Impact of Oxidative Stress on Jordanian Children with Autism Spectrum Disorder

Amal Al-Ramahi^{1*}, Zainab Zakaraya², Lina AlTamimi³, Mohammad Hailat⁴, Mohammad F Hamad⁵, Wael Abu Dayyih⁶, Ibrahim Alabbadi⁷, Yousef AlRaoush⁸, Laila Al-Omari⁹, Khaled Abdul-Aziz Ahmed¹⁰, Ala A. Alhusban⁴

ABSTRACT

Background: Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder whose etiology is still unknown and without clinical biomarkers. Recent studies have highlighted the potential role of oxidative stress and metabolic changes in ASD. However, little is known about these changes in the Jordanian ASD population.

Aims: This study aimed to evaluate oxidative stress biomarkers in Jordanian children with ASD and to investigate the potential correlations with the disorder's clinical features.

Methodology: This cross-sectional study involved 80 Jordanian children divided into two groups: the patients' group (diagnosed with ASD, n=40) and the control group (healthy, n=40). The study examined the distribution of ASD among the participants and assessed the prevalence of comorbid conditions. It also evaluated oxidative stress biomarkers, including Glutathione Peroxidase (GPX), Superoxide Dismutase (SOD), and Malondialdehyde (MDA). **Results**: ASD was more common in males (65% in the ASD group) and in people with a family history of the disorder (55%). Common comorbid conditions included ADHD (42.5%), anxiety (25%), and epilepsy (15%). Children with ASD had significantly lower levels of GPX (2.72 \pm 0.9 pmol/mL vs. 7.74 \pm 2.5 pmol/mL in controls, p<0.005) and SOD (1.74 \pm 0.75 ng/mL vs. 2.93 \pm 0.98 ng/mL in controls, p<0.005) and higher levels of MDA (16 \pm 1.95 nmol/mL vs. 5.46 \pm 1.57 nmol/mL in controls, p<0.005).

Conclusion: This study suggests a potential association between ASD and oxidative stress. While further research is required, these findings contribute to our understanding of ASD pathogenesis and may guide future diagnostic and therapeutic approaches. Pearson correlation coefficients imply that increased oxidative stress, as measured by lower GPX and SOD levels and higher MDA levels, may be linked to the severity and presence of clinical features in ASD. Keywords: Autism Spectrum Disorder, Jordanian children, Glutathione Peroxidase, Superoxide Dismutase, Malondialdehyde, ADHD, anxiety, epilepsy, oxidative stress.

*Corresponding author: Amal Al-Ramahi

a.al-ramahi @ammanu.edu.jo

Received: 08/05/2024 Accepted: 23/01/2025. DOI: https://doi.org/10.35516/jips.v18i3.2625

¹ Faculty of Medical Allied Sciences, Al-Ahliyya Amman University, Amman, Jordan

² Department of Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan

³ Faculty of Pharmacy, Zarqa University, Zarqa, Jordan

⁴ Faculty of pharmacy, Al-Zaytoonah University of Jordan, Amman, Jordan

⁵ Department of Basic Medical Sciences, Faculty of Medicine, Al-Balqa Applied University, Al-Salt, Jordan

⁶ Faculty of Pharmacy, Mutah University Al-Karak, Jordan

⁷ Department of Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, The University of Jordan, Amman, Jordan

⁸ Director of Psychiatric, Mental and Cognitive Behavioural Therapy Clinics, Amman, Jordan

⁹ Department of Medical Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan

¹⁰ Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan

INTRODUCTION

Autism Spectrum Disorder (ASD) is a multifaceted neurodevelopmental disorder, manifesting during early childhood, with variations in its expression owing to its spectrum nature ^{1–3}. Although there is limited research on the incidence of ASD in Jordan, it is believed that one out of every 50 children has ASD, giving an approximate total number of 10,000 children with ASD in Jordan, which is considered lower than the prevalence in the well-developed countries ⁴. It encompasses many symptoms, impacting social interactions, communication, and more ^{5,6}. Despite its prevalence, with about 1 in 54 children diagnosed with ASD in the U.S. alone and an estimated two million in the Middle East, a comprehensive understanding of its etiology remains elusive ^{2,7,8}.

Oxidative stress in ASD is linked to metabolic disturbances like lipid peroxidation and mitochondrial dysfunction, causing a vicious cycle that impacts brain development and function ^{9–11}. The origins of ASD are believed to be rooted in a combination of genetic and environmental factors ¹². Even with over 1,000 genes linked to ASD, none dominate the causality, making its genetic makeup a complex tapestry ¹³. Moreover, its frequent coexistence with other disorders, such as intellectual disabilities, compounds the challenge of discerning specific biomarkers ¹⁴. Presently, diagnosis is heavily reliant on behavior-centric evaluations, which can inadvertently lead to delays.

Recently, the realm of oxidative stress and its correlation with ASD has attracted attention ¹⁵. Oxidative stress is a phenomenon where there is an imbalance between free radicals and antioxidants in the body ^{16–18}. Several studies have shed light on heightened oxidative stress in individuals with ASD, suggesting potential biomarkers for the condition ^{19,20}. These potential biomarkers might also use for primary analysis and assessment of ASD intervention and notify ASD nutritional and pharmacological treatment interventions ²¹.

Signs of this stress, such as increased lipid peroxidation

and DNA damage, have been discerned in peripheral fluids and have shown correlations with the severity of ASD symptoms ²².

In children, especially, the vulnerability to oxidative stress is more pronounced due to naturally low levels of some antioxidants. Notably, studies have indicated diminished levels of certain antioxidants in children with ASD, which could amplify oxidative stress in their brain cells ^{23,24}.

Furthermore, the relationship between oxidative stress and inflammation, particularly in the brains of those with ASD, provides another avenue of exploration ^{25,26}. While sampling challenges exist, discoveries from various cell types hint at an underlying association between inflammation, oxidative stress, and ASD ²⁷.

