A Review of Safety, Quality, Regulation, and Delivery Approaches for Phytopharmaceuticals

Pavithra K1, Manimaran V*1

1 Department of Pharmaceutics, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur, India

ABSTRACT

Phytopharmaceuticals are plant-derived compounds with a wide range of potential health benefits. Their unique characteristics and versatile applications make them promising candidates for the treatment of many diseases. Phytopharmaceuticals contain a wide range of bioactive components, including alkaloids, terpenes, and flavonoids. These compounds have a variety of biological activities, including antioxidant, anti-inflammatory, and antimicrobial effects. In recent years, there has been growing interest in phytopharmaceuticals for the treatment of various conditions, including cancer, cardiovascular disease, and diabetes. However, more research is needed to fully understand the efficacy and safety of these compounds. To ensure the quality and safety of phytopharmaceuticals, quality management procedures have been developed based on the principles of the World Health Organization (WHO) and Good Agricultural and Collection Practices (GACP). Understanding these regulations is essential for assuring effective phytopharmaceutical product development, manufacture, and distribution. While phytopharmaceuticals have shown promise in laboratory research, there are challenges in translating their efficacy to effective clinical applications, particularly in terms of delivery. Innovative approaches, such as targeted delivery methods and nanoparticle-based strategies, are needed to overcome these challenges. This review provides a comprehensive overview of the challenges and opportunities in the field of phytopharmaceuticals.

Keywords: Phytopharmaceuticals, Quality, Regulations, Challenges, FDA approved phytopharmaceuticals.

1. INTRODUCTION

From ancient times, humans have harnessed the power of natural products, with animals, plants, and minerals serving as key sources of medicinal compounds. Traditional remedies form an essential component of phytomedicine, recognized as phytopharmaceuticals. According to the World Health Organization, in the majority of developing countries, 70% to 95% of individuals primarily rely on traditional medicine for healthcare. Herbal medicinal products, commonly referred to as phytopharmaceuticals, are pharmaceutical preparations made from plant materials. They have been utilized by various cultures for centuries to treat a wide range of health conditions, harnessing the medicinal properties of different plant parts such as leaves, roots, stems, flowers, and fruits to formulate remedies in various forms like teas, tinctures, extracts, capsules, and powders, owing to the therapeutic effects of the active compounds found in these plants (1).

The terms "phytopharmaceutical" or "phytopharmakon" originate from Greek words. "Phyto" is derived from "phyton," which means "plant," and "pharmakon" means "medicine." A phytopharmaceutical drug is defined as a purified and standardized portion of an extract of a medicinal plant or its part containing at least
four bioactive or phytochemical compounds (qualitatively and quantitatively assessed) for internal or external use by humans or animals for the diagnosis, treatment, mitigation, or prevention of any disease or disorder, but does not include parenteral administration (2).

The term "phytopharmaceuticals" highlights the link between plants and their potential to offer medicinal advantages. This concept reflects the historical and ongoing utilization of plants within traditional and modern healthcare systems. Phytopharmaceuticals contain a diverse array of bioactive compounds, including alkaloids, flavonoids, terpenoids, and phenolic compounds, which contribute to their therapeutic effects. These compounds can exert a wide range of physiological actions, such as anti-inflammatory, antioxidant, antimicrobial, analgesic, immune-modulating, and hormone-regulating activities. In recent years, there has been renewed interest in phytopharmaceuticals due to a growing demand for alternative and complementary therapies, as well as an increased focus on holistic and personalized healthcare approaches (3).

Scientific research is being conducted to validate the traditional uses of these plant-based medicines and to understand their mechanisms of action. The use of phytopharmaceuticals is deeply rooted in traditional medicine systems like Ayurveda, Traditional Chinese Medicine (TCM), and Indigenous knowledge, where plant-based remedies have been employed to maintain health and manage diseases.

Fig: 1- Development of plant derived medicine by integration of Modern drug delivery methods and Quality control process to enhance the Safety and efficacy of phytopharmaceuticals
Phytopharmaceutical products effectively manage health issues using a combination of active compounds (Fig-1). Unlike conventional drugs that target singular biological targets, phytopharmaceuticals leverage groups of molecules to address multiple targets simultaneously. This is why these products commonly contain various ingredients, maximizing their combined potential for intended effects (4).

2. QUALITY, SAFETY AND EFFICACY OF PHYTOPHARMACEUTICALS

In addition to bioavailability, two other crucial attributes of phytopharmaceuticals are their efficacy and safety. Efficacy pertains to the attainable response exhibited by a cell, organ, organism, or animal when exposed to a pharmaceutical agent. Safety, on the other hand, gauges the absence of adverse events associated with the agent's use (Fig-2).

