## Nanomedicine Advancements in Cancer Therapy: A Scientific Review

Wael Abu Dayyih<sup>1\* ¥</sup>, Mohammad Hailat<sup>2¥</sup>, Shahd Albtoush<sup>1</sup>, Eslam Albtoush<sup>1</sup>, Alaa Abu Dayah<sup>3</sup>, Ibrahim Alabbadi<sup>4</sup>, Mohammed F.Hamad<sup>5</sup>

#### **ABSTRACT**

Cancer nanomedicines, characterized by submicrometer-sized formulations, aim to optimize the biodistribution of anticancer drugs by minimizing off-target effects, reducing toxicity, enhancing target site accumulation, and improving overall efficacy. Numerous nanomedicines have been developed to improve the effectiveness and safety of traditional anticancer treatments. These include formulations with carbon nanotubes, nanodiamonds, enzyme-responsive nanoparticles for controlled drug release, dendrimers as nanoparticle drug carriers, quantum dot nanocarrier systems for precise drug delivery, solid lipid nanoparticles, and polymeric nanoparticles designed for targeted drug delivery. Additionally, nanotechnology has been explored in cancer treatment through gene therapy. Despite these advances, the complex nature of carrier materials and functional integration presents challenges in preparing these candidates for clinical translation. Nanotechnology, with its unique features at the nanoscale, offers novel possibilities for developing cancer therapies while increasing efficacy and safety. Although only a few nanotherapeutics have obtained clinical approval, exciting uses for nanotechnology are on the horizon. Nanoparticles possess unique transport, biological, optical, magnetic, electrical, and thermal capabilities due to their small size within the light wavelength spectrum. This results in high surface area-to-volume ratios, allowing for the incorporation of various supporting components in addition to active medicinal substances. These properties aid in solubilization, degradation protection, delayed release, immune response evasion, tissue penetration, imaging, targeted distribution, and triggered activation. In summary, the future of nanomedicine holds promise for introducing innovative platforms in cancer treatment. The research presented underscores the potential for nanoparticles to revolutionize anticancer therapies, enhancing the overall therapeutic approach.

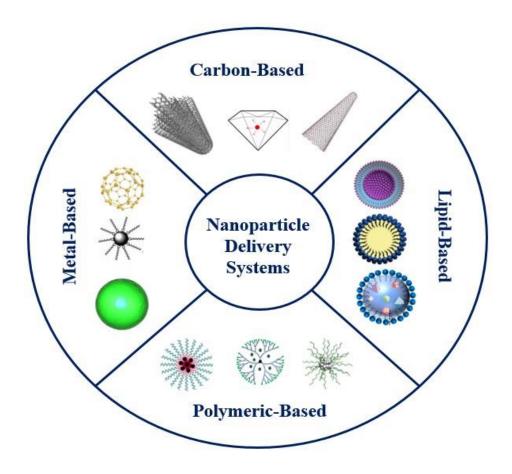
**Keywords:** Nanoparticles; Anticancer therapy; Carbon-Based Nanomaterials; Metal-Based; Lipid-Based; Polymeric Nanoparticles.

wabudayyih@mutah.edu.jo

¥ Equal contributions

Received: 15/02/2024 Accepted: 04/04/2024. DOI: https://doi.org/10.35516/jjps.v17i3.2384

<sup>&</sup>lt;sup>1</sup>Department of Pharmaceutical Chemistry, Faulty of Pharmacy, Mutah University, Al Karak, Jordan.


<sup>&</sup>lt;sup>2</sup>Department of Pharmacy, Faculty of Pharmacy, Al-Zaytoonah University of Jordan, Amman. Jordan.

<sup>&</sup>lt;sup>3</sup> Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan.

<sup>&</sup>lt;sup>4</sup> Department of Biopharmaceutics and Clinical Pharmacy, University of Jordan, Amman, Jordan.

<sup>&</sup>lt;sup>5</sup> Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, Al-Salt, Jordan.

<sup>\*</sup>Corresponding author: Wael Abu Dayyih



**Graphical abstract** 

## INTRODUCTION

In 2023, the United States was expected to have 1,958,310 new cancer cases and 609,820 cancer deaths [1]. Cancer treatment options include surgeries, radiation therapy, chemotherapy, immunotherapy, and targeted therapy. Surgical interventions remove cancerous tissue, radiation therapy eliminates cells, chemotherapy eradicates cells, immunotherapy boosts the immune system, and targeted therapy addresses genetic alterations. Chemotherapeutic agents are a crucial component of the diverse arsenal of cancer treatments [2,3].

Cancer treatment faces challenges such as severe side effects, drug resistance, and high economic burdens [4].

Nanotechnology, a multidisciplinary field combining chemistry, engineering, biology, and medicine, has emerged as a promising frontier in cancer research. Nanometer-sized nanoparticles interact with biomolecules on cell surfaces and inside cells, enabling effective and targeted medication delivery [5]. Several types of nanoparticles, including quantum dots, carbon nanotubes, liposomes, and gold nanoparticles, have shown promise in detecting and treating various cancers [6,7]. Recent advancements, such as bioaffinity nanoparticle probes and integrated nanodevices, hold significant potential for personalized oncology based on individual patients' molecular profiles [8] (Figure 1).

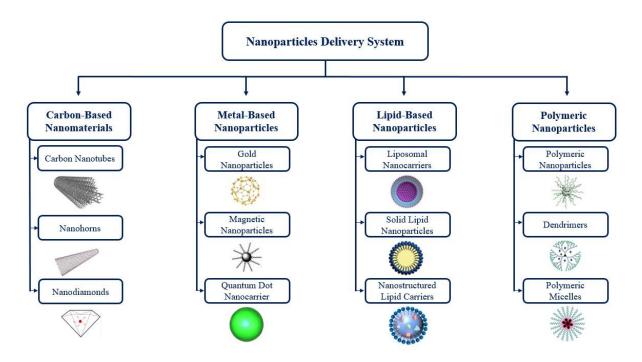



Figure 1: Comprehensive overview of nanotechnologies in cancer treatment.

While nanotechnology presents excellent prospects for cancer therapy, issues such as biocompatibility, in vivo dynamics, tumor-targeting efficiency, and cost-effectiveness must be resolved before broad clinical application [9]. Despite these challenges, the emergence of nanotechnology-based techniques offers promise for transforming cancer research by opening new paths for diagnostics and therapies [10,11]. This review traces the various nanotechnology-based cancer treatment options **Carbon-Based Nanomaterials** 

Carbon-based nanostructured materials, such as nanotubes, nanohorns, and nanodiamonds, offer significant benefits in cancer treatment due to their small size and hybridized carbon atoms [12]. These materials facilitate easy functionalization, promote biocompatibility, and feature efficient drug transport, imaging, and controlled release mechanisms [12]. They also exhibit high in vivo stability, a large surface area for functionalization, and ease of penetration through biological

barriers [13]. However, challenges like biocompatibility, toxicity evaluation, and regulatory hurdles remain [14]. Further research is needed to fully realize the potential of these nanoparticles in cancer care [15].

## 1. Nanotubes

Carbon nanotubes, with their unique optical properties, have gained popularity in cancer therapy due to their ability to convert light into heat [16]. This localized heat treatment enhances therapeutic effects and tumor specificity for nanoscale carbon catalysts [17]. The use of target-specific delivery systems in nanomedicine has redefined the field. Carbon nanotubes can be functionalized with various groups, allowing for more efficient delivery of medicines to cancerous cells [18]. They are classified into single-walled, double-walled, and multi-walled carbon nanotubes [19] (Figure 2).

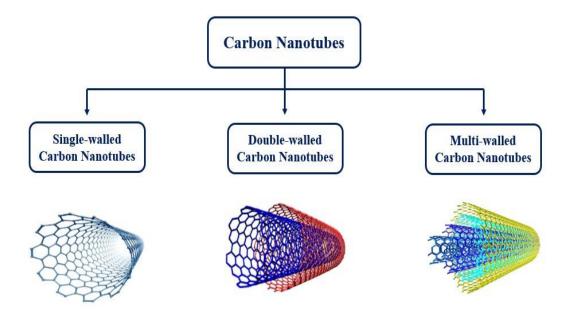



Figure 2: Classification of carbon nanotubes.

Carbon nanotubes possess various fascinating features due to their compact size and tubular form. Their electrical characteristics vary significantly between single-walled carbon nanotubes, which have a diameter of approximately 1 nm and a single graphene wall, and multi-walled carbon nanotubes, which have diameters ranging from 1 to 100 nm and multiple graphene walls [20]. These nanotubes exhibit physical and chemical characteristics such as a high aspect ratio, ultralight weight, exceptional mechanical strength, heightened electrical conductivity, and elevated thermal conductivity [21].

Carbon nanotubes play a crucial role in cancer research due to their cylindrical shapes, which are similar to rolled graphene sheets, and their excellent mechanical strength, strong electrical conductivity, and considerable thermal conductivity [20]. They serve as carriers for targeted drug delivery and imaging agents for diagnostics. Recently, carbon nanotubes have been extensively researched in various cancer treatment techniques, including drug administration, lymphatic-targeted chemotherapy, thermal therapy, photodynamic therapy, and gene therapy [21].

Despite their promising attributes, rigorous investigation into toxicity and biocompatibility is imperative before their widespread clinical use. Regulatory challenges must be addressed to ensure the safe and practical application of nanotubes in cancer therapeutics [6]. Carbon nanotubes have recently emerged as intriguing medical agents, indicating potential advancements [22]. In vitro studies have shown that multiwalled carbon nanotubes can facilitate the enzymatic cleavage-based release of the anticancer medication methotrexate in breast cells, and dendrimer-modified multi-walled carbon nanotubes can effectively deliver doxorubicin [23]. Single-walled carbon nanotubes have demonstrated efficacy as low-toxicity carriers for drug delivery in lung cancer treatment [6].

#### 2. Nanohorns

Carbon nanohorns are a family of carbon nanomaterials with a unique ability to adsorb various molecules, making them promising candidates for controlled drug release applications [24]. They have a distinctive hexagonal stacking structure, resulting in

microporosity and mesoporosity. Structural modifications, achieved through oxidation, introduce nanoscale windows on the walls of single-walled carbon nanohorns, controlling size and concentration while enhancing microporosity and inducing mesopores [25]. The conical structure influences the electronic properties of singlewalled carbon nanohorns, demonstrating semiconductor behavior depending on oxidation status and gas adsorption [26]. Carbon nanohorns exhibit unique magnetic characteristics, including temperatureactivated paramagnetic susceptibility and antiferromagnetic correlations between localized electrons [26]. They can be functionalized through covalent bonding,  $\pi$ - $\pi$  stacking, and metal nanoparticle decoration, enhancing their compatibility and enabling a wide range of applications [26].

Single-walled carbon nanohorns are versatile in cancer therapy, acting as potent anticancer nanoparticles that induce apoptosis [27]. They serve as effective drug delivery systems for chemotherapeutics, allowing controlled release and minimizing dosage. They can also be used in photothermal, photodynamic, and gene therapies, contributing to cancer diagnosis through immunosensing that targets specific biomarkers [27]. A water-dispersible nanohybrid, created by integrating carbon nanohorns with polyglycerol-gold, has been developed to release doxorubicin, enhancing cell apoptosis and tumor observation [28].