Elevated levels of malondialdehyde (MDA) and altered activities of superoxide dismutase (SOD) and glutathione peroxidase (GPX) in people with Autism Spectrum Disorder (ASD) indicate increased oxidative stress and disrupted antioxidant defenses, implying that oxidative stress may play a role in the disorder's pathology ²⁸. Given the significance of oxidative stress in ASD's framework and the gaps in our understanding, especially in younger populations, this study aims to delve deeper into this connection. Our research seeks to elucidate the role of oxidative stress in the onset of ASD among Jordanian children, emphasizing potential biomarkers like malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione peroxidase (GPX). By enhancing our grasp on this dimension, we aspire to pave the way for better therapeutic approaches for children grappling with ASD.

MATERIALS AND METHODS

Study design and participants selection

This study was conducted at the International Behavioral Intervention Center in Amman, Jordan. Participants, ranging in age from 4 to 14 years, were divided into two groups: those with a confirmed ASD

diagnosis based on the Diagnostic and Statistical Manual of Mental Disorders-IV-Text Revision (DSM-IV-TR) criteria (ASD group, n=40) and age-matched controls without any history of ASD (Control group, *n*=40).

Selection ensured an unbiased representation from a total pool of 80 children. Comprehensive demographic and medical data, encompassing age, sex, and medical history, were collected for each participant to identify potential variables associated with ASD.

Exclusion criteria were critical in mitigating potential confounding factors. Similarly, children diagnosed with hematological or immunological conditions like anemia, metabolic disorders including diabetes and heart disease, or with existing liver or kidney ailments were excluded. Additionally, any child who had received treatment involving vitamins or antioxidant supplements was not incorporated in the study to eliminate their potential influence on the research outcomes. A specialist in neurology confirmed the diagnosis of ASD.

Blood sampling

Blood samples were procured from case and control group participants for biological assessment. Using standard venipuncture techniques, 5 ml of venous blood was collected from each participant under the guidance of a trained phlebotomist. Upon collection, samples were immediately introduced to EDTA tubes to inhibit clotting. Following this, samples were centrifuged at 3000 RPM for 15 minutes under refrigeration, segregating the plasma from other constituents. The extracted plasma was subsequently transferred to sterile tubes and preserved at -80°C to maintain its integrity until subsequent analyses.

GPX, SOD, and MDA in the plasma samples.

The assay for plasma GPX, SOD, and MDA levels was conducted using the human GPX, human SOD, and human MDA ELISA kits, respectively (Genochem World, Spain), according to the manufacturer's protocol. The concentrations in plasma were inferred from a standard curve.

Ethical approval

Before collecting blood samples, ethical approval was obtained from the Ethical Writing and Scientific Committee of the Faculty of Allied Medical Sciences, Al-Ahliyya Amman University (IRB: AAU/3/12/2022-2023). The study upheld strict confidentiality and maintained the anonymity of all individuals involved.

Statistical analysis

Data were represented as mean \pm standard deviation (SD). Mann-Whitney U test was used to analyze the mean difference and determine whether the two groups differed significantly. A *P*-value of 0.05 or lower was interpreted as statistically significant. Statistical analyses were performed using Prism 8 software.

Pearson correlation coefficients were calculated to assess the relationships between oxidative stress biomarkers and clinical features. A p-value < 0.05 was considered statistically significant.

RESULTS

Subject characteristics

In this cross-sectional study, the focus was on evaluating oxidative stress biomarkers in a population of children diagnosed with ASD, using a control group for comparison.

The demographic characteristics of the study participants were meticulously recorded and are summarized in **Table 1**. The age range among participants spanned from 4 to 14 years. The children with ASD had a mean age of 7.5 ± 2.3 years, paralleling closely with the control group, which had a mean age of 7.4 ± 1.6 years.

The ASD group demonstrated the often-documented gender disparity associated with ASD prevalence, comprising 26 males (65%) and 14 females (35%). In contrast, the control group presented a nearly balanced gender distribution, with 18 males (45%) and 22 females (55%).

An influential element observed within the ASD group

was a family history of ASD, which was present in a significant 55% (22 children) of the group compared with the control.

A commonality among children with ASD is the presence of co-occurring conditions or comorbidities.

Within the ASD group, the most common comorbidities observed were attention deficit hyperactivity disorder (ADHD) in 17 children (42.5%), anxiety disorders in 10 children (25%), and epilepsy in 6 children (15%).

Table 1. Demographic characteristics of study participants

Variable	ASD <i>n</i> = 40	Control <i>n</i> = 40
Age (years)	7.5±2.3	7.4±1.6
Gender, n (%)		
Male	26 (65)	18 (45)
Female	14 (35)	22 (55)
Height (cm)	123±6.55	125±8.24
Weight (kg)	27.06±5.3	28.31±7.1
BMI (kg/m2)	17.88±2.5	18.11±3.5
Family history, n (%)	22 (55)	NI
Co-occurring conditions, n (%)		
Epilepsy	6 (15)	NI
ADHD	17 (42.5)	NI
Anxiety	10 (25)	NI

Abbreviations: BMI: Body Mass Index; ADHA: Attention Deficit

Hyperactivity Disorder; NI: not investigated.

Evaluating the levels of GPX, SOD, and MDA in children with ASD.

In our study, children with ASD exhibited significantly (p<0.005) lower GPX levels (2.72 \pm 0.9 pmol/mL) compared to the control group (7.74 \pm 2.5 pmol/mL), as illustrated in Figure 1A.

Additionally, SOD levels were evaluated. The ASD group demonstrated a significant (p<0.005) decline in

SOD activity compared to the control (1.74 ± 0.75 , 2.93 ± 0.98 ng/mL, respectively), as presented in Figure 1B.