2.1. Safety

Safety is important in the use of phytopharmaceuticals as they are derived from plants that are not automatically safe and free from adverse effects. Plants contain hundreds of chemical compounds, some of which can have potent and toxic effects. For example, certain anti-cancer agents, digitalis compounds, and pyrrolizidine alkaloids found in plants can be highly toxic. It is an erroneous assumption that phytomedicines are inherently safe without any side effects. Rigorous safety testing of phytopharmaceuticals is crucial to identify any toxic phytochemicals, potential drug interactions, or adverse reactions they may cause. This involves assessing the potential for adverse effects or harm when these products are administered. Adverse effects can range from mild discomfort to severe reactions. Regulatory agencies worldwide set stringent standards for safety evaluation. Comprehensive toxicity studies, clinical trials with placebo controls, and post-marketing surveillance contribute to assessing the safety profile of phytopharmaceuticals.

Safety considerations encompass several factors, including dosage, duration of exposure, molecular composition, reactivity, and the presence of coexisting medical conditions. These elements, along with other potential variables, collectively influence the safety profile of a substance during its consumption (5,6).

For instance, Belladonna contains toxic alkaloids like atropine and scopolamine that can cause anticholinergic toxicity at high doses. However, recent toxicity studies have helped determine lethal doses and characterize side effects, establishing dosage guidelines and parameters for its safe use. A randomized controlled trial showed that topical belladonna plaster was well tolerated short-term at low doses of 3 mg atropine and 0.2 mg scopolamine. Another study found that sublingual atropine eyedrops derived from belladonna were safe at doses under 1 mg. These studies demonstrate that belladonna can be used safely when administered at controlled low doses, avoided systemically, and with monitoring for adverse effects. Further research will continue to refine the safety profile and parameters for the medicinal use of belladonna (7).

Recent studies show that colchicine may be effective for treating cardiovascular diseases at low doses (0.5-1.0 mg/day), with reduced adverse effects compared to higher doses. More research is needed to optimize dosing and further define colchicine's efficacy and safety profile for cardiovascular treatment (8).

2.2. Efficacy

The efficacy of phytopharmaceuticals refers to their ability to produce the desired therapeutic effects. This effectiveness is influenced by various factors, including the specific bioactive compounds present in the plant, their concentrations, and how they interact with the body's biological processes. Rigorous scientific studies, including preclinical and clinical trials, are conducted to determine the efficacy of phytopharmaceuticals. These trials help establish the optimal dosages, routes of administration, and expected outcomes when these products are used to
treat specific medical conditions.

2.2.1. In-vitro studies: These investigations involve controlled laboratory conditions to evaluate the impact of these natural compounds on diverse biological systems. Various assays are employed, including tests to gauge cell viability and cytotoxicity, assess antimicrobial properties against bacteria and fungi, evaluate antioxidant potential, study enzyme inhibition, examine cell signaling pathways, analyze apoptosis and cell cycle effects, and investigate potential neuroprotective and wound healing properties. These studies provide valuable insights into the potential therapeutic benefits of phytopharmaceuticals, aiding in the identification of promising candidates for further validation through in vivo experiments (9).

An in vitro study examined the antioxidant and anti-inflammatory properties of curcumin, a phyto compound found in turmeric. The results demonstrated that curcumin exhibited significant antioxidant activity, scavenging free radicals, and anti-inflammatory activity by inhibiting the production of inflammatory mediators. These findings support the potential therapeutic benefits of curcumin in various conditions associated with oxidative stress and inflammation (10).

2.2.2. In-vivo studies: This involves the examination of interventions within living organisms or whole systems, rather than in controlled lab settings. For assessing the efficacy of phytopharmaceuticals, these studies encompass a range of approaches, including trials with animal models to gauge physiological responses, toxicity, and disease models. Additionally, human clinical trials provide essential insights into safety, dosage, and therapeutic effects. Such research delves into factors like pharmacokinetics, metabolism, bioavailability, and potential interactions, shedding light on the compounds' mechanisms of action and long-term consequences. In vivo studies offer a comprehensive understanding of phytopharmaceuticals' effects within the intricate landscapes of living organisms, complementing data obtained from laboratory-based investigations (6,11).

A randomized, double-blind, placebo-controlled trial evaluated the efficacy and safety of silymarin, a phyto compound derived from milk thistle, for the treatment of non-alcoholic fatty liver disease (NAFLD). The study found that silymarin significantly improved liver function markers, reduced inflammation, and was well-tolerated by patients with NAFLD (12).