#### 3. Nanodiamonds

Nanodiamonds are a promising platform for theranostic applications due to their ease of synthesis, small size, inertness, surface functional groups, biocompatibility, stable fluorescence, and long fluorescent lifetime [29]. These properties have accelerated their use in cancer therapy and imaging, emphasizing the rational tailoring of particle surfaces to

deliver bioactive chemicals, resist aggregation, and form composite materials [30]. Nanodiamonds can be artificially manufactured using detonation, chemical vapor deposition, or high-temperature, high-pressure techniques [31]. They exhibit strong fluorescence with minimal toxicity, making them promising for drug delivery systems, fluorescent bio-labels, and multimodal theranostic systems [32]. Additionally, they are cost-effective and can be sourced from mining waste, making them economically viable for diverse biomedical applications. Nanodiamonds can traverse the blood-brain barrier, making them potential carriers for brain-targeted drug delivery [33]. They also exhibit enhanced absorption when administered from the basolateral side of cells, which is particularly beneficial for specific cell types [34].

Table 1 provides a comprehensive overview of carbonbased nanomaterials and their applications in cancer therapy.

Table 1 presents a list of carbon-based nanomaterials used in cancer therapy, including nanotubes, nanohorns, and nanodiamonds. Nanotubes, including single-walled, double-walled, and multi-walled carbon nanotubes, have unique cylindrical structures with exceptional mechanical strength, electrical, and thermal conductivity. They are utilized in drug delivery, thermal therapy, photodynamic therapy, and gene therapy. Nanohorns, conical horn-shaped nanostructures with controlled size, increased porosity, semiconductor behavior, and temperature-activated magnetic features, are used in anticancer drug delivery, targeted chemotherapy, photothermal and photodynamic cancer therapy, as well gene therapy and immunosensing. cancer Nanodiamonds, including those produced by detonation and fluorescent nanodiamonds, are chemically stable, biocompatible, extremely hard, transparent, and highly thermally conductive. They are applied in various cancer treatments.

Table 1: A comprehensive summary of carbon-based nanomaterials and their applications in cancer therapy

| in cancer therapy          |                                                                                       |                              |                                                                                                                      |                                                                                                                                                                                                              |                                                                                  |                                                                                                                                                                                  |            |
|----------------------------|---------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| Carbon-based nanomaterials | Type                                                                                  | Size                         | Structure                                                                                                            | Characteristics                                                                                                                                                                                              | Preparation<br>Method                                                            | Applications in<br>Cancer                                                                                                                                                        | References |
| Nanotubes                  | • Single-<br>walled carbon<br>nanotubes                                               | < 1<br>nm in<br>diameter     | • Single cylindrical layer of carbon atoms arranged hexagonally.                                                     | <ul> <li>Exceptional mechanical strength.</li> <li>High electrical conductivity.</li> <li>Significant thermal conductivity.</li> </ul>                                                                       | Arc discharge method     Laser ablation method     Chemical vapor                | <ul> <li>Anticancer drug delivery</li> <li>Lymphatic targeting chemotherapy</li> <li>Thermal therapy</li> <li>Photodynamic</li> </ul>                                            | [35–39]    |
|                            | ■ Double-<br>walled carbon<br>nanotubes                                               | * 1-50<br>nm in<br>diameter  | • Two layers<br>of graphene<br>sheets rolled<br>into cylindrical<br>structures.                                      | <ul> <li>Enhanced structural stability compared to SWCNTs.</li> <li>Combined properties of both inner and outer walls.</li> </ul>                                                                            | deposition<br>method<br>• Gas-phase<br>catalytic<br>method                       | therapy • Gene therapy                                                                                                                                                           |            |
|                            | • Multi-<br>walled carbon<br>nanotubes                                                | • 1-100<br>nm in<br>diameter | • Multiple<br>layers of<br>graphene<br>sheets<br>arranged<br>concentrically.                                         | <ul> <li>Increased mechanical strength compared to SWCNTs.</li> <li>Enhanced thermal and electrical conductivity.</li> </ul>                                                                                 |                                                                                  |                                                                                                                                                                                  |            |
| Nanohorns                  | Single-walled<br>carbon<br>nanohorns                                                  | • 2–5<br>nm in<br>diameter   | • Conical horn-shaped nanostructures.                                                                                | Have unique internal and external pores.     Controlled size and increasing porosity.     Show semiconductor behavior based on their conical structure.     Display temperature-activated magnetic features. | ■ CO <sub>2</sub> laser ablation method ■ Arc discharge method                   | <ul> <li>Anticancer drug delivery</li> <li>Targeted chemotherapy</li> <li>Photothermal and Photodynamic Cancer Therapy</li> <li>Cancer Gene Therapy and Immunosensing</li> </ul> | [40–42]    |
| Nanodiamonds               | <ul> <li>Detonation<br/>nanodiamonds</li> <li>Fluorescent<br/>nanodiamonds</li> </ul> | 1-100<br>nm in<br>diameter   | Diamond-like crystalline structure on a nanoscale, which consists of carbon atoms arranged in a tetrahedral lattice. | <ul> <li>Chemically stable and resist reactions.</li> <li>Biocompatible.</li> <li>Extremely hard, ideal for industrial tools.</li> <li>Transparent.</li> <li>High thermal conductivity.</li> </ul>           | • High-<br>pressure,<br>high-<br>temperature<br>method<br>• Detonation<br>method | ■ Anticancer drug delivery ■ Targeted chemotherapy ■ Photothermal and Photodynamic Cancer Therapy ■ Cancer Gene Therapy and Immunosensing                                        | [35,43–46] |

## **Metal-Based Nanoparticles**

Metallic nanoparticles, derived from noble metals such as gold, silver, and platinum, are increasingly studied for their potential applications in fields such as catalysis, polymer composites, disease diagnosis, sensor technology, and optoelectronic media labeling [47]. These nanoparticles are produced and stabilized using various techniques, which impact their morphology, stability, and physicochemical characteristics [48]. Metal-based nanoparticles, made of elements like gold, silver, iron, and platinum, exhibit unique

physical and chemical properties due to their small size and enhanced surface area [49]. Besides their use in medicine, they are also utilized in electronics, catalysis, and environmental remediation. Metal-based nanoparticles offer targeted drug delivery, early cancer detection, and medicinal properties [50]. However, challenges include potential toxicity, biodistribution issues, uncertain immunological responses, production cost concerns, and regulatory approvals [51]. Table 2 comprehensively summarizes metal-based nanomaterials and their applications in cancer therapy.

Table 2: A comprehensive summary of metal-based nanomaterials and their applications in cancer therapy.

| Metal-based                | Compi             |                                                                             |                                                                                                                                                                                                                           | materials and their applic                                                                                                                                                                                                                                                                                                                                      | Applications in                                                                                                                                          | Referen |
|----------------------------|-------------------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| nanomaterials              | Size              | Structure                                                                   | Characteristics                                                                                                                                                                                                           | Preparation Method                                                                                                                                                                                                                                                                                                                                              | Cancer                                                                                                                                                   | ces     |
| Gold<br>nanoparticles      | • 5-<br>100<br>nm | Diverse structures, such as spheres, rods, cages, and tubes.                | <ul> <li>Precise control over size and shape.</li> <li>Color and optical features.</li> <li>Fluorescence modulation.</li> <li>Electromagnetic field.</li> <li>Surface plasmon resonance and high surface area.</li> </ul> | <ul> <li>The sol-gel micro reactors method</li> <li>Physical vapor deposition method</li> <li>Reduction method</li> <li>γ-Irradiation v</li> <li>Biosynthesis method</li> </ul>                                                                                                                                                                                 | Anticancer drug delivery     Targeted chemotherapy     Tumor imaging     Tumor radio sensitization     Tumor hyperthermia     Tumor gene therapy         | [52–55] |
| Magnetic<br>nanoparticles  | 1-<br>100<br>nm   | Diverse such as core-shell, monodisperse, composite, hollow, and clustered. | <ul> <li>Can be composed of pure metals.</li> <li>Offer versatile and safe theranostic properties.</li> <li>Easy synthesis and modification.</li> <li>Possess intrinsic magnetic features.</li> </ul>                     | <ul> <li>Co-precipitation method</li> <li>Microemulsion method</li> <li>High-temperature method</li> <li>Hydrothermal method</li> <li>Sonochemical method</li> </ul>                                                                                                                                                                                            | <ul> <li>Anticancer drug delivery</li> <li>Targeted chemotherapy</li> <li>Tumor imaging</li> <li>Tumor biosensors</li> <li>Tumor hyperthermia</li> </ul> | [56–59] |
| Quantum dot<br>nanocarrier | 2-10<br>nm        | Core-shell design.                                                          | Resist degradation for extended cellular tracking.  10–20x brighter and more stable than organic dyes. Stable fluorophore. High drug loading Chemically inert imaging Dual drug encapsulation                             | Microemulsion method Sol-gel method Hotsolution decomposition method Hot-arrangement decay method Molecular beam epitaxy method Physical vapor deposition method Chemical vapor deposition method Physical vapor deposition method Chemical vapor deposition method Chemical vapor deposition method Chemical vapor deposition method Green method Green method | <ul> <li>Anticancer drug delivery</li> <li>Tumor imaging</li> <li>Tumor diagnosis</li> </ul>                                                             | [60–65] |

Table 2 presents a summary of metal-based nanomaterials and their applications in cancer therapy. Gold nanoparticles, sized between 5-100 nm, offer precise control over size and shape, color and optical features, fluorescence modulation, electromagnetic fields, surface plasmon resonance, and high surface area. They are utilized in anticancer drug delivery, targeted chemotherapy, tumor imaging, radiosensitization, tumor hyperthermia, and tumor gene therapy. Magnetic nanoparticles, ranging from 1-100 nm, exhibit diverse structures and offer versatile and safe theranostic properties. Composed of pure metals, they are easy to synthesize and modify. Quantum dot nanocarriers, sized between 2-10 nm, feature a core-shell design, resist degradation, and are 10-20 times brighter and more stable than organic dyes. They possess stable fluorophores, high drug-loading capacity, chemically inert imaging properties, and dual drug encapsulation capabilities. These are used in anticancer drug delivery, tumor imaging, and tumor diagnosis.

#### 1. Gold Nanoparticles

Gold nanoparticles are emerging as potent tools in cancer therapy, offering a multifaceted approach to anticancer treatment [66]. They are gaining popularity in cancer management due to their advantageous properties, including cytotoxicity against specific cancer cells, size-dependent inhibition, and tunable optical properties [67]. Due to their controlled synthesis, gold nanoparticles are also valuable in bioimaging, theranostics, and cancer treatment. Their unique physical and chemical characteristics, influenced by their diverse shapes and sizes, contribute to their versatility [68]. Recent studies highlight the impact of size, surface charge, and functional groups on cytotoxicity, making careful consideration essential for their safe and effective use in biomedical applications, particularly in cancer management [69]. Malaikolundhan et al. synthesized gold nanoparticles using Albizia lebbeck aqueous leaf extract, demonstrating promising therapeutic effects against colon cancer cells [70]. Wang et al. developed paclitaxel-conjugated gold nanoparticles, focusing on the positioning of small molecular drugs within nanoparticles [71]. This two-step drug release

process emphasizes the promise of paclitaxel-gold nanoparticles as a novel method of cancer therapy [72].

