data for the period from January 1, 2010, to December 31, 

2022, compiled by the National Electric Power Company (NEPCO). 

Methods: This study employs the Seasonal Autoregressive Integrated Moving Average 

(SARIMA) model to make forecasts. The data exhibits an upward trend, seasonality, and 

non-constant variance. To address these features, the SARIMA model is used to account 

for the trend and seasonality, while a Box-Cox transformation is applied to manage the 

non-constant variance.  

Results: Following the standard Box-Jenkins methodology (identification, estimation, 

diagnostic checking, and forecasting) and utilizing the “auto.arima()” function in the 

RStudio software package, the resulting SARIMA model is ARIMA(1,0,1)(2,1,2)[7]. 

This model is used to forecast 7 future values of the electricity load. The Mean Absolute 

Percentage Error (MAPE) and the Root Mean Square Error (RMSE) values, as measures 

of forecast accuracy, support the precision of our forecasts.  

Conclusion: Based on empirical results, electricity companies in Jordan are encouraged 

to use time series models for forecasting electricity loads instead of relying on simple 

spreadsheet models. 

Keywords: ARIMA model, SARIMA model, Box-Jenkins method, electricity load 

forecasting, Jordan, auto.arima(), RStudio software package. 

 
التنبؤ بالأحمال الكهربائية في الأردن باستخدام نموذج الانحدار الذاتي والمتوسطات 

  ARIMAالمتحركة المتكاملة 

 1*سامح عاصم العجلوني

 قسم الاقتصاد، كلية الأعمال، جامعة اليرموك 1
 

ـص
ّ

 ملخ
بيانات أحمال الذروة اليومية للأربع : تهدف هذه الدراسة إلى التنبؤ بذروة حمل الكهرباء اليومي في الأردن باستخدام مجموعة الأهداف

 (.NEPCOوالمتوفرة لدى شركة الكهرباء الوطنية ) 2022كانون أول  31إلى  2010كانون الثاني  1وعشرين ساعة للفترة من 
الموسمي أو ما يسمى نموذج  ARIMA: تستخدم هذه الدراسة نموذج الانحدار الذاتي والمتوسطات المتحركة المتكاملة المنهجية

SARIMA  للتنبؤ. تظهر البيانات اتجاهًا تصاعديًا وموسمية وتباينًا غير ثابت. وللتعامل مع هذه الخصائص، تم استخدام نموذج
SARIMA  لمعالجة وجود الاتجاه والموسمية، في حين تم استخدام تحويلBox-Cox .للتغلب على خاصية التباين غير الثابت 

 إلى نتائج التحل: النتائج
ً
والذي تم  ARIMA(1,0,1)(2,1,2)[7] التالي:  SARIMAتم تحديد نموذج يل القياس ي استنادا

ميجاوات  2530استخدامه للتنبؤ بـسبعِ قِيم مستقبلية للحمل الكهربائي، حيث تراوحت متوسطات هذه القيم ما بين 
متوسط النسبة المئوية للخطأ تم استخدام معياري  وللتأكد من دقة التنبؤاتميجاوات كحد أعلى.  2938كحد أدنى و 

دا دقة التنبؤات وبالتالي ملاءمة استخدام هذا RMSE(، وقيمة جذر متوسط مربع الخطأ )MAPEالمطلق )
ّ
يْن أك

َ
ذ
ّ
( والل

 النموذج للتنبؤ بقيم الأحمال الكهربائية المستقبلية في الأردن.
ي الأردن مدعوة لتفعيل استخدام نماذج السلاسل الزمنية للتنبؤ : استنادا إلى النتائج التجريبية، فإنّ شركات الكهرباء فالخلاصة

 من الاعتماد على 
ً
 MS-Excelالمتاحة في برنامج  (forecast function)مثل دالة التنبؤ النماذج البسيطة  استخدامبأحمال الكهرباء بدلا

  على سبيل المثال.
، auto.arimaجينكينز، التنبؤ بالأحمال الكهربائية، الأردن، )(-بوكس، طريقة SARIMA، نموذج ARIMAنموذج  الكلمات الدالة:
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1. INTRODUCTION 

The recent Russian-Ukrainian war is seriously threatening global energy security, and Jordan is no exception. Given that 

Jordan imports more than 90% of its energy needs, the situation is even more precarious, particularly concerning electricity 

generation. Jordan relies heavily on natural gas and fuel oil to generate electricity, so hikes in the prices of these commodities 

and any supply disruptions would have serious negative impacts on electricity generation and the prices paid by end-users. 