2.3. Quality

Phytopharmaceuticals need to undergo rigorous quality control testing to ensure their safety, identity, purity, and potency. This involves various analytical techniques to verify that the correct plant species is being used and to identify and quantify the active compounds. The safety and effectiveness of phytopharmaceuticals are directly impacted by the quality control measures applied to medicinal plants within herbal products. Presently, chemical analysis stands out as the most efficient means of standardization, detecting contaminants, and verifying the identity of medicinal plants. In addition to other approaches, molecular biology-based techniques can complement these methodologies for medicinal plant authentication (13).
2.3.1. WHO recommendations for standardising unprocessed herbal medicine ingredients (14)

<table>
<thead>
<tr>
<th>Quality control Parameter</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentication</td>
<td>Verify stage of collection, plant parts, origin, botanic identity</td>
</tr>
<tr>
<td>Foreign matter</td>
<td>Should be free of contaminants like soil, insects, animal waste</td>
</tr>
<tr>
<td>Organoleptic evaluation</td>
<td>Assess appearance, texture, colour, odour, taste</td>
</tr>
<tr>
<td>Tissues of Diagnostic Importance</td>
<td>Verify presence of key anatomical features for Authenticity.</td>
</tr>
<tr>
<td>Ash values</td>
<td>Determine total ash, acid-insoluble ash</td>
</tr>
<tr>
<td>Extractive values</td>
<td>Determine water-soluble and alcohol-soluble extracts</td>
</tr>
<tr>
<td>Volatile matter</td>
<td>Determine the percentage of volatile compounds in the herbal material.</td>
</tr>
<tr>
<td>Moisture content</td>
<td>Specific moisture content to assess storage and microbial risks.</td>
</tr>
<tr>
<td>Chromatography/spectroscopic Evaluation</td>
<td>Verify identity, purity, chemical markers</td>
</tr>
<tr>
<td>Heavy metals Determination</td>
<td>Analyse for heavy metals such as cadmium, lead, arsenic, mercury</td>
</tr>
<tr>
<td>Pesticide residues</td>
<td>Check for residues of pesticides or herbicides used during cultivation.</td>
</tr>
<tr>
<td>Microbial contamination</td>
<td>Assess the presence of bacteria, moulds, yeast, and other microorganisms.</td>
</tr>
<tr>
<td>Aflatoxins</td>
<td>Should be absent or within specified limits</td>
</tr>
<tr>
<td>Radioactive contamination</td>
<td>Specify limits for radioactive contaminants</td>
</tr>
</tbody>
</table>
2.3.2. GACP guidelines

The WHO has established essential technical standards to regulate the quality of bioactive compounds (Table-1). Among these standards, the latest guidelines pertain to Good Agricultural and Collection Practices (GACP) for medicinal plants. This involves guidelines and practices that ensure appropriate agricultural practices, collection, and harvesting of medicinal plants in a sustainable and environmentally friendly manner. These guidelines are designed to improve the effectiveness, safety, and overall quality of the finalized herbal products by ensuring uniform levels of active compounds, minimizing risks of contamination or adulteration, and aligning with regulatory standards to enhance the overall safety of the end product.

Additionally, GACP guidelines extend their influence to related standard operating procedures. Collaborative efforts are encouraged to facilitate the development of these guidelines, promoting a collective approach to their refinement and implementation. This approach includes aspects beyond quality control and safety assurance (15).

2.3.3. Standardization and Botanical Identification

Ensuring the accurate identification of plant species is vital for both the effectiveness of the end product and consumer safety. Botanical identification primarily focuses on accurately identifying the plant species used in the production of phytopharmaceuticals. It involves techniques such as DNA barcoding, microscopic analysis, and other botanical authentication methods to ensure that the correct plant species is being used, which is crucial for product efficacy and consumer safety (16).

On the other hand, standardization involves ensuring consistent and reproducible quality in the final product by controlling the levels of specific active compounds or markers that contribute to the product's therapeutic effects. By employing analytical techniques such as high-performance liquid chromatography (HPLC) or gas chromatography (GC), these compounds are quantified, ensuring a consistent chemical profile. Standardization helps guarantee that consumers receive the same level of efficacy and benefits with each use of the product. Combining traditional medicine with modern science, standardization ensures that phytopharmaceuticals offer reliable and predictable therapeutic benefits to consumers (17).