## 2. Magnetic Nanoparticles

Magnetic nanoparticles, composed of materials like iron, cobalt, or nickel, are tiny particles with unique physical and chemical characteristics [73]. They have gained attention in fields like medicine, electronics, and environmental science due to their versatile applications [74]. They are used in biomedical applications such as Magnetic Resonance Imaging (MRI), drug delivery, data storage, sensors, and information storage, as well as in antiferromagnetic and paramagnetic nanoparticles [75]. Their magnetic manipulation through an external field provides a key advantage, and their chemical composition, size, shape, morphology, and magnetic behavior are pivotal in determining their biomedical applications [76]. Magnetic nanoparticles are a promising basis for a multimodal theranostic platform in biomedical applications. Ursachi et al. synthesized nanocomposites with a magnetic core for precise targeting, a polymeric surface shell for stability and multifunctionality, and the chemotherapeutic agent paclitaxel [77].

## 3. Quantum Dot Nanocarrier

Quantum dots, highly fluorescent nanocrystals, show potential in biomedical applications, particularly in cancer screening, tumor classification, and imaging, with advancements in technology enabling multifunctional probes [60]. Quantum dot nanocarriers, utilizing semiconductor nanoparticles' electronic and optical properties, offer precise drug delivery through a core-shell architecture, using various synthesis methods for design flexibility [61]. They offer high drug loading capacity, efficient surface area, targeted delivery, real-time imaging, biocompatibility, precise control, simultaneous drug delivery, and reduced side effects [64]. Challenges in quantum dot materials include potential toxicity risks, biocompatibility studies, hazardous handling, and longterm stability concerns, necessitating careful handling and consideration of potential degradation over time [62].

Quantum dot nanocarriers offer targeted cancer treatment, real-time monitoring, and combination therapy, enhancing efficacy and utilizing quantum dots' unique properties for personalized therapeutic strategies [63]. Li et al. developed nanocarriers for precise nucleus-targeted anticancer drug delivery and real-time imaging. These nanocarriers combine an enzyme-activatable peptide with mesoporous silica-coated quantum dots, enhancing antitumor activity and demonstrating superior efficacy [78]. Rezaei et al. developed a pseudohomogeneous carbon-based vehicle, chitosan-citric acid-arginine-carbon quantum dots, for efficient gene transfer into cells. This carboplex, resistant to enzyme destruction, outperforms chitosan and enables more efficient gene transfection [79].

## **Lipid-Based Nanoparticles**

Lipid-based nanoparticles are advanced drug delivery systems for targeted therapeutic agent encapsulation, offering versatile, biocompatible platforms in various forms such as liposomes, solid nanoparticles, and nanostructured carriers [80,81]. Prepared using techniques like solvent evaporation, homogenization, and microemulsion, these nanoparticles provide high drug encapsulation efficiency, controlled release, and biocompatibility for therapeutic applications [82,83]. They show promise in cancer treatment, enhancing targeted drug delivery and minimizing systemic toxicity, thus contributing to personalized cancer therapies and advancements in oncology [84,85]. Table 3 comprehensively summarizes lipid-based nanoparticles and their applications in cancer therapy.

Table 3 presents lipid-based nanomaterials and their applications in cancer therapy. Liposomal nanocarriers, ranging from 50 to 1000 nm in size, offer high drug loading capacity, stability, and biocompatibility, mimicking natural lipid membrane structures. They can be prepared using various methods, including thin-film hydration, detergent removal, solvent injection, ethanol injection, ether injection, reverse-phase evaporation, sonication, extrusion, high-pressure homogenization, freeze-drying, supercritical reverse, microfluidic methods,

membrane Solid-lipid and contactor methods. nanoparticles, sized between 50 and 1000 nm, offer controlled release and targeting capabilities with low toxicity and protection for labile drugs. They are formulated without organic solvents, allowing for flexible sterilization and versatile encapsulation. Nanostructured lipid carriers, ranging from 10 to 1000 nm in size, offer controlled release and targeting with excellent biocompatibility. They are easy to scale up and sterilize, can be formulated without organic solvents, and offer versatile encapsulation.

## 1.Liposomal Nanocarriers

Liposomal nanocarriers are advanced drug delivery systems with spherical structures, a hydrophilic core, and a bilayer of phospholipids, forming spontaneously when lipids are hydrated in aqueous environments [45]. Liposomes, composed synthetic natural of or phospholipids, arise spontaneously from water molecules and hydrophobic phosphate groups and are loaded with pharmaceuticals through various techniques [86]. Liposomal nanoformulations, ranging from 50-500 nm, are crucial for drug delivery in biomedical applications, with tiny, giant, and multilamellar types facilitating efficient cell uptake and tissue penetration [88]. Liposomes, with their stable, biocompatible, and degradable structure, play a crucial role in encapsulating hydrophilic drugs and influencing their pharmacokinetics and biodistribution [87, 95]. With cancer treatment approvals, liposomes offer efficient drug delivery, protection, improved bioavailability, and reduced side effects. Challenges include rapid clearance and stimulussensitive structures [83]. Zarrabi et al. developed intelligent biocompatible stealth nanoliposomes for targeted curcumin delivery, showing high drug entrapment efficiency and controlled release patterns. These liposomes hold promise for cancer therapy but require further validation and clinical trials [96]. Ghafari et al. developed nanoliposomes containing cisplatin, enhancing its efficacy and mitigating side effects. The modified formulations showed improved cellular absorption and cytotoxicity, offering the potential for improved

therapeutic efficacy [97].

Table 3: A comprehensive summary of lipid-based nanomaterials and their applications in cancer therapy.

| Lipid-based    | Size         | Structure   | Characteristics                            | Preparation Method                                               | Applications in     | References |
|----------------|--------------|-------------|--------------------------------------------|------------------------------------------------------------------|---------------------|------------|
| nanomaterials  |              |             |                                            |                                                                  | Cancer              |            |
| Liposomal      | ■50-         | ■ Spherical | ■High drug loading                         | ■Thin-film hydration                                             | Anticancer drug     | [45,86–88] |
| nanocarriers   | 1000         |             | Stability and                              | method                                                           | delivery            |            |
|                | nm           |             | biocompatibility                           | Detergent removal method                                         | ■Targeted           |            |
|                |              |             | <ul> <li>Mimics natural lipid</li> </ul>   | Solvent injection method                                         | chemotherapy        |            |
|                |              |             | membrane structure                         | Ethanol injection method                                         | ■Tumor diagnosis    |            |
|                |              |             | ■ Avoids immune                            | ■Ether injection method                                          |                     |            |
|                |              |             | system                                     | Reverse-phase evaporation                                        |                     |            |
|                |              |             | <ul> <li>Amphipathic properties</li> </ul> | method                                                           |                     |            |
|                |              |             | liposomes can                              | Sonication method                                                |                     |            |
|                |              |             | encapsulate hydrophilic                    | Extrusion method                                                 |                     |            |
|                |              |             | and hydrophobic drugs.                     | •High-pressure                                                   |                     |            |
|                |              |             |                                            | homogenization method                                            |                     |            |
|                |              |             |                                            | Freeze-drying method                                             |                     |            |
|                |              |             |                                            | Supercritical reverse                                            |                     |            |
|                |              |             |                                            | method                                                           |                     |            |
|                |              |             |                                            | Microfluidic methods                                             |                     |            |
|                |              |             |                                            | ■ Membrane contactor                                             |                     |            |
| G.P.I.P I      | <b>■</b> 50- | -0.1 1.1    | -C + 11 1 1 1                              | method                                                           | - A .: 1            | 100 011    |
| Solid-lipid    |              | ■ Spherical | Controlled release and                     | High shear homogenization                                        | Anticancer drug     | [89–91]    |
| nanoparticles  | 1000         |             | targeting  Low toxicity                    | <ul><li>Hot homogenization</li><li>Cold homogenization</li></ul> | delivery Targeted   |            |
|                | nm           |             | Labile drug protection                     | Ultrasonication method                                           | chemotherapy        |            |
|                |              |             | Flexible sterilization                     | Microemulsion method                                             | ■Tumor diagnosis    |            |
|                |              |             | Formulated without                         | Supercritical fluid method                                       | - Tulliof diagnosis |            |
|                |              |             | organic solvents.                          | Solvent evaporation                                              |                     |            |
|                |              |             | ■ Versatile                                | method                                                           |                     |            |
|                |              |             | encapsulation                              | ■ Double emulsion method                                         |                     |            |
|                |              |             | Reduced side effects                       | Spray drying method                                              |                     |            |
| Nanostructured | <b>1</b> 0-  | ■ Spherical | Controlled release and                     | ■ Hot homogenization                                             | ■ Anticancer drug   | [92–94]    |
| lipid carriers | 1000         | -p          | targeting Excellent                        | Cold homogenization                                              | delivery            | [ / -]     |
|                | nm           |             | biocompatibility                           | Microemulsion method                                             | ■ Targeted          |            |
|                |              |             | Easy to scaleup and                        | ■ High-pressure                                                  | chemotherapy        |            |
|                |              |             | sterilize                                  | homogenization                                                   | ■Tumor diagnosis    |            |
|                |              |             | ■Formulated without                        | ■ Solvent evaporation                                            |                     |            |
|                |              |             | organic solvents.                          | method                                                           |                     |            |
|                |              |             | ■ Versatile                                | ■Phase inversion method                                          |                     |            |
|                |              |             | encapsulation                              | <ul> <li>Ultrasonication method</li> </ul>                       |                     |            |
|                |              |             | =                                          | ■ Membrane contractor                                            |                     |            |
|                |              |             |                                            | method                                                           |                     |            |

## 2. Solid Lipid Nanoparticles

Solid lipid nanoparticles (SLNs) are a submicron-sized drug delivery system composed of a solid lipid matrix, surfactants, and cosurfactants, ensuring controlled drug [89,90,98]. release and stability SLNs offer biodegradability, biocompatibility, and regulated medication release, making them promising for large-scale drug delivery systems and versatile for various routes [89,90]. SLNs show potential in cancer therapy by

improving drug efficacy and overcoming the challenges of traditional chemotherapy [99]. They enhance cellular uptake, prolong drug circulation, and increase apoptosis induction [90]. Qureshi et al. developed docetaxel-incorporated lipid nanoparticles to improve their pharmacokinetic profile and solubility [100]. The nanotechnology template engineering technique demonstrated 96% incorporation efficiency and sustained release characteristics. The nanoparticles exhibited

increased anticancer activity and improved therapeutic outcomes in breast cancer treatment [100]. Smith et al. developed solid lipid nanoparticles to enhance the therapeutic effectiveness of 5-fluorouracil (5-FU) in colorectal cancer therapy [101]. The nanoparticles, loaded with unique PEGylated lipids and a surfactant mixture, showed lower IC50 values and increased tumor efficacy in HCT-116 cancer cells. This underscores the need for intelligent nano-delivery systems [101].