In contrast to the lowered GPX and SOD, MDA levels, MDA was elevated in the ASD group. Specifically, the ASD group showed a mean MDA level of 16 ± 1.95 nmol/mL, substantially (p<0.005) higher than the control's 5.46 ± 1.57 nmol/mL (Figure 1C).

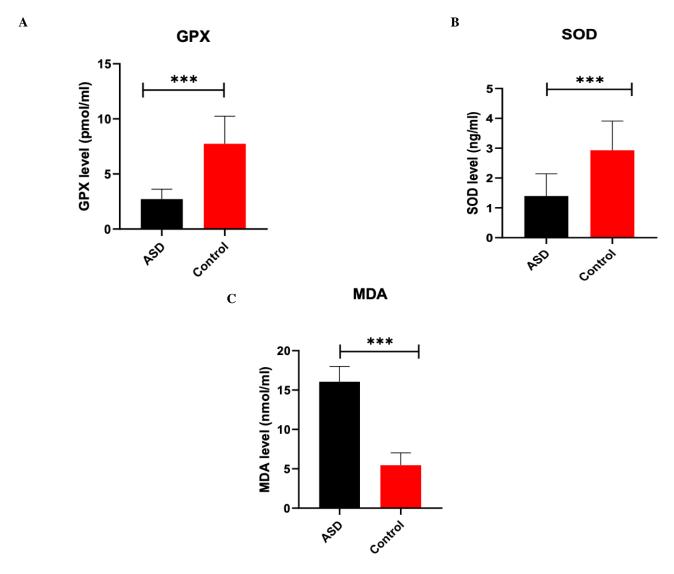


Figure 1. The levels of GPX (A), SOD (B), and MDA (C) in the plasma of children diagnosed with ASD. Data represent mean \pm SD. *** denotes a P-value < 0.005 calculated by the Mann-Whitney U test.

Correlations Between Oxidative Stress Biomarkers and Clinical Features in ASD

This section investigates the correlations between oxidative stress biomarkers (GPX, SOD, MDA) and clinical features (age, gender, family history, comorbidities) in Jordanian children with ASD.

The findings of this study indicate a significant

correlation between oxidative stress biomarkers and various clinical features in children with ASD. For example, age was found in this study to have substantial negative correlations with GPX and SOD but a positive correlation with MDA. In addition, males were found to have negative correlations with GPX and SOD but positive correlations with MDA. However, females showed the

opposite trend. Family history has shown a negative correlation with GPX and SOD and a positive correlation with MDA. Studying the comorbidities, we noticed that ADHD and anxiety had significant negative correlations with GPX and SOD but positive correlations with MDA. Epilepsy demonstrated similar but weaker trends.

Pearson correlation coefficients were computed to evaluate the associations between oxidative stress biomarkers and clinical characteristics. A *p*-value less than 0.05 was deemed statistically significant, **Table** 2.

Table 2. Correlation coefficients to assess the relationships between oxidative stress biomarkers and clinical features

Clinical Feature	GPX (r, p-value)	SOD (r, p-value)	MDA (r, p-value)
Age	-0.35, 0.02	-0.40, 0.01	0.45, 0.005
Male	-0.30, 0.03	-0.32, 0.02	0.50, 0.001
Female	0.30, 0.03	0.32, 0.02	-0.50, 0.001
Family	-0.25, 0.05	-0.28, 0.04	0.35, 0.02
History			
Epilepsy	-0.20, 0.10	-0.25, 0.05	0.30, 0.03
ADHD	-0.40, 0.01	-0.45, 0.005	0.55, 0.001
Anxiety	-0.35, 0.02	-0.40, 0.01	0.50, 0.001

DISCUSSION

Autism Spectrum Disorder (ASD) has emerged as a pressing public health concern globally ²⁹. A complex neurodevelopmental disorder persisting from childhood to adulthood, its etiology remains multifaceted in adulthood ³⁰. Our study delved into the oxidative stress biomarkers in Jordanian children with ASD.

Oxidative stress is linked to ASD in children, with several biomarkers related to clinical features. For example, elevated levels of MDA, a byproduct of lipid peroxidation, are correlated with the severity of autism symptoms. Also, lower levels of glutathione, a crucial antioxidant, are associated with impaired detoxification pathways and increased vulnerability to oxidative stress.

In addition, enzymes like superoxide dismutase and catalase show altered activity in children with ASD, suggesting a disrupted antioxidative defense mechanism. Furthermore, higher oxidative stress markers are associated with more severe behavioral symptoms, including social and communication difficulties. Add to that, the inflammatory markers, such as C-reactive protein, are also linked to ASD ^{31–34}.

In line with global statistics, we observed that we had found not high ASD prevalence among males but higher male prevalence among ASD patients, underscoring established gender disparities in ASD diagnoses ³⁵. This contrast accentuated the gender-based difference in ASD prevalence, a factor that has been subject to extensive research and interest. While the exact cause remains elusive, the "female protective model" posits that females may have a natural defense against ASD ³⁶. X-linked ASD-associated genes and hormonal factors, including elevated testosterone levels in males, are also considered contributors to this disparity ³⁷.

Over half of our ASD participants had a familial link to the disorder, emphasizing the significance of genetic factors in ASD ³⁸. Sandin et al., 2014 and Gaugler et al. 2014 delineated the genetic component of ASD, suggesting a blend of inherited and spontaneous mutations as influential³⁹. The Autism Sequencing Consortium further highlighted multiple ASD-associated genes impacting brain functionality ⁴⁰. While genetics play a part, environmental factors also likely contribute, creating a complex interplay that culminates in ASD ⁴¹. Technological strides in genetic sequencing promise potential breakthroughs in ASD detection and intervention ⁴².