2.3.4. Heavy Metal Analysis and Microbial testing

Heavy metal analysis is critically important in the context of phytopharmaceuticals and other herbal products due to the potential health risks associated with heavy metal contamination. To mitigate this risk, heavy metal analysis employs accurate techniques such as atomic absorption spectroscopy or inductively coupled plasma mass spectrometry. These techniques allow manufacturers to quantify the levels of heavy metal contaminants present in the plant material. Regulatory bodies often set maximum permissible limits for heavy metal content in phytodrugs, ensuring consumer safety. Medicinal plants may contain various microorganisms, including bacteria, yeast, and molds. Microbiological testing ensures that the products are within acceptable limits for microbial contamination (18,19).

2.3.5. Processing and Storage

During processing, the harvested or collected plant material undergoes meticulous cleaning, sorting, and extraction processes to yield bioactive compounds. Techniques such as cutting, grinding, and concentrating are employed to optimize extraction efficiency. However, the integrity of these compounds heavily depends on the subsequent storage conditions. Adequate storage is essential to prevent degradation and contamination (20). Factors such as temperature, humidity, light exposure, and airtight packaging play a critical role in maintaining the
potency of active compounds and deterring the growth of contaminants. By implementing proper processing techniques and ensuring optimal storage environments, producers safeguard the therapeutic potential and safety of the final herbal medicine products, promoting consumer confidence and fostering the effectiveness of botanical remedies (13).

3. APPLICATIONS OF PHYTOPHARMACEUTICALS (21,22)

Many natural compounds from plants act as phytopharmaceuticals by exerting specific health effects in the body. These natural compounds serve as the foundation for a wide range of pharmaceutical drugs, herbal supplements, and traditional remedies, harnessing their therapeutic properties to treat various ailments. Additionally, phytopharmaceuticals contribute significantly to the development of novel drugs, promoting research into natural compounds for their potential in combating diseases.

Each phytopharmaceutical has its own pharmacological effects. For instance, flavonoids like quercetin found in fruits and vegetables act as antioxidants, anti-inflammatory, and antimicrobials. Carotenoids including beta-carotene and lutein in carrots and tomatoes protect vision, boost immunity, and reduce cancer risk. Limonoids in citrus demonstrate anticancer effects. Resveratrol from grape skins provides cardio-protection, anti-aging, and neuroprotective benefits. Soy phytoestrogens can aid hormone balance and menopause symptoms. Lycopene-rich fruits offer antioxidant cardiovascular and anticancer activities. Curcumin, gingerol, echinacea, garlic, ginseng, milk thistle, cranberry, and aloe vera gel have specific anti-inflammatory, antioxidant, immune-boosting, antimicrobial, liver-protective, and wound-healing properties. Cinnamon may improve blood sugar control and insulin sensitivity. Table-2 provides an overview of some major categories of bioactive plant-derived compounds along with their dietary sources and evidence-based therapeutic uses. It summarizes the diverse health benefits and pharmacological effects exhibited by flavonoids, carotenoids, phytoestrogens, terpenoids, and other phytonutrients found in fruits, vegetables, herbs, and other botanical sources.

4. CHALLENGES IN DELIVERY OF PHYTOPHARMACEUTICALS

In order to ensure consistent dosing, optimal patient compatibility, stability, and the most effective therapeutic outcomes, it is essential to integrate the herbal drug into an appropriate formulation. Extensive research and development efforts have focused on effectively incorporating phytoconstituents through exploring a diverse range of established and innovative formulation methods.