Additionally, unexpected shifts in electricity demand due to recent global and local circumstances—such as climate change, 

global warming, the COVID-19 pandemic, and the influx of Syrian refugees starting in 2011—have disrupted electricity 

generation and supply plans, increased electricity load, and added extra pressure on the electricity grid. 

Accordingly, reliable forecasts of future electricity loads are crucial to enable decision-makers to make informed plans 

and mitigate, as much as possible, the negative impacts of risks associated with the provision of natural gas and crude oil or 

potential price hikes. Therefore, the purpose of this study is to use the ARIMA model to forecast daily electricity load in 

Jordan, using hourly peak load data from January 1, 2010, to December 31, 2022, compiled by the National Electric Power 

Company (NEPCO). The importance of the study stems from the significance of energy security in general and electricity 

security in particular, given the increased reliance on electricity in all aspects of life. 

This research is expected to provide reliable estimates of future electricity load in Jordan. This is deemed extremely 

important given that Jordanian electric utilities do not currently use state-of-the-art techniques to forecast electricity load, 

relying instead on spreadsheets (Alhmoud & Nawafleh, 2021). These estimates are of utmost importance for planning 

processes and for the economic regulation of the sector. 

The rest of the paper is divided into sections. Section 2 contains the background, Section 3 introduces the model, Section 

4 describes the data, Section 5 presents the empirical results, and Section 6 concludes the paper. 

 

2. BACKGROUND 

Reliable forecasts of electricity load are extremely important for both utilities and policymakers to design reliable energy 

infrastructure and avoid inefficiencies. Inefficiencies can take various forms, including but not limited to, building redundant 

generating units, incurring high operational costs, and unnecessarily high consumption of fuel (Bashir et al., 2022). Bashir 

et al. (2022) classify load forecasting into three categories: short-term, mid-term, and long-term, while Goswami and Kandali 

(2020) add “very short-term” as a fourth category. Generally speaking, electricity load forecasting methods are divided into 

three classes: (i) classical or traditional statistical techniques, (ii) machine learning or artificial intelligence techniques, and 

(iii) hybrid models that use two or more methods from one or both classes. 

Statistical methods use time series techniques such as ARMA, ARIMA, SARIMA, ARIMAX, and the Kalman filter to 

forecast electricity load, while machine learning techniques include fuzzy logic, Artificial Neural Networks (ANN), and 

Support Vector Regression (SVR) (Goswami and Kandali, 2020; Chodakowska et al., 2021). Hong and Fan (2016), Hammad 

et al. (2020), and Hahn et al. (2009) thoroughly discuss various techniques used in load forecasting. The literature on 

forecasting electricity load using different approaches is truly extensive, and attempting to cite all relevant literature would 

be futile. Therefore, this study will review only a few select studies. Interested readers can consult Nti et al. (2020) and 

Kuster et al. (2017) for an extensive review of relevant literature. 

Among the studies that forecast electricity load in Jordan is Alhmoud and Nawafleh (2021), which uses hourly load data for 

2018 to forecast the hourly load in Jordan for one week ahead using three techniques: the nonlinear autoregressive exogenous 

model (NARX) recurrent neural network, the Elman neural network, and the autoregressive moving average (ARMA). The 

main conclusion of the study is that the Elman method is the most effective, and NEPCO is recommended to use it. Alasali et 

al. (2021) use ANN, ARIMAX, and a rolling stochastic ARIMAX forecast model to forecast electricity load in Jordan and 

capture the impact of the COVID-19 pandemic on electricity demand and consumption behavior. The rolling stochastic 

ARIMAX produces more reliable forecasts compared to the benchmark ARIMAX and the ANN model. Tawalbeh et al. (2021) 

use ARMA and ARIMA to forecast electricity load in Jordan. Although the authors do not clearly state the sample size, they 

mention that they used the study results to analyze the impact of the COVID-19 pandemic on electricity demand. 