Comorbidities were prevalent among our ASD cohort, with notable percentages diagnosed with ADHD, anxiety, and epilepsy. This multifaceted clinical profile mirrors global observations. Our findings on the co-occurrence of ASD with ADHD (42.5%) align with ⁴³. While the 25% anxiety prevalence in our study is slightly lower than that found by White et al. 2009 ⁴⁴ findings, it still underscores

the frequent coexistence of these conditions. Lastly, our observation of a 15% epilepsy rate among children with ASD aligns with the broader literature ⁴⁵.

GPX, a pivotal antioxidant enzyme, plays a significant role in protecting against oxidative damage by neutralizing harmful peroxides. Of paramount importance were the findings regarding oxidative stress biomarkers. ASD children exhibited a significant decrease in the levels of GPX and SOD. Both GPX and SOD are critical antioxidants in the human body. SOD is essential for counteracting superoxide radicals, which, if unchecked, can cause oxidative harm. A decrease in these enzymes suggests an impaired antioxidant defense system in children with ASD, resulting in increased susceptibility to oxidative stress ⁴⁶. Such a decrease indicates a compromised defense mechanism against oxidative damage in children with ASD.

Underlining the role that genetic factors may play in the disorder. The presence of this genetic predisposition could potentially influence the severity and presentation of ASD symptoms and oxidative stress levels. Moreover, MDA, a byproduct of lipid peroxidation and a marker for oxidative stress, was significantly increased in the plasma of children with ASD. This increase in MDA levels indicates a higher rate of lipid peroxidation processes, implying the existence of oxidative stress in the body ⁴⁷.

Several studies in the literature resonate with these findings. A meta-analysis by Frustaci et al. 2012 ⁴⁸ and a recent one by Chen et al. (2021) confirmed significantly lower levels of antioxidant enzymes, including GPX and SOD, and elevated levels of oxidative stress markers in individuals with ASD compared to controls. Similarly, a study by Nasrallah et al. 2022 ⁴⁹ found that children with ASD had lower levels of GPX and SOD and higher levels of oxidative stress markers, including MDA.

MDA is a marker of oxidative stress resulting from lipid peroxidation. Increased MDA levels indicate enhanced lipid peroxidation and oxidative damage. This is consistent with the study by Meguid et al. 2011 ⁵⁰, which

reported significantly increased levels of MDA in children with ASD compared to controls.

Several mechanisms have been proposed to explain the link between these oxidative stress biomarkers and ASD. Firstly, increased oxidative stress could lead to neuronal damage, affecting the development and function of the nervous system, which could contribute to the neurodevelopmental abnormalities observed in ASD 51. Secondly, oxidative stress could induce inflammation, another process thought to be involved in ASD pathophysiology ⁵². Finally, there is a growing body of evidence suggesting a genetic component in ASD that might also influence oxidative stress ⁵³. Certain genetic variations found in individuals with ASD could impact the activity of antioxidant enzymes or the production of ROS. thereby affecting the balance between oxidative stress and antioxidant defenses 54. Each of these comorbidities may interact with ASD and oxidative stress in complex ways. For instance, stress and anxiety associated with these conditions could potentially elevate oxidative stress levels, underscoring the multifaceted nature of ASD's clinical presentation and pathophysiology.

The ASD group's increased MDA and decreased GPX and SOD levels emphasize elevated oxidative stress. This reinforces the proposed connection between oxidative stress and ASD, warranting further studies on its potential role in ASD's pathophysiology.

These findings, suggesting an association between oxidative stress and ASD, may have important implications for understanding the pathophysiology of ASD.

Oxidative stress, caused by an imbalance between free radicals and antioxidants, is a significant factor in the pathophysiology of ASD. Elevated reactive oxygen species and reactive nitrogen species contribute to oxidative stress in ASD, damaging cellular components like lipids, proteins, and DNA, potentially disrupting brain function ^{55,56}. Research has shown that oxidative stress markers, such as hydroperoxides and decreased

antioxidant capacity, are significantly higher in individuals with ASD compared to neurotypical controls ^{55,56}. Antioxidant supplementation has shown promise in reducing oxidative stress and improving behavioral symptoms in individuals with ASD, with nutritional interventions focusing on enhancing antioxidant defenses being explored ⁵⁷.

They also hint at potential therapeutic interventions to restore antioxidant defenses and reduce oxidative stress. However, it remains unclear whether these alterations are a cause or an effect of ASD, and further research is required to elucidate these relationships and their therapeutic potential in ASD management.

The study's limitations encompass a small sample size, potentially constraining the generalizability of the findings to the wider population of Jordanian children with ASD. In addition, the cross-sectional design precludes the establishment of causal inferences. Furthermore, the control group matching failed to account for other potentially confounding variables. In addition, particular populations, including individuals with comorbidities or those utilizing antioxidant supplements, were omitted from the study. Indeed, the research was performed at a singular location, resulting in site-specific biases. Also, assessing oxidative stress biomarkers in plasma may not entirely represent oxidative stress in the brain. Another

limitation is the absence of longitudinal data, which hinders the comprehension of temporal variations in biomarkers. Also, temporary factors can affect biomarker levels. Finally, the research concentrates on Jordanian children, thereby restricting its relevance to other ethnic or genetic groups.

The findings indicate that elevated oxidative stress, evidenced by diminished GPX and SOD levels and increased MDA levels, may correlate with the severity and presence of clinical features in ASD.

CONCLUSION

In summary, we found that children with ASD showed a significant decrease in the antioxidant enzymes GPX and SOD, along with a substantial increase in MDA levels, a marker for oxidative stress, indicating an impaired antioxidant defense system and increased oxidative stress. These findings suggest a link between ASD and an impaired antioxidant defense system, which may heighten the susceptibility to oxidative stress, potentially contributing to the pathophysiology of ASD. The study highlights the potential role of oxidative stress in ASD pathogenesis and its association with clinical features. Further research is needed to explore these relationships and their implications for diagnostic and therapeutic strategies.