5.1 Challenges Associated with Medicinal Plants

The challenges concerning medicinal plants include a range of issues involving authentication and quality control, complicated phytochemistry, limited scientific evidence, challenges in standardization, regulatory complexities, concerns regarding sustainability, and considerations related to cultural aspects. These challenges are further compounded by factors such as adulteration and bioavailability. Addressing these concerns requires implementing a comprehensive approach that incorporates both traditional knowledge and modern scientific advancements, while simultaneously prioritizing factors such as quality, sustainability, and adherence to regulatory standards (37).
<table>
<thead>
<tr>
<th>Active Compounds</th>
<th>Molecular Structure</th>
<th>Sources</th>
<th>Potential Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digitoxin(24)</td>
<td></td>
<td>Digitalis purpurea</td>
<td>Cardioprotective</td>
</tr>
<tr>
<td>Salicin(25)</td>
<td></td>
<td>Willow bark</td>
<td>Anti-inflammatory agent</td>
</tr>
<tr>
<td>Glycyrrhizin(26)</td>
<td></td>
<td>Glycyrrhiza glabra</td>
<td>Anti-inflammatory, Anti-viral</td>
</tr>
<tr>
<td>Quercetin(27)</td>
<td></td>
<td>Fruits, onions, citrus fruits, wine.</td>
<td>Antioxidant, anti-inflammatory, antimicrobial, anticancer</td>
</tr>
<tr>
<td>Epicatechin(28)</td>
<td></td>
<td>Dark chocolate, green tea, and berries</td>
<td>Antioxidant, cardioprotective, Antidiabetic</td>
</tr>
<tr>
<td>Resveratrol(29)</td>
<td></td>
<td>Grapes, berries, red wine</td>
<td>Anti-aging, anticancer, cardioprotective, neuroprotective</td>
</tr>
<tr>
<td>Phytoestrogens (30)</td>
<td></td>
<td>Soy, flaxseeds, legumes</td>
<td>Hormone balance, menopause symptoms, bone health</td>
</tr>
<tr>
<td>Lycopene (31)</td>
<td></td>
<td>Tomatoes, watermelon, pink grapefruit</td>
<td>Antioxidant, cardiovascular and anticancer benefits</td>
</tr>
<tr>
<td>Active Compounds</td>
<td>Molecular Structure</td>
<td>Sources</td>
<td>Potential Applications</td>
</tr>
<tr>
<td>--------------------</td>
<td>---------------------</td>
<td>------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Beta-Carotene(32)</td>
<td></td>
<td>Carrots, Sweet potatoes, Pumpkin</td>
<td>Antioxidant, Vision health, Immune booster.</td>
</tr>
<tr>
<td>Curcumin(33)</td>
<td></td>
<td>Turmeric</td>
<td>Anti-inflammatory, antioxidant, anticancer, neuroprotective</td>
</tr>
<tr>
<td>Gingerol(34)</td>
<td></td>
<td>Ginger</td>
<td>Anti-inflammatory, nausea relief, digestive aid</td>
</tr>
<tr>
<td>Echinacea(35)</td>
<td></td>
<td>Echinacea purpurea</td>
<td>Immune boosting, cold and flu relief</td>
</tr>
<tr>
<td>Aloe emodin (36)</td>
<td></td>
<td>Aloe vera leaf gel</td>
<td>Skin health, wound healing, anti-inflammatory</td>
</tr>
<tr>
<td>Cinnamic acid (30)</td>
<td></td>
<td>Cinnamon</td>
<td>Hypoglycaemic, Insulin sensitivity</td>
</tr>
</tbody>
</table>

5.2 Pharmaceutical challenges

In the pharmaceutical industry, challenges include low solubility in water and lipids, which affects bioavailability. Complexities in formulation and development, preformulation issues, shelf-life determination, instability, and pharmacokinetic changes also add to the complication. Addressing these issues necessitates multifaceted approaches such as solubility enhancement, precise formulation, stability testing, and careful consideration of pharmacokinetics. By addressing these issues, formulation researchers can ensure that phytopharmaceutical products are delivered effectively (38).

5.2.1 Preformulation Challenges:

The primary objective of a preformulation study is to evaluate the physicochemical characteristics of natural products to gain insights into their influence on the development of efficacious dosage forms. This research involves assessing stability, solubility through determination of pKa, pH solubility profile, partition coefficient, and dissolution. When examining herbal formulations that utilize multicomponent extracts, difficulties arise in investigating each individual constituent. Alternatively, researchers have the option to conduct preformulation investigations on the entirety of the plant extract, evaluating a wide array
of factors to achieve the most effective formulation development (39).

5.2.2 Formulation Development Challenges: The formulation and development of herbal extracts face difficulties due to their unique characteristics. These extracts typically exhibit hygroscopic properties, viscosity, and an amorphous structure, resulting in limited flowability and suboptimal physico-mechanical characteristics (40). Controlling and processing specific extracts can be challenging due to their sticky characteristics and tendency to absorb moisture. Another challenge is selecting an appropriate solvent to solubilize both the extract and excipient during formulation. Despite these challenges, viable solutions can be identified to enhance the formulation and advancement of herbal products (41).

5.2.3 Bioavailability issues: Poor aqueous or lipid solubility and bioavailability are major concerns in pharmaceutical development. Compounds with low solubility dissolve poorly in bodily fluids, reducing absorption and efficacy. Lipophilic substances struggle to penetrate cell membranes and reach their targets. Techniques such as micronization, nanosing, and complexation improve solubility and increase surface area to overcome these challenges. Additionally, lipid-based delivery systems and prodrugs are used to enhance solubilization. Researchers can enhance the therapeutic potential of pharmaceutical compounds by integrating formulation innovation, pharmacokinetics, and drug design to mitigate poor solubility.