## 3. Nanostructured Lipid Carriers

Nanostructured lipid carriers, combining solid and liquid lipids, offer improved drug delivery and controlled release through high-pressure homogenization, solvent emulsification/evaporation, and microemulsion techniques [92]. Nanostructured lipid carriers are effective due to their biocompatibility, solvent-free preparation, cost-effectiveness, and controlled drug release, making them eco-friendly and cost-effective for mass production and sterilization [92]. They offer efficient drug delivery, versatility in transporting lipophilic and hydrophilic drugs, and biodegradability, making them a promising choice for environmental

sustainability [93,102]. Nanostructured lipid carriers provide enhanced drug delivery, controlled release, and efficient transport in cancer treatment, outperforming complex formulation optimization and limited long-term stability for specific drugs [92,93]. Sun et al. developed biocompatible, biodegradable quercetin-nanostructured lipid carriers to improve water solubility, stability, and cellular bioavailability [103]. These carriers demonstrated increased cytotoxicity and apoptosis in breast cancer cells, indicating potential for chemoprevention [103]. Ferreira et al. optimized nanostructured lipid carriers as methotrexate carriers using hot ultrasonication [104]. The carriers exhibited robustness, a spherical shape, and 87% entrapment efficiency. They released methotrexate quickly and persistently without harming fibroblasts [104].

#### **Polymeric Nanoparticles**

Polymeric nanoparticles, composed of synthetic or natural polymers (Figure 3), offer customizable features in medication delivery systems and biocompatibility, making them safe and efficient for drug administration, as summarized in Table 4-A [105,106].

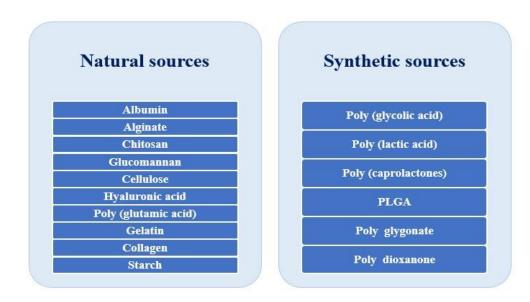



Figure 3: Commonly used polymers for cancer drug delivery.

**Table 4-A:** Comprehensive summary of polymeric-based nanoparticles and their applications in cancer

therapy [105,106].

Table 4- B: A comprehensive summary of polymeric-based nanomaterials and their applications in cancer therapy.

| Polymeric-<br>based<br>nanomaterials | Size                | Structure                                                                                   | Characteristics                                                                                                                                                                                                                                                                                                                                                     | Preparation Method                                                                                                                                                                                        | Applications in Cancer                                                                          | References |
|--------------------------------------|---------------------|---------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------|
| Polymeric<br>nanoparticles           | * 10-<br>1000<br>nm | Spherical, Rod-<br>shaped, polyhedral,<br>filamentous, star-<br>shaped, and core-<br>shell. | <ul> <li>Ease of surface modification</li> <li>Biocompatibility</li> <li>Versatility with natural and synthetic polymers.</li> <li>Enable controlled and targeted drug release</li> <li>High encapsulation efficiency</li> <li>Good stability</li> <li>Biodegradability</li> <li>The ease of surface modification</li> <li>Precise particle size control</li> </ul> | Solvent evaporation method Double emulsification method Emulsion diffusion method Nanoprecipitation method Coacervation method Salting out method Dialysis method Supercritical fluid method              | Anticancer drug delivery     Targeted chemotherapy     Cancer diagnosis and imaging             | [107–109]  |
| Dendrimers                           | 1-100<br>nm         | Compact and globular structure.                                                             | Hyperbranched subunits. High structural control. Well-defined architecture. Monodisperse with precise molecular weight, shape, and size. Surface functional groups for drug conjugation and inner cavities for drug entrapment. Lower glass temperatures.                                                                                                           | <ul> <li>Divergent synthesis</li> <li>Convergent synthesis</li> <li>Hypercores and branched monomer growth</li> <li>Double exponential growth</li> <li>Lego chemistry</li> <li>Click chemistry</li> </ul> | Anticancer drug delivery     Targeted chemotherapy     Cancer diagnosis and imaging             | [110–113]  |
| Polymeric<br>micelles                | 1-100<br>nm         | Spherical or<br>globular shape,<br>characterized by a<br>core-shell structure               | Amphiphilic properties     Hydrophobic core     Size and shape control     Enhanced drug solubility     Extended blood circulation     Biodistribution control     Low toxicity and fast clearance     No drug modification is needed                                                                                                                               | <ul><li>Direct dissolution</li><li>Solvent evaporation</li><li>Dialysis</li></ul>                                                                                                                         | Anticancer<br>drug delivery     Targeted<br>chemotherapy     Cancer<br>diagnosis and<br>imaging | [114–118]  |

Table 4-B presents a comprehensive overview of polymeric-based nanomaterials and their applications in cancer therapy. Polymeric nanoparticles, ranging from 10 to 1000 nm, have various structures and offer ease of surface modification, biocompatibility, and versatility. They enable controlled drug release with high encapsulation efficiency, stability, biodegradability, and precise particle size control. Preparation methods include solvent evaporation, double emulsification, emulsion diffusion, nanoprecipitation, coacervation, salting out,

dialysis, and supercritical fluid methods. Dendrimers, sized between 1 and 100 nm, have a compact and globular structure with hyperbranched subunits. They offer high structural control, well-defined architecture, monodispersity, surface functional groups for drug conjugation, inner cavities for drug entrapment, and lower glass transition temperatures. They are used in anticancer drug delivery, targeted chemotherapy, and cancer diagnosis and imaging. Polymeric micelles, ranging from 1 to 100 nm, have a spherical or globular shape with a core-

shell structure. They possess amphiphilic properties, enabling enhanced drug solubility, extended blood circulation, biodistribution control, low toxicity, and fast clearance without drug modification.

Polymeric nanoparticles offer flexibility in medication delivery systems, allowing controlled release and targeted distribution, potentially improving the effectiveness and safety of medicinal applications in various medical contexts [119].

## 1. Polymeric Nanoparticles

Polymeric nanoparticles offer advanced drug delivery in cancer treatment, featuring a core-shell design for stability and controlled release facilitated by advanced techniques like nanoprecipitation and solvent evaporation [120]. They are ideal for cancer therapy due to their versatility in encapsulating various payloads, including drugs, genes, and imaging agents [121]. They enhance drug stability, improve pharmacokinetics, and reduce side effects [122]. However, challenges include complex formulations, potential toxicity, and size constraints [123]. Research has shown promising results in ovarian cancer treatment, with paclitaxel-loaded nanoparticles showing potential [124]. Additionally, PLGA-based polymeric nanoparticles are efficient delivery vehicles for various drugs [125].

## 2. Dendrimers

Dendrimers, highly branched macromolecules with treelike structures, are valuable in cancer research due to their precision in design and functionality, achieved through controlled synthetic processes [1111]. Made polyamidoamine (PAMAM), dendrimers are a versatile tool in cancer treatment due to their uniform size, precise molecular weight, and ability to carry multiple functional groups [126]. They offer controlled release capabilities. enhanced solubility of drugs, and targeted delivery to specific cells. However, challenges like complex synthesis and potential toxicity at higher concentrations are drawbacks [127]. Dendrimers excel in targeted drug delivery, minimizing side effects, and aiding in cancer imaging, visualization, and combined diagnostics and therapy [128]. They also show promise in gene delivery, photodynamic therapy, and immunotherapy support. Guanglan et al. used PLA and hyaluronic acid-modified half-generation PAMAM G4.5 dendrimers as intelligent carriers for administering paclitaxel and sorafenib in liver cancer treatment [129]. Torres-Pérez et al. developed a unique one-step PAMAM dendrimer formulation loaded with methotrexate and D-glucose for triple-negative breast cancer cell lines, demonstrating that dendrimers containing methotrexate and D-glucose significantly decreased cell viability, outperforming free methotrexate [130].

## 3. Polymeric Micelles

Polymeric micelles, formed by self-assembling amphiphilic block copolymers, have a hydrophobic core and shell, facilitating drug solubilization in aqueous solutions, as summarized in Table 4-B [114]. With a size range of 10-100 nm, polymeric micelles offer advantages such as improved drug solubility, circulation time, and targeted drug delivery [131]. However, they also present challenges like complex synthesis and limited drug loading capacity. Polymeric micelles are extensively explored for cancer applications, including drug delivery and imaging [132]. Studies have shown their efficacy against cancer stem cells and gastrointestinal cancers [133]. Electron-stabilized polymeric micelles loaded with docetaxel show promise as a therapeutic option for advanced-stage gastrointestinal malignancies [134].

Table 4-B presents a comprehensive overview of polymeric-based nanomaterials and their applications in cancer therapy. Polymeric nanoparticles, ranging from 10 to 1000 nm, are versatile and easy to modify. They enable controlled drug release with high efficiency, stability, and biodegradability. These nanoparticles are used in anticancer drug delivery, targeted chemotherapy, and cancer diagnosis and imaging. Dendrimers, sized between 1 and 100 nm, have a compact and globular structure with hyperbranched subunits. They offer high structural control, monodispersity, and lower glass transition temperatures. Polymeric micelles, ranging from 1 to 100

nm, have a spherical or globular shape with a core-shell structure. They possess amphiphilic properties, enabling enhanced drug solubility, extended blood circulation, biodistribution control, low toxicity, and fast clearance without drug modification. Preparation methods include direct dissolution, solvent evaporation, and dialysis.

Table 4- B: A comprehensive summary of polymeric-based nanomaterials and their applications in cancer therapy.

| Polymeric-<br>based<br>nanomaterials | Size           | Structure                                                                                    | Characteristics                                                                                                                                                                                                                                                                  | Preparation Method                                                                                                                                                                           | Applications in<br>Cancer                                                                        | References |
|--------------------------------------|----------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------|
| Polymeric<br>nanoparticles           | 10-<br>1000 nm | •Spherical,<br>Rod-shaped,<br>polyhedral,<br>filamentous,<br>star-shaped,<br>and core-shell. | ■Ease of surface modification ■Biocompatibility ■Versatility with natural and synthetic polymers. ■Enable controlled and targeted drug release ■High encapsulation efficiency ■Good stability ■Biodegradability ■The ease of surface modification ■Precise particle size control | Solvent evaporation method Double emulsification method Emulsion diffusion method Nanoprecipitation method Coacervation method Salting out method Dialysis method Supercritical fluid method | ■ Anticancer drug<br>delivery<br>■ Targeted<br>chemotherapy<br>■ Cancer diagnosis<br>and imaging | [107–109]  |
| Dendrimers                           | 1-100<br>nm    | Compact and globular structure.                                                              | ■ Hyperbranched subunits. ■ High structural control. ■ Well-defined architecture. ■ Monodisperse with precise molecular weight, shape, and size. ■ Surface functional groups for drug conjugation and inner cavities for drug entrapment. ■ Lower glass temperatures.            | Divergent synthesis Convergent synthesis Hypercores and branched monomer growth Double exponential growth Lego chemistry Click chemistry                                                     | ■ Anticancer drug<br>delivery<br>■ Targeted<br>chemotherapy<br>■ Cancer diagnosis<br>and imaging | [110–113]  |
| Polymeric<br>micelles                | 1-100<br>nm    | •Spherical or<br>globular shape,<br>characterized<br>by a core-shell<br>structure            | Amphiphilic properties     Hydrophobic core     Size and shape control     Enhanced drug solubility     Extended blood circulation     Biodistribution control     Low toxicity and fast clearance     No drug modification is needed                                            | ■Direct dissolution ■Solvent evaporation ■Dialysis                                                                                                                                           | ■ Anticancer drug<br>delivery<br>■ Targeted<br>chemotherapy<br>■ Cancer diagnosis<br>and imaging | [114–118]  |