REFERENCES

- Hodges H., Fealko C., Soares N. Autism spectrum disorder: definition, epidemiology, causes, and clinical evaluation. *Translational Pediatrics*. 2020; 9(Suppl 1):S55–S65. https://doi.org/10.21037/tp.2019.09.09
- Wahdan M.M., Malak M.Z., Al-Amer R., Ayed A., Russo S., Berte D.Z. Effect of Incredible Years autism spectrum and language delays (IY-ASD) program on stress and behavioral management skills among parents of children with autism spectrum disorder in Palestine.
- Journal of Pediatric Nursing. 2023; 72:45–52. https://doi.org/10.1016/j.pedn.2023.03.018
- 3. Amman A.Z.U. Do close relative marriages contribute to the causes of autism among ethnic groups in Jordan, psychological effect on society? *Journal of Education and Practice (Online)*. 2015; 5(12):1–6. Available from: www.iiste.org
- Hyassat M., Al-Makahleh A., Rahahleh Z., Al-Zyoud N.
 The diagnostic process for children with autism

- spectrum disorder: a preliminary study of Jordanian parents' perspectives. *Children (Basel)*. 2023; 10(8):1394. https://doi.org/10.3390/children10081394
- Hirota T., King B.H. Autism Spectrum Disorder: A Review. *JAMA*. 2023; 329(2):157–168. https://doi.org/10.1001/jama.2022.23661
- Al-Shayea Q., Al-Ani M. Biometric face recognition based on enhanced histogram approach. *International Journal of Communication Networks and Information Security*. 2018; 10(1):148–154. https://doi.org/10.17762/ijcnis.v10i1.3142
- Baio J., Wiggins L., Christensen D.L., Maenner M.J.,
 Daniels J., Warren Z., Kurzius-Spencer M., Zahorodny
 W., Robinson Rosenberg C., White T., Durkin M.S.,
 Imm P., Nikolaou L., Yeargin-Allsopp M., Lee L.-C.,
 Harrington R., Lopez M., Fitzgerald R.T., Hewitt A., ...
 Dowling N.F. Prevalence of Autism Spectrum Disorder
 Among Children Aged 8 Years—Autism and
 Developmental Disabilities Monitoring Network, 11
 Sites, United States, 2014. Morbidity and Mortality
 Weekly Report. Surveillance Summaries. 2018; 67(6):1–
 23. https://doi.org/10.15585/mmwr.ss6706a1
- Zeidan J., Fombonne E., Scorah J., Ibrahim A., Durkin M.S., Saxena S., Yusuf A., Shih A., Elsabbagh M. Global prevalence of autism: A systematic review update. *Autism Research*. 2022; 15(5):778–790. https://doi.org/10.1002/aur.2696
- Liu X., Lin J., Zhang H., Khan N.U., Zhang J., Tang X., Cao X., Shen L. Oxidative stress in autism spectrum disorder—Current progress of mechanisms and biomarkers. *Frontiers in Psychiatry*. 2022; 13:813304. https://doi.org/10.3389/fpsyt.2022.813304
- Farah A.I., Ahmad M.N., Al-Qirim T.M. The antioxidant and pro-oxidant impacts of varying levels of alpha-lipoic acid on biomarkers of myoglobin oxidation in vitro. *Jordan Journal of Agricultural Sciences*. 2020; 16(4):89–99. https://doi.org/10.35516/jjas.v16i4.63
- 11. Hammad A.M., Shawaqfeh B., Hikmat S., Al-Qirim T., Hamadneh L., Al-Kouz S., Awad M.M., Hall F.S. The

- role of vitamin E in protecting against oxidative stress, inflammation, and the neurotoxic effects of acute paracetamol in pregnant female rats. *Toxics*. 2023; 11(4):368. https://doi.org/10.3390/toxics11040368
- Yao F., Zhang K., Feng C., Gao Y., Shen L., Liu X., Ni J. Protein biomarkers of autism spectrum disorder identified by computational and experimental methods. *Frontiers in Psychiatry*. 2021; 12:554621. https://doi.org/10.3389/fpsyt.2021.554621
- Rylaarsdam L., Guemez-Gamboa A. Genetic causes and modifiers of autism spectrum disorder. *Frontiers in Cellular Neuroscience*. 2019; 13:385. https://doi.org/10.3389/fncel.2019.00385
- Baxter A.J., Brugha T.S., Erskine H.E., Scheurer R.W., Vos T., Scott J.G. The epidemiology and global burden of autism spectrum disorders. *Psychological Medicine*. 2015; 45(3):601–613. https://doi.org/10.1017/S003329171400172X
- 15. Alhawmdeh E.H., Bulatova N.R., Yousef A.M.F., Alabbadi M.A., Omer E.A. A cross-sectional study of the catalase genetic polymorphism (-262 cytosine/thymine) and blood catalase activity among Jordanian vitiligo patients. *Jordan Journal of Pharmaceutical Sciences*. 2023; 16(2):330–344. https://doi.org/10.35516/jjps.v16i2.438
- Martinvalet D., Walch M. Editorial: The role of reactive oxygen species in protective immunity. *Frontiers in Immunology*. 2022; 12.
- Gammoh O., Aburubaiha Z., Mayyas A., Alkatib W., Masarweh R., Elhajji F., Alqudah A. Valerian and hops combination versus escitalopram in models of depression and anxiety: A cross-talk with oxidative stress. *Jordan Journal of Pharmaceutical Sciences*. 2023; 16(1):124–136.
 - https://doi.org/10.35516/jjps.v16i1.1073
- 18. Al-Qirim T., Jasim S., Shawaqfeh B. Neurotoxic effect of paracetamol on female rats: Role of antioxidant treatment and prevention. *The FASEB Journal*. 2020; 34(S1):1.