5.2.4 Instability: Chemical, physical, and microbiological changes render phytopharmaceuticals unstable. Chemical degradation from light, heat, and moisture reduces efficacy. Physical changes affect appearance and texture, while microbial contamination poses safety risks. Stability testing and optimizing formulations, packaging, and storage conditions are essential to address instability. Botanical and pharmaceutical expertise ensures the potency, quality, and safety of phytopharmaceuticals (3,42).

5. OVERCOMING CHALLENGES THROUGH NOVEL DELIVERY SYSTEMS

Recently, there has been an increase in the usage of novel formulations that incorporate plant extracts or isolated fractions. These compounds are combined with materials possessing various properties to enhance their bioavailability and medicinal effects. Examples of novel formulations include liposomes, solid dispersions, phytosomes, and other morphologies. These herbal formulations offer advantages such as enhanced solubility, targeted distribution, fewer side effects, and controlled release of medicine. However, challenges such as scaling up manufacturing and stability concerns accompany these formulations. Innovative drug delivery methods have the potential to streamline the complex process of delivering phytopharmaceuticals within the pharmaceutical industry (43). This potential can be realized through the following methods:

i. Targeted drug delivery: By leveraging advanced principles of nanotechnology, specific delivery systems can be developed. These systems incorporate specific ligands into formulations to ensure targeted delivery of phytopharmaceuticals to desired sites throughout the body. This precision not only reduces inefficiencies but also enhances therapeutic efficacy by accurately delivering bioactive substances to critical regions (44).

ii. Nanoparticle-Based Delivery: Nano-sized drug carriers such as liposomes, nanoparticles, and micelles revolutionize the delivery of phytopharmaceuticals. These tiny carriers encapsulate compounds, protecting them from degradation and improving bioavailability. Additionally, they enable controlled release over extended periods, maintaining consistent therapeutic levels and reducing dosing frequency (45).

iii. Transdermal and Topical Delivery: Innovative formulations enable phytopharmaceuticals to be delivered through the skin directly into the bloodstream. Transdermal patches, gels, creams, and ointments provide
non-invasive, patient-friendly administration methods. This approach bypasses the gastrointestinal tract, ensuring sustained release and avoiding rapid fluctuations in plasma levels (46).

iv. Intracellular Delivery: Advanced delivery systems address the challenge of penetrating cell membranes to facilitate intracellular delivery of phytopharmaceuticals. This capability is crucial for diseases requiring action within cells, such as certain cancers. Techniques like cell-penetrating peptides and nanocarriers effectively transport bioactive compounds across cell barriers (47).

v. Gastrointestinal Tract Stability: Many phytopharmaceuticals degrade in the harsh acidic environment of the gastrointestinal tract. Novel delivery systems protect these compounds, ensuring intact delivery to the desired site of action. Coatings, matrices, or encapsulation within gastro-resistant formulations enhance stability and bioavailability.

vi. Combination Therapies: Innovative delivery methods enable the combination of multiple phytopharmaceuticals or conventional drugs in a single formulation. This synergistic approach enhances therapeutic outcomes, reduces side effects, and simplifies dosing regimens for patients (48).

6. REGULATORY ASPECT OF PHYTOPHARMACEUTICALS

Phytopharmaceuticals have varying legal statuses in different jurisdictions. Regulation is essential to maintain their safety and credibility. While phytopharmaceuticals are well-recognized in some countries, in others they are considered as food, and making therapeutic claims about them is illegal. Users of these products are at risk because inadequate oversight can lead to harmful overconsumption or insufficient intake of vital nutritional and therapeutic components. This situation exacerbates public health concerns, including worries about the emergence of drug resistance (49).

Governments and organizations are committed to promoting responsible and ethical usage, as demonstrated by their diligent efforts to regulate phytopharmaceutical products. Leading bodies such as the Codex Alimentarius Commission, the WHO, and UNICEF play pivotal roles not only in supervising processing and product standards but also in formulating guidelines for industrial production. Additional entities like Médecins Sans Frontières (MSF) have also played significant roles, especially in the context of ready-to-use therapeutic foods. Their proactive engagement underscores a steadfast commitment to preserving the safety and authenticity of these products.

It is evident that governments are increasingly incorporating phytopharmaceutical products into their regulatory and monitoring frameworks. The USFDA continues to be a prominent global regulatory authority, recently expanding its oversight to include standards for supplement approval. Similar distinct regulatory standards exist at both individual state and regional levels, including within the EU (European Union), SADC (Southern African Development Community), and EAC (East African Community) (50).