## **CONCLUSIONS**

In 2023, the United States is expected to have 1,958,310 new cancer cases and 609,820 cancer deaths. Nanotechnology, a multidisciplinary field combining chemistry, engineering, biology, and medicine, has

emerged as a promising frontier in cancer research. Nanoparticles, including carbon-based nanomaterials, nanohorns, nanodiamonds, metal-based nanoparticles, gold nanoparticles, magnetic nanoparticles, quantum dot nanocarriers, lipid-based nanoparticles, solid lipid

nanoparticles (SLNs), nanoparticles, polymeric dendrimers, and polymeric micelles, have shown promise in detecting and treating various cancers. However, challenges such as biocompatibility, toxicity evaluation, and regulatory hurdles remain. Carbon nanotubes, nanohorns, and nanodiamonds offer benefits in cancer treatment due to their small size and hybridized carbon atoms. Metal-based nanoparticles, derived from noble metals like gold, silver, and platinum, provide targeted drug delivery, early cancer detection, and medicinal properties. Gold nanoparticles are emerging as potent tools in cancer therapy due to their advantageous properties, including cytotoxicity against specific cancer cells, sizedependent inhibition, and tunable optical properties. Magnetic nanoparticles have gained attention in fields such as medicine, electronics, and environmental science due to their versatile applications.

This comprehensive review combines existing knowledge on nanomaterials in cancer therapy and highlights their various applications and potential benefits in improving cancer treatment outcomes. It advances scientific knowledge by providing a thorough overview of nanomaterial properties, preparation methods, and applications, making it an invaluable resource for cancer researchers and clinicians. Furthermore, it emphasizes the importance of ongoing research and development using nanomaterials to address cancer treatment challenges, leading to advances in personalized and effective cancer therapy strategies.

## **REFERENCES**

- Siegel, R.L., Miller, K.D., Wagle, N.S., Jemal, A. Cancer Statistics, 2023. CA Cancer J Clin. 2023; 73: 17–48, doi:10.3322/caac.21763.
- Sharma, P., Jhawat, V., Mathur, P., Dutt, R. Innovation in Cancer Therapeutics and Regulatory Perspectives. *Medical Oncology* 2022; 39: 76.
- Ahmad, A. Precision Medicine and Pharmacogenetics: Stratification and Improved Outcome in Non-Small Cell Lung Cancer. *Jordan Journal of Pharmaceutical Sciences* 2023; 16: 441–441, doi:10.35516/JJPS.V16I2.1474.
- Gennari, A., André, F., Barrios, C.H., Cortés, J., de Azambuja, E., DeMichele, A., Dent, R., Fenlon, D., Gligorov, J., Hurvitz, S.A., et al. ESMO Clinical Practice Guideline for the Diagnosis, Staging and Treatment of Patients with Metastatic Breast Cancer. *Annals of Oncology* 2021; 32: 1475–1495, doi:10.1016/j.annonc.2021.09.019.

- Caputo, D., Quagliarini, E., Pozzi, D., Caracciolo, G. Nanotechnology Meets Oncology: A Perspective on the Role of the Personalized Nanoparticle-Protein Corona in the Development of Technologies for Pancreatic Cancer Detection. *Int J Mol Sci.* 2022; 23: 23.
- Chehelgerdi, M., Chehelgerdi, M., Allela, O.Q.B., Pecho, R.D.C., Jayasankar, N., Rao, D.P., Thamaraikani, T., Vasanthan, M., Viktor, P., Lakshmaiya, N., et al. Progressing Nanotechnology to Improve Targeted Cancer Treatment: Overcoming Hurdles in Its Clinical Implementation. *Mol Cancer*. 2023; 22: 1–103.
- Abuarqoub, D., Mahmoud, N.N., Zaza, R., Abu-Dahab, R., Khalil, E.A., Sabbah, D.A. The in Vitro Immunomodulatory Effects of Gold Nanocomplex on THP-1-Derived Macrophages. *J Immunol Res.* 2022; 2022: doi:10.1155/2022/6031776.

- Wang, M.D., Shin, D.M., Simons, J.W., Nie, S. Nanotechnology for Targeted Cancer Therapy. *Expert Rev Anticancer Ther*. 2007; 7: 833–837, doi:10.1586/14737140.7.6.833.
- Hajipour, M.J., Safavi-Sohi, R., Sharifi, S., Mahmoud, N., Ashkarran, A.A., Voke, E., Serpooshan, V., Ramezankhani, M., Milani, A.S., Landry, M.P., et al. An Overview of Nanoparticle Protein Corona Literature. Small. 2023; 19.
- Dessale, M., Mengistu, G., Mengist, H.M.
   Nanotechnology: A Promising Approach for Cancer Diagnosis, Therapeutics and Theragnosis. *Int J Nanomedicine*, 2022; 17: 3735–3749.
- 11. Alshogran, O.Y., Al-Shdefat, R., Hailat, M. Simple and Rapid Quantification of Ribociclib in Rat Plasma by Protein Precipitation and LC-MS/MS: An Application to Pharmacokinetics of Ribociclib Nanoparticles in Rats. *Journal of Mass Spectrometry*. 2023; 58: e4984, doi:10.1002/jms.4984.
- Lisik, K., Krokosz, A. Application of Carbon Nanoparticles in Oncology and Regenerative Medicine. *Int J Mol Sci.* 2021; 22: 22.
- Bagheri, B., Surwase, S.S., Lee, S.S., Park, H., Faraji Rad,
   Z., Trevaskis, N.L., Kim, Y.C. Carbon-Based
   Nanostructures for Cancer Therapy and Drug Delivery
   Applications. J Mater Chem B. 2022; 10: 9944–9967.
- 14. Afreen, S., Omar, R.A., Talreja, N., Chauhan, D., Ashfaq, M. Carbon-Based Nanostructured Materials for Energy and Environmental Remediation Applications. In *Nanotechnology in the Life Sciences*; Springer Science and Business Media B.V., 2018; pp. 369–392.
- Mohan, H., Fagan, A., Giordani, S. Carbon Nanomaterials (CNMs) in Cancer Therapy: A Database of CNM-Based Nanocarrier Systems. *Pharmaceutics*. 2023; 15: 1545.

- 16. Sarkar, S., Gurjarpadhye, A.A., Rylander, C.G., Nichole Rylander, M. Optical Properties of Breast Tumor Phantoms Containing Carbon Nanotubes and Nanohorns. *J Biomed Opt.* 2011; 16: 051304, doi:10.1117/1.3574762.
- Saleem, J., Wang, L., Chen, C. Carbon-Based Nanomaterials for Cancer Therapy via Targeting Tumor Microenvironment. Adv Healthc Mater. 2018; 7: 1800525.
- Zare, H., Ahmadi, S., Ghasemi, A., Ghanbari, M., Rabiee, N., Bagherzadeh, M., Karimi, M., Webster, T.J., Hamblin, M.R., Mostafavi, E. Carbon Nanotubes: Smart Drug/Gene Delivery Carriers. *Int J Nanomedicine*. 2021; 16: 1681– 1706.
- 19. Singh, R., Kumar, S. Cancer Targeting and Diagnosis: Recent Trends with Carbon Nanotubes. *Nanomaterials*. 2022; 12: doi:10.3390/NANO12132283.
- Rathinavel, S., Priyadharshini, K., Panda, D. A Review on Carbon Nanotube: An Overview of Synthesis, Properties, Functionalization, Characterization, and the Application. *Materials Science and Engineering: B.* 2021; 268: 115095.
- 21. Anzar, N., Hasan, R., Tyagi, M., Yadav, N., Narang, J. Carbon Nanotube A Review on Synthesis, Properties and Plethora of Applications in the Field of Biomedical Science. Sensors International. 2020; 1: 100003.
- Kumar, S., Rani, R., Dilbaghi, N., Tankeshwar, K., Kim, K.H. Carbon Nanotubes: A Novel Material for Multifaceted Applications in Human Healthcare. *Chem Soc Rev.* 2017; 46: 158–196.
- 23. Tang, L., Li, J., Pan, T., Yin, Y., Mei, Y., Xiao, Q., Wang, R., Yan, Z., Wang, W. Versatile Carbon Nanoplatforms for Cancer Treatment and Diagnosis: Strategies, Applications and Future Perspectives. *Theranostics*. 2022; 12: 2290–2321.

- 24. Debnath, S.K., Srivastava, R. Drug Delivery With Carbon-Based Nanomaterials as Versatile Nanocarriers: Progress and Prospects. Frontiers in Nanotechnology. 2021; 3: 644564.
- Murata, K., Kaneko, K., Kokai, F., Takahashi, K., Yudasaka, M., Iijima, S. Pore Structure of Single-Wall Carbon Nanohorn Aggregates. *Chem Phys Lett.* 2000; 331: 14–20, doi:10.1016/S0009-2614(00)01152-0.
- Garaj, S., Thien-Nga, L., Gaal, R., Forró, L., Takahashi, K., Kokai, F., Yudasaka, M., Iijima, S., Iijima, S., Iijima, S. Electronic Properties of Carbon Nanohorns Studied by ESR. *Phys Rev B Condens Matter Mater Phys.* 2000; 62: 17115–17119, doi:10.1103/PhysRevB.62.17115.
- 27. Moreno-Lanceta, A., Medrano-Bosch, M., Melgar-Lesmes, P. Single-Walled Carbon Nanohorns as Promising Nanotube-Derived Delivery Systems to Treat Cancer. *Pharmaceutics*. 2020; 12: 1–21.
- 28. Li, D., Zhang, Y., Xu, J., Yoshino, F., Xu, H., Chen, X., Zhao, L. Surface-Engineered Carbon Nanohorns as a Theranostic Nanodevice for Photoacoustic Imaging and Effective Radiochemotherapy of Cancer. *Carbon N Y*. 2021; 180: 185–196, doi:10.1016/j.carbon.2021.04.073.
- 29. Pan, F., Khan, M., Ragab, A.H., Javed, E., Alsalmah, H.A., Khan, I., Lei, T., Hussain, A., Mohamed, A., Zada, A., et al. Recent Advances in the Structure and Biomedical Applications of Nanodiamonds and Their Future Perspectives. *Mater Des.* 2023; 233: 112179, doi:10.1016/j.matdes.2023.112179.
- Mondal, A., Nayak, A.K., Chakraborty, P., Banerjee, S., Nandy, B.C. Natural Polymeric Nanobiocomposites for Anti-Cancer Drug Delivery Therapeutics: A Recent Update. *Pharmaceutics*. 2023; 15: 2064.
- 31. Khan, M.B., Khan, Z.H. Nanodiamonds: Synthesis and Applications. In *Proceedings of the Advanced Structured Materials*; Springer Science and Business Media Deutschland GmbH, 2018; Vol. 84, pp. 1–26.