 

3. MODEL 

3.1. ARIMA model 

To capture the seasonality in the data, this study uses an extension of the ARIMA model called the Seasonal ARIMA, or 

SARIMA, model to forecast electricity load. The ARIMA model, commonly known as the Box-Jenkins (B-J) method, 

developed by Box and Jenkins (1976), is a simple yet powerful and popular statistical model that has been extensively used 
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to forecast electricity load in different countries. The general notation of the ARIMA model is written as ARIMA (p,d,q), 

where p represents the number of the autoregressive (AR) orders, (d) reflects the degree of differencing after which the time 

series becomes stationary if it is originally non-stationary, and q denotes the order of moving average (MA) terms. An 

ARIMA(p,d,q) model is a generalization of the Autoregressive Moving Average or ARMA(p,q) model. 

The general form of an ARMA(p,q) model can be written as (Asteriou & Hall, 2016): 

 

𝑌𝑡 = 𝜙1𝑌𝑡−1+𝜙2𝑌𝑡−2 +⋯+ 𝜙𝑝𝑌𝑡−𝑝 + 𝑢𝑡 + 𝜃1𝑢𝑡−1 + 𝜃2𝑢𝑡−2 +⋯+ 𝜃𝑞𝑢𝑡−𝑞  

 

this can be written using summations as: 

 

 

𝑌𝑡 =∑𝜙𝑖𝑌𝑡−𝑖 + 𝑢𝑡 +∑𝜃𝑗𝑢𝑡−𝑗

𝑞

𝑗=1

𝑝

𝑖=1

 

 

 

or using the lag operator as: 

 

𝑌𝑡(1 − 𝜙1𝐿 − 𝜙2𝐿
2 −⋯− 𝜙𝑝𝐿

𝑃) = (1 + 𝜃1𝐿 + 𝜃2𝐿
2 +⋯+ 𝜃𝑞𝐿

𝑞)𝑢𝑡 

Φ(𝐿)𝑌𝑡 = Θ(𝐿)𝑢𝑡 

 

Note that an ARMA(p,q) can be represented as an ARIMA(p,0,q) model, so ARMA models can be used only if 𝑌𝑡 is 

stationary; otherwise ARIMA model should be used. 

 

3.2. SARIMA model 

Before proceeding further with explaining how the B-J methodology is empirically applied, we will introduce the 

SARIMA model. SARIMA is modelled by adding new seasonal terms into the ARIMA model as follows: 

ARIMA(p,d,q)×(P,D,Q)s, where (p) denotes the order of autoregression, while (P) represents the order of seasonal 

autoregression. The order of integration is (d) and the seasonal integration is given by (D). The order of moving average is 

given by (q) and the order of seasonal moving average is given by (Q). Finally, the length of seasonal period is given by (s).  

Traditionally, if the time series exhibits seasonality, seasonal differencing or Box-Cox transformation, among other 

methods, can be used to remove seasonality. 

 

3.3. Application of B-J methodology 

There are four steps for B-J methodology: identification, estimation, diagnostic checking and forecasting (Asteriou & 

Hall, 2016; Gujarati & Porter 2009). 

 

3.3.1. Identification: 

Identification means whether we will use ARMA(p,q) or ARIMA(p,d,q) and what the values of p,d and q are. The 

Autocorrelation Function (ACF) and the Partial Autocorrelation Function (PACF) can be used to determine q and p 

respectively. While d is determined based on the number of differences taken to make the series stationary. Therefore, testing 

for the stationarity of the series is a perquisite for the identification step.1 

 

3.3.2. Estimation:  

In the estimation stage, various models with different specifications (different values of p, d, q) are estimated, i.e., the 

parameters of the autoregressive and moving average components are estimated. This is usually carried out using the 

Ordinary Least Squares (OLS) method. Next, the various estimated models are compared to each other using the Akaike 

                                                 
1 More precisely, the Box-Jenkins model requires the series to be stationary and the model to be invertible (Asteriou & Hall, 2016). 
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Information Criterion (AIC) and the Schwarz Bayesian Criterion (SBC). 

 

3.3.3. Diagnostic Checking: 

In this stage, the goodness of fit of the model is examined, i.e., assessing if the chosen model fits the data reasonably 

well. This is usually undertaken using the Ljung–Box Q-statistic to test for autocorrelations of the residuals. Alternatively, 

it can be checked whether the residuals are white noise. 