7.1 Regulation of Phytopharmaceuticals in India

Regulating phytopharmaceuticals, which are medicinal products derived from plant sources, is critical for ensuring their safety, efficacy, and quality in the Indian pharmaceutical market. The regulatory process involves evaluating the safety profile of phytopharmaceuticals through comprehensive toxicity studies, placebo-controlled clinical trials, and post-marketing surveillance. This process helps identify potential adverse effects, interactions with other medications, and concerns related to dosage.

India's regulatory framework for phytodrugs involves several key entities and guidelines overseeing...
their development, production, and distribution (51). The Central Drugs Standard Control Organization (CDSCO) under the Ministry of Health and Family Welfare serves as the central authority overseeing and regulating all pharmaceuticals, including plant-derived medicines. CDSCO evaluates the safety, efficacy, and quality of phytoactive compounds through a structured approval process before market authorization.

Phytopharmaceutical Reference Standards (PPRS) provide benchmarks to validate the quality, purity, and potency of plant-derived active compounds during production and testing, ensuring consistent product specifications are met. Good Manufacturing Practices (GMP) enforce rigorous standards for facilities, equipment, documentation, quality control, and environmental conditions to maintain batch integrity and prevent contamination. Adherence to GMP is a regulatory requirement, emphasizing its role in safeguarding consumer safety.

Together, CDSCO oversight, PPRS standards, and GMP compliance enable India to effectively regulate phytodrugs, upholding their quality, efficacy, and safety.

8. FDA-APPROVED PHYTOPHARMACEUTICALS

The FDA regulates some phytopharmaceuticals as prescription drugs, while others are classified as dietary supplements and are subject to less stringent regulation. Prescription phytopharmaceuticals have demonstrated safety and effectiveness through clinical trials, whereas dietary supplements have not undergone the same rigorous testing. The FDA has approved a limited number of phytopharmaceuticals for use in the United States. Table-3 lists some of the FDA-approved phytopharmaceuticals, their plant sources, and approved uses (52–54).

Table 3- FDA approved plant derived Pharmaceuticals

<table>
<thead>
<tr>
<th>Drug</th>
<th>Plant Source</th>
<th>Application</th>
<th>Approval Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apomorphine</td>
<td>Papaver somniferum</td>
<td>Parkinson's disease</td>
<td>2004</td>
</tr>
<tr>
<td>Artemisinin</td>
<td>Artemisia annua (sweet wormwood)</td>
<td>Antimalarial</td>
<td>2020</td>
</tr>
<tr>
<td>Atropine</td>
<td>Atropa belladonna (deadly nightshade)</td>
<td>Anticholinergic</td>
<td>1950s</td>
</tr>
<tr>
<td>Capsaicin</td>
<td>Capsicum spp. (chili peppers)</td>
<td>Analgesic</td>
<td>1991</td>
</tr>
<tr>
<td>Colchicine</td>
<td>Colchicum autumnale (autumn crocus)</td>
<td>Anti-gout</td>
<td>1961</td>
</tr>
<tr>
<td>Digoxin</td>
<td>Digitalis lanata (foxglove)</td>
<td>Heart failure</td>
<td>1954</td>
</tr>
<tr>
<td>Galantamine</td>
<td>Galanthus spp. (snowdrop)</td>
<td>Alzheimer's disease</td>
<td>2001</td>
</tr>
<tr>
<td>Morphine</td>
<td>Papaver somniferum (opium poppy)</td>
<td>Analgesic</td>
<td>1941</td>
</tr>
<tr>
<td>Paclitaxel</td>
<td>Taxus brevifolia (Pacific yew)</td>
<td>Anticancer</td>
<td>1992</td>
</tr>
<tr>
<td>Quinidine</td>
<td>Cinchona spp. (cinchona)</td>
<td>Antiarrhythmic</td>
<td>1920s</td>
</tr>
<tr>
<td>Quinine</td>
<td>Cinchona spp. (cinchona)</td>
<td>Antimalarial</td>
<td>1940s</td>
</tr>
<tr>
<td>Reserpine</td>
<td>Rauwolfia serpentina (Indian snakeroot)</td>
<td>Antihypertensive</td>
<td>1954</td>
</tr>
<tr>
<td>Vincristine</td>
<td>Catharanthus roseus (Madagascar periwinkle)</td>
<td>Anticancer</td>
<td>1963</td>
</tr>
</tbody>
</table>