- https://doi.org/10.1096/fasebj.2020.34.s1.00116
- Sies H., Berndt C., Jones D. P. Oxidative stress. *Annual Review of Biochemistry*. 2017; 86:715–748.
 https://doi.org/10.1146/annurev-biochem-061516-045037
- Sari Y. Chronic inhalation of pod-based e-cigarette aerosols on inflammatory biomarkers in the central nervous and peripheral systems. *Jordan Journal of Pharmaceutical Sciences*. 2023; 16(2):443. https://doi.org/10.35516/jjps.v16i2.1482
- Hajjo R., Sabbah D. A., Al Bawab A. Q. Unlocking the potential of the human microbiome for identifying disease diagnostic biomarkers. *Diagnostics*. 2022; 12(7):1742.
 - $\underline{https://doi.org/10.3390/diagnostics12071742}$
- Galiè M., Costanzo M., Nodari A., Boschi F., Calderan L., Mannucci S., Covi V., Tabaracci G., Malatesta M. Mild ozonisation activates antioxidant cell response by the Keap1/Nrf2 dependent pathway. Free Radical Biology & Medicine. 2018; 124:114–121. https://doi.org/10.1016/j.freeradbiomed.2018.05.093
- 23. Fernández-Checa J. C., Kaplowitz N., García-Ruiz C., Colell A., Miranda M., Marí M., Ardite E., Morales A. GSH transport in mitochondria: defense against TNFinduced oxidative stress and alcohol-induced defect. *The American Journal of Physiology*. 1997; 273(1 Pt 1):G7–G17.
 - https://doi.org/10.1152/ajpgi.1997.273.1.G7
- Rose S., Melnyk S., Pavliv O., Bai S., Nick T. G., Frye R. E., James S. J. Evidence of oxidative damage and inflammation associated with low glutathione redox status in the autism brain. *Translational Psychiatry*. 2012; 2(7):e134. https://doi.org/10.1038/tp.2012.61
- Rossignol D. A., Frye R. E. Evidence linking oxidative stress, mitochondrial dysfunction, and inflammation in the brain of individuals with autism. *Frontiers in Physiology*. 2014; 5:150.
 - https://doi.org/10.3389/fphys.2014.00150
- 26. Hajjo R., Sabbah D. A., Abusara O. H., Al Bawab A. Q.

- A review of the recent advances in Alzheimer's disease research and the utilization of network biology approaches for prioritizing diagnostics and therapeutics. *Diagnostics*. 2022; 12(12):2975.
- https://doi.org/10.3390/diagnostics12122975
- López-Hurtado E., Prieto J. J. A microscopic study of language-related cortex in autism. *American Journal of Biochemistry and Biotechnology*. 2008; 4(2):130–145. https://doi.org/10.3844/ajbbsp.2008.130.145
- Chauhan A., Chauhan V. Oxidative stress in autism. Pathophysiology: The Official Journal of the International Society for Pathophysiology. 2006; 13(3):171–181.
 - https://doi.org/10.1016/J.PATHOPHYS.2006.05.007
- Lord C., Elsabbagh M., Baird G., Veenstra-Vanderweele J. Autism spectrum disorder. *Lancet* (*London*, *England*). 2018; 392(10146):508–520. https://doi.org/10.1016/S0140-6736(18)31129-2
- Murphy C. M., Wilson C. E., Robertson D. M., Ecker C., Daly E. M., Hammond N., Galanopoulos A., Dud I., Murphy D. G., McAlonan G. M. Autism spectrum disorder in adults: diagnosis, management, and health services development. *Neuropsychiatric Disease and Treatment*. 2016; 12:1669–1686. https://doi.org/10.2147/NDT.S65455
- 31. Liu X., Lin J., Zhang H., Khan N. U., Zhang J., Tang X., Cao X., Shen L. Oxidative stress in autism spectrum disorder—current progress of mechanisms and biomarkers. *Frontiers in Psychiatry*. 2022; 13:813304. https://doi.org/10.3389/fpsyt.2022.813304/bibtex
- 32. Chen L., Shi X. J., Liu H., Mao X., Gui L. N., Wang H., Cheng Y. Oxidative stress marker aberrations in children with autism spectrum disorder: a systematic review and meta-analysis of 87 studies (N = 9109).

 *Translational Psychiatry. 2021; 11(1):1–10.
 https://doi.org/10.1038/s41398-020-01135-3
- Ghezzo A., Visconti P., Abruzzo P. M., Bolotta A.,
 Ferreri C., Gobbi G., Malisardi G., Manfredini S.,
 Marini M., Nanetti L., Pipitone E., Raffaelli F., Resca

F., Vignini A., Mazzanti L. Oxidative stress and erythrocyte membrane alterations in children with autism: correlation with clinical features. *PLOS ONE*. 2013; 8(6):e66418.

https://doi.org/10.1371/journal.pone.0066418

- 34. Efe A., Neşelioğlu S., Soykan A. An investigation of the dynamic thiol/disulfide homeostasis, as a novel oxidative stress plasma biomarker, in children with autism spectrum disorders. *Autism Research*. 2021; 14(3):473–487. https://doi.org/10.1002/aur.2436
- 35. Werling D. M., Geschwind D. H. Sex differences in autism spectrum disorders. *Current Opinion in Neurology*. 2013; 26(2):146–153. https://doi.org/10.1097/WCO.0b013e32835ee548
- 36. Jacquemont S., Coe B. P., Hersch M., Duyzend M. H., Krumm N., Bergmann S., Beckmann J. S., Rosenfeld J. A., Eichler E. E. A higher mutational burden in females supports a "female protective model" in neurodevelopmental disorders. *American Journal of Human Genetics*. 2014; 94(3):415–425. https://doi.org/10.1016/j.ajhg.2014.02.001
- Ostatníková D., Lakatošová S., Babková J., Hodosy J., Celec P. Testosterone and the brain: from cognition to autism. *Physiological Research*. 2020; 69(Suppl 3):S403–S419.