 

3.3.4. Forecasting: 

In the final stage, the estimated ARIMA model is used to forecast future values of the variable of interest. The accuracy 

of the predictions from the ARIMA model will be evaluated using the Mean Absolute Percentage Error (MAPE) and the 

Root Mean Square Error (RMSE). 

 

4. DATA 

4.1. Description of data 

This paper constructs a time series of maximum daily electricity load using hourly peak load data over the period from 

January 1, 2010, to December 31, 2022, provided by NEPCO. On any given day, peak electricity demand is defined as the 

maximum of 48 half-hourly demands during that day (As'ad, 2012). 

Figure 1 plots the maximum daily peak over time. An initial look at the figure indicates that the time series has an 

intercept and is upward trending, suggesting it is likely nonstationary, and it seems that the variance is not constant. 

Moreover, a seasonality pattern can be readily observed. The boxplot reveals the presence of outliers and shows that the 

median is 2,500 megawatts (MW) (see Figure 2). Figure 3 shows the histogram and the descriptive statistics of the time 

series. Based on the Jarque-Bera test, the data is not normally distributed. 
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Fig. 1. Plot of the “Max. Daily Peak” series 
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Fig. 2. Boxplot of the “Max. Daily Peak” series 

 

 

 

 

 

0

100

200

300

400

500

600

1600 2000 2400 2800 3200 3600 4000

Series: Max. Daily Peak

Sample 1/01/2010 12/31/2022

Observations 4748

Mean       2540.226

Median   2500.000

Maximum  4010.000

Minimum  1517.000

Std. Dev.   390.0733

Skewness   0.410430

Kurtosis   3.129414

Jarque-Bera  136.6153

Probability  0.000000
 

 

Fig. 3. Histogram and the descriptive statistics of the “Max. Daily Peak” series 

 

 

4.2. Addressing time-series properties of the data 

4.2.1. Stationarity  

Figure 1 shows that the series is upward trending and contains a cyclical component, which might indicate nonstationary. 

However, this conclusion needs formal verification. Therefore, the Autocorrelation Function (ACF) and the Partial 

Autocorrelation Function (PACF) were plotted against lags, producing what is called a Correlogram, as shown in Figure 4. 

The shapes of the ACF and PACF do not allow for a decisive decision regarding the stationarity of the timeseries.  
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Fig. 4. ACF and PACF of the ““Max. Daily Peak” series 

 

Yet, stationarity can be rigorously tested using standard stationarity tests such as the Augmented Dickey-Fuller (ADF) 

and Phillips-Perron (PP) tests. As shown in Table 1, the series is stationary at the level in two cases (constant and constant 

with trend) and non-stationary in the third case (neither constant nor trend).  

 

Table 1. Augmented Dickey Fuller (ADF) and Phillips–Perron (PP) unit root tests for the “load” series 

Level 

Test critical values 
ADF test 

statistic 
Decision 

Test critical values PP 

test 

statistic 

Decision 1% 

level 

5% 

level 

10% 

level 

1% 

level 

5% 

level 

10% 

level 

Constant -3.43 -2.86 -2.57 -4.29 stationary -3.43 -2.86 -2.57 -14.11 stationary 

Constant 

and trend 
-3.96 -3.41 -3.13 -7.49 stationary -3.96 -3.41 -3.13 -28.32 stationary 

None 
-2.57 -1.94 -1.62 -0.13 

Non- 

stationary 
-2.57 -1.94 -1.62 -0.43 

Non- 

stationary 

Sample: 1/01/2010 12/31/2022
Included observations: 4748

Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.923 0.923 4044.5 0.000
2 0.876 0.168 7693.6 0.000
3 0.853 0.174 11151. 0.000
4 0.837 0.114 14478. 0.000
5 0.827 0.112 17726. 0.000
6 0.838 0.226 21065. 0.000
7 0.883 0.419 24771. 0.000
8 0.819 -0.576 27959. 0.000
9 0.789 0.173 30923. 0.000