9. FUTURE PROSPECTS

The future of phytopharmaceuticals is promising, with trends such as personalized medicine, optimized formulations, biotechnology, integration with conventional medicine, digital tools and data analytics, sustainability, regulatory acceptance, consumer education, and
combating antimicrobial resistance, and global collaboration shaping their development. These trends could improve the efficacy, safety, and availability of phytopharmaceuticals, making them a more viable option for healthcare providers and consumers. The future of phytopharmaceuticals is also driven by changing consumer preferences, technological advancements, and the demand for safe healthcare solutions. As research continues to uncover the many health benefits of plant-based compounds, these natural remedies are likely to play an increasingly important role in modern medicine. However, the phytopharmaceutical industry faces several challenges moving forward:

- The need for more clinical trials to demonstrate the safety and efficacy of phytopharmaceuticals.
- The need to develop standardized manufacturing processes to ensure the quality and consistency of phytopharmaceutical products.
- The need to overcome regulatory hurdles in order to market phytopharmaceutical products in different countries.

Despite these challenges, the future of phytopharmaceuticals is bright. As the demand for natural and herbal products continues to grow, the phytopharmaceutical industry is well-positioned to meet this demand.

CONCLUSION

Phytopharmaceuticals are plant-derived products that have been used for centuries to treat a variety of conditions. They are gaining increasing popularity as a natural alternative to conventional medicine. However, the safety and efficacy of phytopharmaceuticals are still being investigated. Some phytopharmaceuticals have shown effectiveness in clinical trials, while others have not. There is also concern about the potential toxicity of some phytopharmaceuticals. The quality of phytopharmaceuticals can vary significantly. Some are standardized to ensure consistent amounts of active ingredients, while others are not. The regulatory status of phytopharmaceuticals also varies from country to country. In some nations, they are regulated as dietary supplements, while in others, they are regulated as drugs.

Despite these challenges, phytopharmaceuticals have the potential to be safe and effective treatments for a variety of conditions. More research is needed to confirm their safety and efficacy, and to develop standardized manufacturing processes and quality control measures.

REFERENCES

9. WHO guidelines on good agricultural and collection practices (GACP) for medicinal plants. [cited 2023 Sep 1].

مراجعة لأساليب السلامة والجودة والتنظيم والتسليم الخاصة بالمستحضرات الصيدلانية النباتية

บายفيثرا كي، مانيماران في

قسم الصيدلة، كلية الصيدلة في جامعة SRM للعلوم والتكنولوجيا، كاتانكولاثور، الهند

ملخص

المستحضرات النباتية الدوائية هي مركبات مشتقة من النباتات تتمتع بجموعة واسعة من الفوائد الصحية المحتملة. خصائصها الفريدة وتطبيقاتها المتعددة يجعلها مرشحة واعدة لعلاج العديد من الأمراض. المستحضرات النباتية الدوائية تحتوي على مجموعة واسعة من المركبات الكيميائية النشطة، بما في ذلك القلويدات والتينات والفلونات. هذه المركبات لها مجموعة متعددة من الأنشطة البيولوجية، بما في ذلك الحماية المضادة للأكسدة والمضادة للالتهابات والمصابة للميكروبات. في السنوات الأخيرة، زاد الاهتمام بالمستحضرات النباتية الدوائية لعلاج مجموعة متعددة من الحالات، بما في ذلك السرطان وأمراض القلب والأوعية الدموية وداء السكري. ومع ذلك، هناك حاجة إلى المزيد من الأبحاث لفهم تمامًا فعالية وسلامة هذه المركبات. لضمان الجودة والسلامة للمستحضرات النباتية الدوائية، تم تطوير إجراءات إدارة الجودة استنادًا إلى مبادئ منظمة الصحة العالمية وممارسات الزراعة والتجميع الجيدة. فهم هذه اللوائح أمر ضروري لضمان تطوير المنتجات الدوائية النباتية فعالة وتحملها وتسهيلها. بينما أظهرت المستحضرات النباتية الدوائية فعالية، هناك تحديات في ترجمة فعاليتها إلى تطبيقات سريرية فعالة، خاصة فيما يتعلق بالتسليم. هناك حاجة إلى مقاربات متقدمة، مثل طرق التسليم المستهدفة واستراتيجيات الجسيمات النانوية، للتحكم على هذه التحديات. تقدم هذه المراجعة نظرة عامة على التحديات والفرص في مجال المستحضرات النباتية الدوائية.

الكلمات الدالة: المستحضرات النباتية الدوائية، الجودة، التحديات، المستحضرات النباتية الدوائية المعتمدة من إدارة الغذاء والدواء الأمريكية (FDA).

*المؤلف المراسل: مانيماران في

manimarv@srmist.edu.in

تاريخ استلام البحث 20/9/2023 وتاريخ قبوله للنشر 30/1/2024.