https://doi.org/10.33549/physiolres.934592

- Xie S., Karlsson H., Dalman C., Widman L., Rai D., Gardner R. M., Magnusson C., Sandin S., Tabb L. P., Newschaffer C. J., Lee B. K. The familial risk of autism spectrum disorder with and without intellectual disability. *Autism Research: Official Journal of the International Society for Autism Research.* 2020; 13(12):2242–2250. https://doi.org/10.1002/aur.2417
- Sandin S., Lichtenstein P., Kuja-Halkola R., Larsson H., Hultman C. M., Reichenberg A. The familial risk of autism. *JAMA*. 2014; 311(17):1770–1777. https://doi.org/10.1001/jama.2014.4144
- 40. Satterstrom F. K., Kosmicki J. A., Wang J., Breen M. S., De Rubeis S., An J.-Y., Peng M., Collins R., Grove

J., Klei L., Stevens C., Reichert J., Mulhern M. S., Artomov M., Gerges S., Sheppard B., Xu X., Bhaduri A., Norman U., ... Buxbaum J. D. Large-scale exome sequencing study implicates both developmental and functional changes in the neurobiology of autism. *Cell*. 2020; 180(3):568–584.e23.

https://doi.org/10.1016/j.cell.2019.12.036

- Genovese A., Butler M. G. The autism spectrum: behavioral, psychiatric and genetic associations. *Genes*. 2023; 14(3). https://doi.org/10.3390/genes14030677
- 42. Choi L., An J.-Y. Genetic architecture of autism spectrum disorder: lessons from large-scale genomic studies. *Neuroscience & Biobehavioral Reviews*. 2021; 128:244–257.

https://doi.org/10.1016/j.neubiorev.2021.06.028

- Lai M.-C., Lombardo M. V., Baron-Cohen S. Autism. *Lancet (London, England)*. 2014; 383(9920):896–910. https://doi.org/10.1016/S0140-6736(13)61539-1
- 44. White S. W., Oswald D., Ollendick T., Scahill L. Anxiety in children and adolescents with autism spectrum disorders. *Clinical Psychology Review*. 2009; 29(3):216–229.

https://doi.org/10.1016/j.cpr.2009.01.003

- Tuchman R., Rapin I. Epilepsy in autism. *The Lancet Neurology*. 2002; 1(6):352–358.
 https://doi.org/10.1016/s1474-4422(02)00160-6
- Liu X., Lin J., Zhang H., Khan N. U., Zhang J., Tang X., Cao X., Shen L. Oxidative stress in autism spectrum disorder—current progress of mechanisms and biomarkers. *Frontiers in Psychiatry*. 2022; 13:813304. https://doi.org/10.3389/fpsyt.2022.813304
- 47. Ayala A., Muñoz M. F., Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Medicine and Cellular Longevity. 2014; 2014;360438.

https://doi.org/10.1155/2014/360438

48. Frustaci A., Neri M., Cesario A., Adams J., Domenici E., Dalla Bernardina B., Bonassi S. Oxidative stress-

related biomarkers in autism: systematic review and meta-analyses. *Free Radical Biology & Medicine*. 2012; 52:2128–2141.

https://doi.org/10.1016/j.freeradbiomed.2012.03.011

- Nasrallah O., Alzeer S. Measuring some oxidative stress biomarkers in autistic Syrian children and their siblings: a case-control study. *Biomarker Insights*. 2022; 17:11772719221123912.
 - https://doi.org/10.1177/11772719221123913
- Meguid N. A., Dardir A. A., Abdel-Raouf E. R., Hashish A. Evaluation of oxidative stress in autism: defective antioxidant enzymes and increased lipid peroxidation. *Biological Trace Element Research*. 2011; 143(1):58–65. https://doi.org/10.1007/s12011-010-8840-9
- Bjørklund G., Meguid N. A., El-Bana M. A., Tinkov A. A., Saad K., Dadar M., Hemimi M., Skalny A. V., Hosnedlová B., Kizek R., Osredkar J., Urbina M. A., Fabjan T., El-Houfey A. A., Kałużna-Czaplińska J., Gątarek P., Chirumbolo S. Oxidative stress in autism spectrum disorder. *Molecular Neurobiology*. 2020; 57(5):2314–2332. https://doi.org/10.1007/s12035-019-01742-2
- Usui N., Kobayashi H., Shimada S. Neuroinflammation and oxidative stress in the pathogenesis of autism spectrum disorder. *International Journal of Molecular Sciences*. 2023; 24(6). https://doi.org/10.3390/ijms24065487
- 53. Ahadullah, Yau S., Lu H., Lee T. M. C., Guo H., Chan

- C. C. H. PM2.5 as a potential risk factor for autism spectrum disorder: its possible link to neuroinflammation, oxidative stress and changes in gene expression. *Neuroscience & Biobehavioral Reviews*. 2021; 128:534–548. https://doi.org/10.1016/j.neubiorev.2021.06.043
- 54. Baig S., Parvaresh Rizi E., Chia C., Shabeer M., Aung N., Loh T. P., Magkos F., Vidal-Puig A., Seet R. C. S., Khoo C. M., Toh S.-A. Genes involved in oxidative stress pathways are differentially expressed in circulating mononuclear cells derived from obese insulin-resistant and lean insulin-sensitive individuals following a single mixed-meal challenge. *Frontiers in Endocrinology*. 2019; 10.
- Morimoto M., Hashimoto T., Tsuda Y., Nakatsu T., Kitaoka T., Kyotani S. Assessment of oxidative stress in autism spectrum disorder using reactive oxygen metabolites and biological antioxidant potential. *PLOS ONE*. 2020; 15(5):e0233550. https://doi.org/10.1371/JOURNAL.PONE.0233550
- Membrino V., Paolo A. Di, Alia S., Papiri G., Vignini A. The role of oxidative stress in autism spectrum disorder: a narrative literature review. *Oxygen*. 2023; 3(1):34–44. https://doi.org/10.3390/OXYGEN3010004
- 57. Hu T., Dong Y., He C., Zhao M., He Q. The gut microbiota and oxidative stress in autism spectrum disorders (ASD). *Oxidative Medicine and Cellular Longevity*. 2020; 2020:8396708. https://doi.org/10.1155/2020/8396708