10 0.780 0.075 33819. 0.000
11 0.774 0.064 36673. 0.000
12 0.772 0.077 39510. 0.000
13 0.788 0.116 42467. 0.000
14 0.835 0.114 45788. 0.000
15 0.774 -0.313 48644. 0.000
16 0.746 0.067 51300. 0.000
17 0.738 0.026 53895. 0.000
18 0.732 0.027 56448. 0.000
19 0.728 0.043 58978. 0.000
20 0.744 0.074 61621. 0.000
21 0.791 0.067 64608. 0.000
22 0.731 -0.216 67161. 0.000
23 0.705 0.037 69531. 0.000
24 0.696 0.012 71847. 0.000
25 0.691 0.021 74125. 0.000
26 0.686 0.007 76374. 0.000
27 0.700 0.039 78718. 0.000
28 0.744 0.013 81363. 0.000
29 0.684 -0.139 83597. 0.000
30 0.656 0.001 85653. 0.000
31 0.647 0.002 87652. 0.000
32 0.640 0.011 89609. 0.000
33 0.635 0.013 91538. 0.000
34 0.649 0.035 93554. 0.000
35 0.694 0.043 95860. 0.000
36 0.635 -0.128 97793. 0.000
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4.2.2. Trending and Seasonality  

As is well known, the demand for electricity is highly volatile and subject to seasonal effects across various time spans 

(hours, days, weeks, months, etc.). To test for seasonality, we use a seasonal dummies model. The results in Table 2 show 

that both the constant and the trend are significant and different from zero, which aligns with the pattern shown in Figure 1. 

On the other hand, the day effects of Thursdays and Fridays are significant. Upon closer examination of the load data for 

the entire sample, it is observed that, with few exceptions, the load often reaches its minimum on Fridays. This could be 

attributed to Friday being an official holiday in Jordan.2  

Additionally, the data indicates that the next lowest load levels typically occur on Thursdays, possibly due to many firms 

in the private sector, particularly those operating on Saturdays, reducing their operations on Thursdays (Almuhtady et al., 

2019). 

The boxplots shown in Figure 5 confirm this observation, where the median load is lowest on Fridays followed by the 

next lowest median on Thursdays. 

 

Table 2. Testing the seasonality of the “load” series using dummy variables. 

Variable Coefficient Std. Error t-Statistic Prob. 

C 2101.488 11.60434 181.0951 0.0000 

T 0.205909 0.002678 76.89554 0.0000 

D1 2.544228 13.73564 0.185228 0.8531 

D2 3.683356 13.73564 0.268160 0.7886 

D3 -0.013465 13.73564 -0.000980 0.9992 

D4 -66.10443 13.73564 -4.812620 0.0000 

D5 -270.2129 13.73058 -19.67964 0.0000 

D6 -19.52295 13.73058 -1.421859 0.1551 

     

     

R-squared 0.580276 Mean dependent var 2540.226 

Adjusted R-squared 0.579656 S.D. dependent var 390.0733 

S.E. of regression 252.8999 Akaike info criterion 13.90555 

Sum squared resid 3.03E+08 Schwarz criterion 13.91644 

Log likelihood -33003.77 Hannan-Quinn criter. 13.90938 

F-statistic 936.1612 Durbin-Watson stat 0.118806 

Prob(F-statistic) 0.000000    

Note: “C” stands for constant, Di, i=1,…,6 are the weekdays dummy variables and “T” denotes trend 

 

                                                 
2 Although Saturday is a weekly holiday too, but many private businesses work on Saturdays. 
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Fig. 5. Boxplot of the “load” series by day of the week. 

 

To detrend and deseasonalize the series, we apply seasonal differencing to the data, giving rise to a new series called 

"sload," as shown in Figure 6. 
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Fig. 6. Plot of the seasonally differenced “load” series 
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The stationarity of the new series was tested using ADF and PP tests and the results confirm that the series is stationary 

(see Table 3).  
 