- 32. Gowtham, P., Harini, K., Pallavi, P., Girigoswami, K., Girigoswami, A. Nano-Fluorophores as Enhanced Diagnostic Tools to Improve Cellular Imaging. *Nanomed J.* 2022; 9: 281–295.
- 33. Singh, M., Mazumder, B. Recent Advancements in Nanodiamond Mediated Brain Targeted Drug Delivery and Bioimaging of Brain Ailments: A Holistic Review. *Pharm Nanotechnol.* 2021; 10: 42–55, doi:10.2174/2211738510666211222111938.
- Zupančič, D., Veranič, P. Nanodiamonds as Possible Tools for Improved Management of Bladder Cancer and Bacterial Cystitis. *Int J Mol Sci.* 2022; 23.
- 35. Bianco, A., Kostarelos, K., Prato, M. Opportunities and Challenges of Carbon-Based Nanomaterials. *Chem Rev.* 2008; 108: 321–341.
- 36. Ji, S.R., Liu, C., Zhang, B., Yang, F., Xu, J., Long, J., Jin, C., Fu, D.L., Ni, Q.X., Yu, X.J. Carbon Nanotubes in Cancer Diagnosis and Therapy. *Biochim Biophys Acta Rev Cancer*. 2010; 1806: 29–35, doi:10.1016/j.bbcan.2010.02.004.
- 37. Sanginario, A., Miccoli, B., Demarchi, D. Carbon Nanotubes as an Effective Opportunity for Cancer Diagnosis and Treatment. *Biosensors (Basel)*. 2017; 7: 1– 23, doi:10.3390/bios7010009.
- Son, K.H., Hong, J.H., Lee, J.W. Carbon Nanotubes as Cancer Therapeutic Carriers and Mediators. *Int J Nanomedicine*. 2016; 11: 5163–5185, doi:10.2147/JJN.S112660.
- Sheikhpour, M., Golbabaie, A., Kasaeian, A. Carbon Nanotubes: A Review of Novel Strategies for Cancer Diagnosis and Treatment. *Materials Science and Engineering C.* 2017; 76: 1289–1304, doi:10.1016/j.msec.2017.02.132.

- Moreno-Lanceta, A., Medrano-Bosch, M., Melgar-Lesmes, P. Single-Walled Carbon Nanohorns as Promising Nanotube-Derived Delivery Systems to Treat Cancer. *Pharmaceutics*. 2020; 12: 1–21, doi:10.3390/pharmaceutics12090850.
- 41. Curcio, M., Cirillo, G., Saletta, F., Michniewicz, F., Nicoletta, F.P., Vittorio, O., Hampel, S., Iemma, F. Carbon Nanohorns as Effective Nanotherapeutics in Cancer Therapy. *C (Basel)*. 2020; 7: 3, doi:10.3390/c7010003.
- 42. Chechetka, S.A., Zhang, M., Yudasaka, M., Miyako, E. Physicochemically Functionalized Carbon Nanohorns for Multi-Dimensional Cancer Elimination. *Carbon N Y*. 2016; 97: 45–53, doi:10.1016/j.carbon.2015.05.077.
- 43. Lai, H., Stenzel, M.H., Xiao, P. Surface Engineering and Applications of Nanodiamonds in Cancer Treatment and Imaging. *International Materials Reviews*. 2020; 65: 189– 225, doi:10.1080/09506608.2019.1622202.
- Gupta, C., Prakash, D., Gupta, S. Cancer Treatment with Nano-Diamonds. *Frontiers in Bioscience - Scholar*. 2017;
   62–70, doi:10.2741/S473.
- 45. Jabir, N.R., Tabrez, S., Ashraf, G.M., Shakil, S., Damanhouri, G.A., Kamal, M.A. Nanotechnology-Based Approaches in Anticancer Research. *Int J Nanomedicine*. 2012; 7: 4391–4408, doi:10.2147/IJN.S33838.
- van der Laan, K., Hasani, M., Zheng, T., Schirhagl, R. Nanodiamonds for In Vivo Applications. *Small.* 2018; 14, doi:10.1002/smll.201703838.
- 47. Jamkhande, P.G., Ghule, N.W., Bamer, A.H., Kalaskar, M.G. Metal Nanoparticles Synthesis: An Overview on Methods of Preparation, Advantages and Disadvantages, and Applications. *J Drug Deliv Sci Technol*. 2019; 53: 101174.
- 48. Phan, H.T., Haes, A.J. What Does Nanoparticle Stability Mean? *Journal of Physical Chemistry C.* 2019; 123: 16495–16507, doi:10.1021/acs.jpcc.9b00913.

- 49. Yaqoob, A.A., Ahmad, H., Parveen, T., Ahmad, A., Oves, M., Ismail, I.M.I., Qari, H.A., Umar, K., Mohamad Ibrahim, M.N. Recent Advances in Metal Decorated Nanomaterials and Their Various Biological Applications: A Review. Front Chem. 2020; 8: 341.
- 50. Kumar, S., Shukla, M.K., Sharma, A.K., Jayaprakash, G.K., Tonk, R.K., Chellappan, D.K., Singh, S.K., Dua, K., Ahmed, F., Bhattacharyya, S., et al. Metal-based Nanomaterials and Nanocomposites as Promising Frontier in Cancer Chemotherapy. *MedComm (Beijing)*. 2023; 4, doi:10.1002/MCO2.253.
- Altammar, K.A. A Review on Nanoparticles: Characteristics, Synthesis, Applications, and Challenges. Front Microbiol. 2023; 14.
- 52. Sztandera, K., Gorzkiewicz, M., Klajnert-Maculewicz, B.
  Gold Nanoparticles in Cancer Treatment. *Mol Pharm.*2019; 16: 1–23,
  doi:10.1021/acs.molpharmaceut.8b00810.
- Peng, J., Liang, X., Calderon, L. Progress in Research on Gold Nanoparticles in Cancer Management. *Medicine* (*United States*). 2019; 98, doi:10.1097/MD.0000000000015311.
- 54. Haume, K., Rosa, S., Grellet, S., Śmiałek, M.A., Butterworth, K.T., Solov'yov, A.V., Prise, K.M., Golding, J., Mason, N.J. Gold Nanoparticles for Cancer Radiotherapy: A Review. *Cancer Nanotechnol.* 2016; 7, doi:10.1186/s12645-016-0021-x.
- Slepička, P., Kasálková, N.S., Siegel, J., Kolská, Z., Švorčík, V. Methods of Gold and Silver Nanoparticles Preparation. *Materials*. 2020; 13, doi:10.3390/ma13010001.
- 56. Sattari, M. 乳鼠心肌提取 {HHS} {Public} {Access}. *Journal of Pediatrics*. 2013; 176: 139–148, doi:10.1002/adhm.201901058.Magnetic.

- 57. Li, X., Li, W., Wang, M., Liao, Z. Magnetic Nanoparticles for Cancer Theranostics: Advances and Prospects. *Journal of Controlled Release*. 2021; 335: 437–448, doi:10.1016/j.jconrel.2021.05.042.
- 58. Jose, J., Kumar, R., Harilal, S., Mathew, G.E., Parambi, D.G.T., Prabhu, A., Uddin, M.S., Aleya, L., Kim, H., Mathew, B. Magnetic Nanoparticles for Hyperthermia in Cancer Treatment: An Emerging Tool. *Environmental Science and Pollution Research*. 2020; 27: 19214–19225, doi:10.1007/s11356-019-07231-2.
- 59. Yadollahpour, A. Magnetic Nanoparticles in Medicine: A Review of Synthesis Methods and Important Characteristics. *Oriental Journal of Chemistry*. 2015; 31: 271–277, doi:10.13005/ojc/31.Special-Issue1.33.
- 60. Meadows, J. Vehicle Design. *Vehicle Design*. 2017; 65: 703–718, doi:10.4324/9781315543147.
- Deli-, D., Sukhanova, A., Nabiev, I. Accepted Manuscript.
- 62. Matea, C.T., Mocan, T., Tabaran, F., Pop, T., Mosteanu, O., Puia, C., Iancu, C., Mocan, L. Quantum Dots in Imaging, Drug Delivery and Sensor Applications. *Int J Nanomedicine*. 2017; 12: 5421–5431, doi:10.2147/IJN.S138624.
- 63. Qi, L., Gao, X. Emerging Application of Quantum Dots for Drug Delivery and Therapy. *Expert Opin Drug Deliv*. 2008; 5: 263–267, doi:10.1517/17425247.5.3.263.
- 64. Tandale, P., Choudhary, N., Singh, J., Sharma, A., Shukla, A., Sriram, P., Suttee, A. Fluorescent Quantum Dots: An Insight on Synthesis and Potential Biological Application as Drug Carrier in Cancer. *Biochem Biophys Rep.* 2021; 26: 100962.
- 65. Obaid, R.Z., Abu-Huwaij, R., Hamed, R. Development and Characterization of Anticancer Model Drug Conjugated to Biosynthesized Zinc Oxide Nanoparticles Loaded into Different Topical Skin Formulations. *Jordan Journal of Pharmaceutical Sciences*. 2023; 16: 486, doi:10.35516/jjps.v16i2.1545.

- 66. Mahmoud, N.N., Abu-Dahab, R., Hamadneh, L.A., Abuarqoub, D., Jafar, H., Khalil, E.A. Insights into the Cellular Uptake, Cytotoxicity, and Cellular Death Modality of Phospholipid-Coated Gold Nanorods toward Breast Cancer Cell Lines. *Mol Pharm.* 2019; 16: 4149–4164, doi:10.1021/acs.molpharmaceut.9b00470.
- Bloise, N., Strada, S., Dacarro, G., Visai, L. Gold Nanoparticles Contact with Cancer Cell: A Brief Update. *Int J Mol Sci.* 2022; 23.
- 68. Bharadwaj, K.K., Rabha, B., Pati, S., Sarkar, T., Choudhury, B.K., Barman, A., Bhattacharjya, D., Srivastava, A., Baishya, D., Edinur, H.A., et al. Green Synthesis of Gold Nanoparticles Using Plant Extracts as Beneficial Prospect for Cancer Theranostics. *Molecules*. 2021; 26.
- Kovács, D., Igaz, N., Gopisetty, M.K., Kiricsi, M. Cancer Therapy by Silver Nanoparticles: Fiction or Reality? *Int J Mol Sci.* 2022; 23.
- Malaikolundhan, H., Mookkan, G., Krishnamoorthi, G., Matheswaran, N., Alsawalha, M., Veeraraghavan, V.P., Krishna Mohan, S., Di, A. Anticarcinogenic Effect of Gold Nanoparticles Synthesized from Albizia Lebbeck on HCT-116 Colon Cancer Cell Lines. *Artif Cells Nanomed Biotechnol*. 2020; 48: 1206–1213, doi:10.1080/21691401.2020.1814313.
- Wang, Z., Dong, J., Zhao, Q., Ying, Y., Zhang, L., Zou, J., Zhao, S., Wang, J., Zhao, Y., Jiang, S. Gold Nanoparticle-Mediated Delivery of Paclitaxel and Nucleic Acids for Cancer Therapy (Review). *Mol Med Rep.* 2020; 22: 4475–4484, doi:10.3892/mmr.2020.11580.
- Kulkarni, S., Kumar, S., Acharya, S. Gold Nanoparticles in Cancer Therapeutics and Diagnostics. *Cureus*. 2022; 14, doi:10.7759/cureus.30096.