تأثير الإجهاد التأكسدي على الأطفال الأردنيين المصابين باضطراب طيف التوحد

أمل الرمحي" *، زينب زكريا مينا التميمي ، محمد هيلات ، محمد ف. حمد ، وائل أبو ديّه ، إبراهيم العبادي ، يوسف الرعوش ، أمل الرمحي الله عنه العبادي العامي و ، خالد عبد العزيز أحمد الله علاء أ. الحسبان المعام الله على العام العام علاء أ. الحسبان العام الله على الل

```
1 كلية العلوم الطبية المساندة، جامعة عمان الأهلية، عمان، الأردن
```

ملخص

الخلفية: اضطراب طيف التوحد (ASD) هو اضطراب نمائي عصبي لا تزال مسبباته غير معروفة ولا توجد له مؤشرات حيوية سريرية. وقد أبرزت دراسات حديثة الدور المحتمل للإجهاد التأكسدي والتغيرات الأيضية في اضطراب طيف التوحد. إلا أنه لا يُعرف الكثير عن هذه التغيرات لدى المصابين باضطراب طيف التوحد في الأردن.

الأهداف :هدفت هذه الدراسة إلى تقييم الواسمات الحيوية للإجهاد التأكسدي لدى الأطفال الأردنيين المصابين باضطراب طيف التوحد، والتحقيق في الارتباطات المحتملة لهذه الواسمات بالسمات السربرية للاضطراب.

المنهجية :شملت هذه الدراسة المقطعية 80 طفلًا أربنيًا قُسَموا إلى مجموعتين: مجموعة المرضى (شُخِّص أفرادها باضطراب طيف التوحد، وعددهم 40). تم استقصاء توزيع اضطراب طيف التوحد بين المشاركين وتقييم مدى انتشار الحالات المرضية المصاحبة. كما تم تقييم الواسمات الحيوية للإجهاد التأكسدي، بما في ذلك إنزيم غلوتاثيون بيروكسيداز (GPX)، وإنزيم سوبر أكسيد ديمسيوتاز (SOD)، ومالونديالدهيد.(MDA)

النتائج: كان اضطراب طيف التوحد أكثر شيوعًا بين الذكور (65% في مجموعة المرضى) وبين الأشخاص الذين لديهم تاريخ عائلي للإصابة بالإضطراب (55%). كما تضمنت الحالات المرضية المصاحبة الشائعة كلاً من اضطراب نقص الانتباه مع فرط النشاط (ADHD)بنسية 42.5%، والقلق بنسية 25%، والصرع بنسبة 15%. كانت مستويات إنزيم GPX لدى الأطفال المصابين بالتوحد أقل بشكل ملحوظ (2.72 \pm 0.0 بيكومول/مل مقابل 7.74 \pm 2.5 بيكومول/مل في المجموعة الضابطة، (0.005) و وكذلك مستويات إنزيم 40.75 \pm 0.005 نانوغرام/مل مقابل 2.93 \pm 8.0 نانوغرام/مل في المجموعة الضابطة، (\$0.005) مي حين كانت مستويات ADA لديهم أعلى (16 \pm 1.95 نانومول/مل مقابل 5.46 \pm 1.57 نانومول/مل في المجموعة الضابطة، (\$0.005) الخلاصة : تشير هذه الدراسة إلى وجود ارتباط محتمل بين اضطراب طيف التوحد والإجهاد التأكمدي. وعلى الرغم من ضرورة إجراء المزيد من البحوث، فإن هذه النتائج تسهم في تعزيز فهمنا لإمراضية اضطراب طيف التوحد وقد توجه الأساليب التشخيصية والعلاجية المستقبلية. كما تشير معاملات ارتباط بيرسون إلى أن زيادة الإجهاد التأكمدي، المتمثلة في انخفاض مستويات إنزيمي GPXو 600 كانتورة والمتورة والمتابين باضطراب طيف التوحد.

الكلمات الدالة: اضطراب طيف التوحد، أطفال أردنيون، غلوتاثيون بيروكسيداز، سوبر أكسيد ديسميوتاز، مالونديالدهيد، اضطراب نقص الانتباه مع فرط النشاط (ADHD)، القلق، الصرع، الإجهاد التأكسدي.

a.al-ramahi@ammanu.edu.jo

تاريخ استلام البحث 2024/05/08 وتاريخ قبوله للنشر 2025/01/23.

² قسم الصيدلانيات السريرية، كلية الصيدلة، جامعة عمان الأهلية، عمان، الأردن

³ كلية الصيدلة، جامعة الزرقاء، الزرقاء، الأردن

⁴ كلية الصيدلة، جامعة الزيتونة الأردنية، عمان، الأردن

⁵ قسم العلوم الطبية الأساسية، كلية الطب، جامعة البلقاء التطبيقية، السلط، الأردن

⁶ كلية الصيدلة، جامعة مؤتة، الكرك، الأردن

⁷ قسم الصيد لانيات السربرية، كلية الصيدلة، الجامعة الأردنية، عمان، الأردن

⁸ مدير عيادات الطب النفسي والعلاج النفسي السلوكي والمعرفي، عمان، الأردن

⁹ قسم العلوم الطبية، كلية العلوم الطبية المساندة، جامعة عمان الأهلية، عمان، الأردن

¹⁰ قسم العلوم المخبرية الطبية، كلية العلوم الطبية المساندة، جامعة عمان الأهلية، عمان، الأردن

^{*} المؤلف المراسل: أمل الرمحي