Table 3. Augmented Dickey Fuller (ADF) and Phillips–Perron (PP) unit root tests for the “sload” series 

Level 

Test critical values 
ADF test 

statistic 
Decision 

Test critical values PP 

test 

statistic 

Decision 1% 

level 

5% 

level 

10% 

level 

1% 

level 

5% 

level 

10% 

level 

Constant -3.43 -2.86 -2.57 -23.98 stationary -3.43 -2.86 -2.57 -196.81 stationary 

Constant 

and trend 
-3.96 -3.41 -3.13 -23.97 stationary -3.96 -3.41 -3.13 -196.76 Stationary 

None -2.57 -1.94 -1.62 -23.98 stationary -2.57 -1.94 -1.62 -196.84 stationary 

 

The ACF and PACF functions (Figure 7) of the newly detrended and de-seasonalized series clearly indicates to the 

presence of seasonality, thus there is a need to employ the SARIMA model rather than the ARIMA model to capture and 

model seasonality properly. 

 

 
 

Fig. 7. ACF and PACF of the “sload” series 

 

 

5. EMPIRICAL RESULTS AND DISCUSSION 

After describing the data and investigating its stationarity, seasonality, and trending properties, we next move to the 

empirical investigation where we apply the four-stage Box-Jenkins (B-J) methodology to the data. 

 

 

Included observations: 4740 after adjustments
Autocorrelation Partial Correlation AC  PAC  Q-Stat  Prob

1 0.071 0.071 24.083 0.000
2 -0.052 -0.057 36.782 0.000
3 -0.050 -0.043 48.747 0.000
4 -0.030 -0.027 53.145 0.000
5 -0.008 -0.009 53.471 0.000
6 -0.059 -0.064 69.990 0.000
7 -0.492 -0.495 1221.2 0.000
8 -0.054 -0.011 1235.0 0.000
9 0.019 -0.053 1236.7 0.000

10 0.031 -0.040 1241.3 0.000
11 0.038 -0.015 1248.0 0.000
12 0.036 0.009 1254.2 0.000
13 0.028 -0.027 1257.8 0.000
14 0.004 -0.322 1257.9 0.000
15 0.015 -0.014 1258.9 0.000
16 0.005 -0.044 1259.0 0.000
17 0.006 -0.029 1259.2 0.000
18 -0.011 -0.028 1259.8 0.000
19 -0.013 -0.002 1260.6 0.000
20 -0.019 -0.043 1262.3 0.000
21 0.018 -0.207 1263.8 0.000
22 -0.007 -0.037 1264.0 0.000
23 0.005 -0.035 1264.1 0.000
24 0.010 -0.016 1264.6 0.000
25 0.017 -0.010 1266.0 0.000
26 0.014 0.011 1267.0 0.000
27 0.033 0.008 1272.2 0.000
28 -0.032 -0.182 1277.0 0.000
29 -0.001 -0.027 1277.0 0.000
30 -0.015 -0.043 1278.0 0.000
31 -0.013 -0.021 1278.8 0.000
32 -0.004 -0.005 1278.9 0.000
33 -0.017 -0.011 1280.3 0.000
34 -0.016 0.001 1281.4 0.000
35 0.008 -0.153 1281.8 0.000
36 0.012 -0.020 1282.4 0.000
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5.1. Identification stage 

Traditionally the correlogram (Figure 7) is used to specify or identify the model, i.e., determining the values of the 

parameters 𝑝, 𝑞, 𝑑, 𝑃, 𝑄 and 𝐷 of the ARIMA(p,d,q)×(P,D,Q)s model or alternatively the SARIMA models. However, it 

is worth mentioning that determining the order of the SARIMA model using the correlogram is not a straightforward exercise 

and is largely subject to value judgments. Alternatively, Hyndman and Khandakar (2008) have proposed automatic 

forecasting algorithms that have been implemented using the forecast package in RStudio. These algorithms can accurately 

determine the order of the SARIMA model.  

 

5.2.  Estimation stage 

Using the R command (auto.arima), various specifications of the SARIMA model were obtained. However, based on the 

Ljung-Box test, the residuals did not exhibit white noise properties. To address this issue and considering the non-constant 

variance of the series (see Figure 1), the data was transformed using the Box-Cox method. Subsequently, the model was re-

estimated, resulting in the following SARIMA model: ARIMA(1,0,1)(2,1,2)[7]. This SARIMA model indicates one 

autoregressive term, one moving average term, two seasonal autoregressive terms, and two seasonal moving average terms, 

with a seasonal period length of 7 days. The estimation results shown in Table 4 will be used for forecasting purposes. 