- Issa, B., Obaidat, I.M., Albiss, B.A., Haik, Y. Magnetic Nanoparticles: Surface Effects and Properties Related to Biomedicine Applications. *Int J Mol Sci.* 2013; 14: 21266–21305.
- 74. Díez, A.G., Rincón-Iglesias, M., Lanceros-Méndez, S., Reguera, J., Lizundia, E. Multicomponent Magnetic Nanoparticle Engineering: The Role of Structure-Property Relationship in Advanced Applications. *Mater Today Chem.* 2022; 26: 101220.
- Mittal, A., Roy, I., Gandhi, S. Magnetic Nanoparticles:
   An Overview for Biomedical Applications.
   Magnetochemistry, 2022; 8: 107.
- 76. Rarokar, N., Yadav, S., Saoji, S., Bramhe, P., Agade, R., Gurav, S., Khedekar, P., Subramaniyan, V., Wong, L.S., Kumarasamy, V. Magnetic Nanosystem a Tool for Targeted Delivery and Diagnostic Application: Current Challenges and Recent Advancement. *Int J Pharm X*. 2024; 7: 100231, doi:10.1016/J.IJPX.2024.100231.
- Shabatina, T.I., Vernaya, O.I., Shabatin, V.P., Melnikov, M.Y. Magnetic Nanoparticles for Biomedical Purposes: Modern Trends and Prospects. *Magnetochemistry*. 2020; 6: 1–18.
- 78. Li, J., Liu, F., Shao, Q., Min, Y., Costa, M., Yeow, E.K.L., Xing, B. Enzyme-Responsive Cell-Penetrating Peptide Conjugated Mesoporous Silica Quantum Nanocarriers for Controlled Release of Nucleus-Targeted Molecules Real-Time Intracellular Drug and Fluorescence Imaging of Tumor Cells. Adv Healthc Mater. 2014; 3: 1230-1239, doi:10.1002/adhm.201300613.
- 79. Rezaei, A., Hashemi, E. A Pseudohomogeneous Nanocarrier Based on Carbon Quantum Dots Decorated with Arginine as an Efficient Gene Delivery Vehicle. *Sci Rep.* 2021; 11: 1–10, doi:10.1038/s41598-021-93153-4.

- García-Pinel, B., Porras-Alcalá, C., Ortega-Rodríguez, A., Sarabia, F., Prados, J., Melguizo, C., López-Romero, J.M. Lipid-Based Nanoparticles: Application and Recent Advances in Cancer Treatment. *Nanomaterials*. 2019; 9: 1–23, doi:10.3390/nano9040638.
- 81. Al-Shdefat, R., Hailat, M., Alshogran, O.Y., Abu Dayyih, W., Gardouh, A., Al Meanazel, O. Ribociclib Hybrid Lipid–Polymer Nanoparticle Preparation and Characterization for Cancer Treatment. *Polymers (Basel)*. 2023; 15: 2844, doi:10.3390/polym15132844.
- Samimi, S., Maghsoudnia, N., Eftekhari, R.B., Dorkoosh,
   F. Lipid-Based Nanoparticles for Drug Delivery Systems;
   Elsevier Inc., 2018; ISBN 9780128140321.
- 83. Puri, A., Loomis, K., Smith, B., Lee, J.H., Yavlovich, A., Heldman, E., Blumenthal, R. Lipid-Based Nanoparticles as Pharmaceutical Drug Carriers: From Concepts to Clinic. *Crit Rev Ther Drug Carrier Syst.* 2009; 26: 523– 580, doi:10.1615/CritRevTherDrugCarrierSyst.v26.i6.10.
- 84. Miller, A.D. Lipid-Based Nanoparticles in Cancer Diagnosis and Therapy. *J Drug Deliv*. 2013; 2013: 1–9, doi:10.1155/2013/165981.
- Sheoran, S., Arora, S., Samsonraj, R., Govindaiah, P., Vuree, S. Lipid-Based Nanoparticles for Treatment of Cancer. *Heliyon*. 2022; 8: e09403, doi:10.1016/j.heliyon.2022.e09403.
- 86. Malam, Y., Loizidou, M., Seifalian, A.M. Liposomes and Nanoparticles: Nanosized Vehicles for Drug Delivery in Cancer. *Trends Pharmacol Sci.* 2009; 30: 592–599, doi:10.1016/j.tips.2009.08.004.
- 87. Alavi, M., Hamidi, M. Passive and Active Targeting in Cancer Therapy by Liposomes and Lipid Nanoparticles. *Drug Metab Pers Ther*. 2019; 34: 1–8, doi:10.1515/dmpt-2018-0032.

- 88. Lombardo, D., Kiselev, M.A. Methods of Liposomes Preparation: Formation and Control Factors of Versatile Nanocarriers for Biomedical and Nanomedicine Application. *Pharmaceutics*. 2022; 14, doi:10.3390/pharmaceutics14030543.
- 89. Kutlu, H.M. *Importance of Solid Lipid Nanoparticles in Cancer Therapy*. 2017.
- Bayón-Cordero, L., Alkorta, I., Arana, L. Application of Solid Lipid Nanoparticles to Improve the Efficiency of Anticancer Drugs. *Nanomaterials*. 2019; 9, doi:10.3390/nano9030474.
- Paliwal, R., Paliwal, S.R., Kenwat, R., Kurmi, B. Das, Sahu, M.K. Solid Lipid Nanoparticles: A Review on Recent Perspectives and Patents. *Expert Opin Ther Pat.* 2020; 30: 179–194, doi:10.1080/13543776.2020.1720649.
- Sharma, A., Baldi, A. Nanostructured Lipid Carriers: A Review Journal. *J Dev Drugs*. 2018; 7: 1–12, doi:10.4172/2329-6631.1000187.
- 93. Gordillo-Galeano, A., Mora-Huertas, C.E. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers: A Review Emphasizing on Particle Structure and Drug Release. *Eur J Pharm Biopharm*. 2018; 133: 285–308, doi:10.1016/j.ejpb.2018.10.017.
- 94. Lade, S., Shah, N., Burle, S. Nanostructured Lipid Carriers: A Vital Drug Carrier for Migraine Treatment. *Res J Pharm Technol.* 2022; 15: 3309–3316, doi:10.52711/0974-360X.2022.00554.
- Abu Dayyih, W., Layth, R., Hailat, M., Alkhawaja, B., Al Tamimi, L., Zakaraya, Z., Aburumman, A., Al Dmour, N., Saadh, M.J., Al-Matubsi, H., et al. Effect of Date Molasses on Levetiracetam Pharmacokinetics in Healthy Rats. *Sci Rep.* 2023; 13: 758, doi:10.1038/s41598-023-28074-5.

- 96. Zarrabi, A., Zarepour, A., Khosravi, A., Alimohammadi, Z., Thakur, V.K. Synthesis of Curcumin Loaded Smart pH-Responsive Stealth Liposome as a Novel Nanocarrier for Cancer Treatment. *Fibers*. 2021; 9: 1–17, doi:10.3390/fib9030019.
- 97. Ghafari, M., Haghiralsadat, F., Khanamani Falahati-pour, S., Zavar Reza, J. Development of a Novel Liposomal Nanoparticle Formulation of Cisplatin to Breast Cancer Therapy. *J Cell Biochem*. 2020; 121: 3584–3592, doi:10.1002/jcb.29651.
- 98. Abu Amara, H.M. Solid Lipid Nanoparticles as Indomethacin Carriers for Topical Use (2): DSC Analysis, Drug Release and Rheological Properties. *Jordan J Pharm Sci.* 2014; 7: 97–119, doi:10.12816/0026797.
- 99. Arafat, M., Sakkal, M., Beiram, R., AbuRuz, S. Nanomedicines: Emerging Platforms in Smart Chemotherapy Treatment—A Recent Review. *Pharmaceuticals*. 2024; 17: 315, doi:10.3390/ph17030315.
- 100. Qureshi, O.S., Kim, H.S., Zeb, A., Choi, J.S., Kim, H.S., Kwon, J.E., Kim, M.S., Kang, J.H., Ryou, C., Park, J.S., et al. Sustained Release Docetaxel-Incorporated Lipid Nanoparticles with Improved Pharmacokinetics for Oral and Parenteral Administration. *J Microencapsul*. 2017; 34: 250–261, doi:10.1080/02652048.2017.1337247.
- 101. Smith, T., Affram, K., Nottingham, E.L., Han, B., Amissah, F., Krishnan, S., Trevino, J., Agyare, E. Application of Smart Solid Lipid Nanoparticles to Enhance the Efficacy of 5-Fluorouracil in the Treatment of Colorectal Cancer. *Sci Rep.* 2020; 10: 1–14, doi:10.1038/s41598-020-73218-6.
- 102. Fang, C.-L., Al-Suwayeh, A., Fang, J.-Y. Nanostructured Lipid Carriers (NLCs) for Drug Delivery and Targeting. *Recent Pat Nanotechnol*. 2012; 7: 41–55, doi:10.2174/18722105130105.

- 103. Sun, M., Nie, S., Pan, X., Zhang, R., Fan, Z., Wang, S. Quercetin-Nanostructured Lipid Carriers: Characteristics and Anti-Breast Cancer Activities in Vitro. *Colloids Surf B Biointerfaces*. 2014; 113: 15–24, doi:10.1016/j.colsurfb.2013.08.032.
- 104. Ferreira, M., Chaves, L.L., Lima, S.A.C., Reis, S. Optimization of Nanostructured Lipid Carriers Loaded with Methotrexate: A Tool for Inflammatory and Cancer Therapy. *Int J Pharm.* 2015; 492: 65–72, doi:10.1016/j.ijpharm.2015.07.013.
- 105. Parveen, S., Sahoo, S.K. Polymeric Nanoparticles for Cancer Therapy. *J Drug Target*. 2008; 16: 108–123, doi:10.1080/10611860701794353.
- 106. Shukla, R., Handa, M., Lokesh, S.B., Ruwali, M., Kohli, K., Kesharwani, P. Conclusion and Future Prospective of Polymeric Nanoparticles for Cancer Therapy. *Elsevier Inc.* 2019; ISBN 9780128169636.
- 107. Masood, F. Polymeric Nanoparticles for Targeted Drug Delivery System for Cancer Therapy. *Materials Science* and Engineering C. 2016.
- 108. El-Say, K.M., El-Sawy, H.S. Polymeric Nanoparticles: Promising Platform for Drug Delivery. *Cancers (Basel)*. 2017; 528: 675–691, doi:10.1016/j.ijpharm.2017.06.052.
- 109. Odegaard, J.I., Chawla, A. Design of Polymeric Nanoparticles for Biomedical Delivery Applications. Chem Soc Rev. 2008; 23: 1–7, doi:10.1039/c2cs15327k.
- 110. Singh, J., Jain, K., Mehra, N.K., Jain, N.K. Dendrimers in Anticancer Drug Delivery: Mechanism of Interaction of Drug and Dendrimers. *Artif Cells Nanomed Biotechnol*. 2016; 44: 1626–1634, doi:10.3109/21691401.2015.1129625.
- 111. Wang, H., Huang, Q., Chang, H., Xiao, J., Cheng, Y. Stimuli-Responsive Dendrimers in Drug Delivery. *Biomater Sci.* 2016; 4: 375–390, doi:10.1039/c5bm00532a.
- 112. Huang, D., Wu, D. Biodegradable Dendrimers for Drug Delivery. *Materials Science & Engineering C*. 2018.