 

Table 4. Estimation results of the ARIMA(1,0,1)(2,1,2)[7] model 

 

ARIMA(1,0,1)(2,1,2)[7]  

 

Coefficients: 

         ar1     ma1     sar1     sar2    sma1     sma2 

      0.8852  0.2128  -0.9244  -0.3509  0.0552  -0.4915 

s.e.  0.0567  0.1235   0.1870   0.1208  0.1991   0.1839 

 

sigma^2 = 0.008297:  log likelihood = 85.2 

AIC=-156.4   AICc=-155.02   BIC=-138.98 

 

5.3. Diagnostic Checking 

Diagnostic checking implies testing the residuals. As shown in Figure 8, the residuals are approximately white noise. 

This fact is confirmed using Ljung-Box Q statistic as shown in Table 5.3 

 

Table 5. Ljung-Box test 

 Ljung-Box test 

 

data:  Residuals from ARIMA(1,0,1)(2,1,2)[7] 

Q* = 13.057, df = 8, p-value = 0.1099 

 

Model df: 6.   Total lags used: 14 

 

In addition to examining whether the residuals are white noise, diagnostic checking involves testing whether the 

estimated ARMA process is (covariance) stationary—meaning the inverse AR roots should lie inside the unit circle—and 

whether the ARMA process is invertible—meaning all inverse MA roots should lie inside the unit circle.4 Figure 9 confirms 

that these two conditions are fulfilled, indicating that the model is valid for forecasting purposes. 

                                                 
3 The null hypothesis: residuals are white noise. 
4 See (Hyndman & Athanasopoulos, 2018) for elaboration on these conditions and how they differ if we use the complex roots instead of inverse roots. 
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Fig. 8. Residuals from ARIMA(1,0,1)(2,1,2)[7] 

 

 
 

Fig.9. Inverse AR and MA roots 

 

5.4. Forecasting stage 

Now, after concluding the diagnostic checking phase, the model is deemed valid for forecasting, marking the final phase 

in the Box-Jenkins methodology. The shaded areas in dark blue and light blue around the forecasts in Figure 10 represent 

the 85% and 95% confidence intervals, respectively. 
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Fig.10. Forecasts from ARIMA(1,0,1)(2,1,2)[7] model 

 

The SARIMA model was used to forecast electricity load for seven days ahead. After applying the inverse of the Box-

Cox transformation to the data, the forecasted values are presented in Table 6. For comparison purposes, the table includes 

the actual minimum, maximum, and average values for the first 7 days of the year 2023 based on 24-hour peak load values. 

 

Table 6. Forecasted value of load for 7 days using the ARIMA(1,0,1)(2,1,2)[7] model 

Day Forecasted value 
Actual values 24-hour daily load 

Minimum Maximum Average 

1 1945.8 1790 3620 2695 

2 1940.2 1780 3890 2915 

3 1786.9 1880 3850 2938 

4 2048.9 1860 3810 2857 

5 2042.3 1890 3600 2689 

6 2087.4 1810 3290 2530 

7 2069.2 1750 3540 2615 

 

To assess the accuracy of the forecasts, several measures are used, including the Root Mean Square Error (RMSE) and 

the Mean Absolute Percentage Error (MAPE), among others. The small values of RMSE (0.08469665) and MAPE 

(0.2902158) confirm that the SARIMA model is a good fit for forecasting electricity load in Jordan. 

 

6. SUMMARY AND CONCLUSION 

This paper employs the Box-Jenkins methodology to forecast daily electricity load in Jordan based on 24-hour daily peak 

load data. The data exhibits several noteworthy features, including upward trending, seasonality, and non-constant variance. 

Therefore, the SARIMA model was utilized to address trending and seasonality, while the Box-Cox transformation was 

employed to mitigate the issue of non-constant variance. Following the formal steps of the Box-Jenkins method 

(identification, estimation, diagnostic checking, and forecasting) resulted in the following SARIMA model: 

ARIMA(1,0,1)(2,1,2)[7], which was used to forecast future values of electricity load for seven days. The small values of 

RMSE and MAPE confirm the precision of the forecasts. Hence, electricity companies are strongly encouraged to consider 

utilizing time series models for forecasting future loads instead of relying on simplistic spreadsheet models. 
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