- 113. Nikzamir, M., Hanifehpour, Y., Akbarzadeh, A., Panahi, Y. Applications of Dendrimers in Nanomedicine and Drug Delivery: A Review. *J Inorg Organomet Polym Mater*. 2021; 31: 2246–2261, doi:10.1007/s10904-021-01925-2.
- 114. Jin, G.W., Rejinold, N.S., Choy, J.H. Multifunctional Polymeric Micelles for Cancer Therapy. *Polymers* (*Basel*). 2022; 14: 1–19, doi:10.3390/polym14224839.
- 115. Zhou, Q., Zhang, L., Yang, T.H., Wu, H. Stimuli-Responsive Polymeric Micelles for Drug Delivery and Cancer Therapy. *Int J Nanomedicine*. 2018; 13: 2921– 2942, doi:10.2147/JJN.S158696.
- 116. Ghosh, B., Biswas, S. Polymeric Micelles in Cancer Therapy: State of the Art. *Journal of Controlled Release*. 2021; 332: 127–147, doi:10.1016/j.jconrel.2021.02.016.
- 117. Biswas, S., Kumari, P., Lakhani, P.M., Ghosh, B. Recent Advances in Polymeric Micelles for Anti-Cancer Drug Delivery. *Elsevier B.V.* 2016; Vol. 83; ISBN 0406630399.
- 118. Mourya, V.K., Inamdar, N., Nawale, R.B., Kulthe, S.S. Polymeric Micelles: General Considerations and Their Applications. *Indian Journal of Pharmaceutical Education and Research*. 2011; 45: 128–138.
- 119. Karlsson, J., Vaughan, H.J., Green, J.J. Biodegradable Polymeric Nanoparticles for Therapeutic Cancer Treatments. *Annu Rev Chem Biomol Eng.* 2018; 9: 105–127, doi:10.1146/annurev-chembioeng-060817-084055.
- 120. Begines, B., Ortiz, T., Pérez-Aranda, M., Martínez, G., Merinero, M., Argüelles-Arias, F., Alcudia, A. Polymeric Nanoparticles for Drug Delivery: Recent Developments and Future Prospects. *Nanomaterials*. 2020; 10: 1–41, doi:10.3390/nano10071403.
- 121. Niza, E., Ocaña, A., Castro-Osma, J.A., Bravo, I., Alonso-Moreno, C. Polyester Polymeric Nanoparticles as Platforms in the Development of Novel Nanomedicines for Cancer Treatment. *Cancers (Basel)*. 2021; 13.

- 122. Begines, B., Ortiz, T., Pérez-Aranda, M., Martínez, G., Merinero, M., Argüelles-Arias, F., Alcudia, A. Polymeric Nanoparticles for Drug Delivery: Recent Developments and Future Prospects. *Nanomaterials*. 2020; 10: 1–41.
- 123. Zielinska, A., Carreiró, F., Oliveira, A.M., Neves, A., Pires, B., Nagasamy Venkatesh, D., Durazzo, A., Lucarini, M., Eder, P., Silva, A.M., et al. Polymeric Nanoparticles: Production, Characterization, Toxicology and Ecotoxicology. *Molecules*. 2020; 25: 3731.
- 124. Xiao, X., Teng, F., Shi, C., Chen, J., Wu, S., Wang, B., Meng, X., Essiet Imeh, A., Li, W. Polymeric Nanoparticles—Promising Carriers for Cancer Therapy. Front Bioeng Biotechnol. 2022; 10.
- 125. Xiao, X., Teng, F., Shi, C., Chen, J., Wu, S., Wang, B., Meng, X., Essiet Imeh, A., Li, W. Polymeric Nanoparticles—Promising Carriers for Cancer Therapy. Front Bioeng Biotechnol. 2022; 10.
- 126. Mittal, P., Saharan, A., Verma, R., Altalbawy, F.M.A., Alfaidi, M.A., Batiha, G.E.S., Akter, W., Gautam, R.K., Uddin, M.S., Rahman, M.S. Dendrimers: A New Race of Pharmaceutical Nanocarriers. *Biomed Res Int.* 2021; 2021, doi:10.1155/2021/8844030.
- 127. Chis, A.A., Dobrea, C., Morgovan, C., Arseniu, A.M., Rus, L.L., Butuca, A., Juncan, A.M., Totan, M., Vonica-Tincu, A.L., Cormos, G., et al. Applications and Limitations of Dendrimers in Biomedicine. *Molecules*. 2020; 25.
- 128. Bober, Z., Bartusik-Aebisher, D., Aebisher, D. Application of Dendrimers in Anticancer Diagnostics and Therapy. *Molecules*. 2022; 27.

- 129. Bae, Y., Lee, J., Kho, C., Choi, J.S., Han, J. Apoptin Gene Delivery by a PAMAM Dendrimer Modified with a Nuclear Localization Signal Peptide as a Gene Carrier for Brain Cancer Therapy. *Korean Journal of Physiology and Pharmacology*. 2021; 25: 467–478, doi:10.4196/KJPP.2021.25.5.467.
- 130. Zenze, M., Daniels, A., Singh, M. Dendrimers as Modifiers of Inorganic Nanoparticles for Therapeutic Delivery in Cancer. *Pharmaceutics*. 2023; 15.
- 131. Ghezzi, M., Pescina, S., Padula, C., Santi, P., Del Favero, E., Cantù, L., Nicoli, S. Polymeric Micelles in Drug Delivery: An Insight of the Techniques for Their Characterization and Assessment in Biorelevant Conditions. *Journal of Controlled Release*. 2021; 332: 312–336.
- 132. Elumalai, K., Srinivasan, S., Shanmugam, A. Review of the Efficacy of Nanoparticle-Based Drug Delivery Systems for Cancer Treatment. *Biomedical Technology*. 2024; 5: 109–122.
- 133. Sun, Y., Li, B., Cao, Q., Liu, T., Li, J. Targeting Cancer Stem Cells with Polymer Nanoparticles for Gastrointestinal Cancer Treatment. Stem Cell Res Ther. 2022; 13.
- 134. Ghezzi, M., Pescina, S., Padula, C., Santi, P., Del Favero, E., Cantù, L., Nicoli, S. Polymeric Micelles in Drug Delivery: An Insight of the Techniques for Their Characterization and Assessment in Biorelevant Conditions. *Journal of Controlled Release*. 2021; 332: 312–336.

# التطورات في مجال العلاج باستخدام الأدوية المحضرة باستخدام العلاج النانوي في علاج مرض السرطان: مراجعة علمية

وائل أبو دية 1، محمد هيلات2، شهد البطوش1، إسلام البطوش1، ألاء أبو دية3، إبراهيم العبادي4، محمد فايز حمد5

## ملخص

العلاجات النانوية للسرطان، والمميزة بتكوينات حجمها النانومترية، تهدف إلى تحسين توزيع الأدوية المضادة للسرطان في الجسم، وتقليل التأثيرات الجانبية (والغير مرغوبة نتيجة استهداف انسجة غير سرطانية)، وتقليل السمية، وزبادة تراكم هذه العلاجات في المواقع الهدف، وتحسين الكفاءة العامة للعلاجات. لقد تم تطوير العديد من العلاجات النانوية لتحسين فعالية وسلامة العلاجات المضادة للسرطان التقليدية. تشمل هذه التطورات تكوينات تحتوي على أنابيب نانوية من الكربون، وجزيئات من الألماس نانوية الحجم، وجسيمات نانوية تستجيب للإنزيمات بالتزويد المنتظم من الدواء، و''الديندرايمرات" كحاملات للدواء على شكل جسيمات نانوبة، وأنظمة حمل الدواء بجسيمات النانو النقطية لتوصيل الدواء بدقة منتاهية، وجسيمات الدهون الصلبة النانوبة، وجسيمات البوليمر المصممة لتوصيل الدواء بشكل مستهدف. وعلاوة على ذلك، تمت مناقشة التكنولوجيا النانوية في علاج السرطان باستخدام العلاج الجيني. على الرغم من هذه التقدمات، فإن الطبيعة المعقدة لمواد الحمل والتكامل الوظيفي تحمل العديد من الصعوبات في تحضير أنظمة ايصال السالفة الذكرهذه للتطبيق السربري. التكنولوجيا النانوبة، بميزاتها الفريدة على مستوى النانو، تقدم إمكانيات جديدة لتطوير علاجات السرطان مع زيادة الكفاءة والسلامة. وبالرغم من أن عددًا قليلاً من العلاجات النانوية حصلت على الموافقة السريرية، إلا أن هناك استخدامات مثيرة للدهشة للتكنولوجيا النانوية في المستقبل. تتمتع الجسيمات النانوية بقدرات فريدة في قدراتها على النقل، والخصائص البيولوجية، والبصرية، والمغناطيسية، والكهربائية، والحراربة الخاصة بها بسبب صغر حجمها. وهذا يؤدى إلى نسب سطح كبيرة مقارنة بالحجم، مما يسمح بدمجها مع مكونات داعمة مختلفة بالإضافة إلى المواد الدوائية الفعالة. تساعد هذه الخصائص الجزيئات النانوبة في عمليات التحلل، والحماية من التحلل، وتأخير إطلاق العلاجات المقصود، وتجنب الاستجابة المناعية، وتعزيز اختراق الأنسجة، والتصوير، والتوزيع المستهدف، والتفعيل المستند. وخلاصة القول، فان مستقبل العلاجات النانوبة يعد واعدًا بإدخال منصات مبتكرة في علاجات السرطان المختلفة. تؤكد الأبحاث التي تم عرضها وتلخيصها على إمكانية أن تحدث الجسيمات النانوبة ثورة في علاجات مكافحة السرطان، مع تعزيز النهج العلاجي العام.

الكلمات الدالة: الجسيمات النانوية؛ العلاج المضاد للسرطان؛ المواد النانوية القائمة على الكربون؛ الجسيمات النانوية القائمة على المعادن، القائمة على الدهون، البوليمرية.

wabudayyih@mutah.edu.jo

تاريخ استلام البحث 2024/02/15 وتاريخ قبوله للنشر 04/04/04.

<sup>1</sup> قسم الكيمياء الصيد لانية، كلية الصيدلة، جامعة مؤية، الكرك، الأردن.

<sup>2</sup> قسم الصيدلة، كلية الصيدلة، جامعة الزيتونة الأردنية، عمان، الأردن.

<sup>3</sup> قسم الصيدلة، جامعة عمان الأهلية، الأردن.

<sup>4</sup> قسم الصيدلة الحيوية والصيدلة السربرية، الجامعة الأردنية، عمان، الأردن.

<sup>5</sup> قسم العلوم الطبية الأساسية، كلية الطب، جامعة البلقاء التطبيقية، السلط، الأردن.

<sup>\*</sup> المؤلف المراسل: وائل أبو دية