Inhibitory Effects of Polyphenols from Equisetum ramosissimum and Moringa peregrina Extracts on Staphylococcus aureus, Collagenase, and Tyrosinase Enzymes: In vitro Studies
DOI:
https://doi.org/10.35516/jjps.v17i3.2164Keywords:
Equisetum ramosissimum, Moringa peregrina, Staphylococcus aureus, collagenase, tyrosinaseAbstract
Background: Skin problems caused by oxidative stress lead to the activation of collagenase and tyrosinase enzymes, contributing to skin aging, discoloration, and infections. Equisetum ramosissimum and Moringa peregrina were assessed for their potential uses in treating various skin conditions.
Objective: The present research aimed to investigate the positive effects of polyphenols in Equisetum ramosissimum and Moringa peregrina extracts as potential cosmetic products for the treatment of different skin conditions.
Methods: Total phenolic and flavonoid contents, antioxidants, and anti-collagenase and anti-tyrosinase activities of plant extract mixtures (PEM) at different ratios of (M. peregrina: E. ramosissimum) were determined using standard procedures. Inhibitory effects of PEM against acne-causing Staphylococcus aureus (ATCC 29213) were evaluated using the diameter (cm) of the inhibition zone method. A cream formulation containing PEM was developed and characterized for stability and potential skin irritation in rats using standard procedures.
Results: The PEM at a ratio of (2:1) showed the highest total phenolic and flavonoid content (150.15 ± 2.8 mg/g, equivalent to gallic acid, and 41.5 ± 1.2 mg/g, equivalent to quercetin, respectively). Antioxidant activities for PEM (2:1) were also optimal, as determined by the DPPH and ABTS methods (IC50 = 7.06 ± 0.12 µg/mL and 53.29 ± 3.3 µg/mL, respectively). Furthermore, PEM (2:1) exhibited superior inhibitory activities against collagenase and tyrosinase enzymes (IC50 = 32.4 ± 1.19 µg/mL and 8.4 ± 1.19 µg/mL, respectively). Antimicrobial activity of PEM (2:1) tested on S. aureus showed the largest zone of growth inhibition (2.8 cm) at a concentration of 60 mg/mL. Studies on the PEM (2:1) cream formulation revealed that it remained stable under room conditions. Skin irritation tests on rats showed no signs of oedema or erythema after treatment.
Conclusion: The PEM with a ratio of (2:1) demonstrated optimal activity as an oxidative stress-neutralizing agent, inhibitor of enzymes responsible for skin aging and hyperpigmentation, and antibacterial agent. The cream formulation containing PEM exhibited physical stability and no detectable risk of skin irritation throughout the research procedures.
References
Gu Y., Han J., Jiang C., and Zhang Y. Biomarkers, oxidative stress and autophagy in skin aging. Ageing Res Rev. 2020; 59: 101036.
https://doi.org/10.1016/j.arr.2020.101036 DOI: https://doi.org/10.1016/j.arr.2020.101036
Abu Hajleh M.N., AL‐Samydai A., and Al‐Dujaili E.A. Nano, micro particulate and cosmetic delivery systems of polylactic acid: A mini review. J Cosm Dermatol. 2020; 19(11): 2805-2811.
DOI: https://doi.org/10.1111/jocd.13696 DOI: https://doi.org/10.1111/jocd.13696
Shakour Z.T., Radwa H., Elshamy A.I., El Gendy A.E., Wessjohann L.A., and Farag M.A. Dissection of Moringa oleifera leaf metabolome in context of its different extracts, origin and in relationship to its biological effects as analysed using molecular networking and chemometrics. Food Chem. 2023; 399: 133948. https://doi.org/10.1016/j.foodchem.2022.133948 DOI: https://doi.org/10.1016/j.foodchem.2022.133948
Zolghadri S., Beygi M., Mohammad T.F., Alijanianzadeh M., Pillaiyar T., Garcia-Molina P., Garcia-Canovas F., Munoz-Munoz J.L., and Saboury A.A. Targeting tyrosinase in hyperpigmentation: Current status, limitations and future promises. Biochem Pharmacol. 2023; 212: 115574.
https://doi.org/10.1016/j.bcp.2023.115574 DOI: https://doi.org/10.1016/j.bcp.2023.115574
Bandana M. In vitro tyrosinase inhibitory phlorotannins from Ecklonia stolonifera. Master dissertation, Pukyong National University. 2019
Zolghadri S., Bahrami A., Hassan Khan M.T., Munoz-Munoz J., Garcia-Molina F., Garcia-Canovas F., and Saboury A.A. A comprehensive review on tyrosinase inhibitors. J Enzyme Inhibitions Med Chem. 2019; 34(1): 279-309. https://doi.org/10.1080/14756366.2018.1545767 DOI: https://doi.org/10.1080/14756366.2018.1545767
Garcia-Jimenez A., Teruel-Puche J.A., Garcia-Ruiz P.A., Saura-Sanmartin A., Berna J., Garcia-Canovas F., and Rodriguez-Lopez J.N. Structural and kinetic considerations on the catalysis of deoxyarbutin by tyrosinase. Plos one. 2017; 12(11): e0187845. Doi.org/10.1371/journal.pone.0187845 DOI: https://doi.org/10.1371/journal.pone.0187845
Hashim F.J., Vichitphan S., Han J., and Vichitphan K. Alternative approach for specific tyrosinase inhibitor screening: Uncompetitive inhibition of tyrosinase by Moringa oleifera. Molecules. 2021; 26(15): 4576. https://doi.org/10.3390/molecules26154576 DOI: https://doi.org/10.3390/molecules26154576
Kirsten N., Mohr N., and Augustin M. Prevalence and cutaneous comorbidity of acne vulgaris in the working population. Clin, Cosm Invest Dermatol. 2021; 1393-400. https://doi.org/10.2147/CCID.S322876 DOI: https://doi.org/10.2147/CCID.S322876
Elsaie M.L. Hormonal treatment of acne vulgaris: an update. Clin, Cosm Invest Dermatol. 2016; 2: 241-248. Doi.org/10.2147/CCID.S114830 DOI: https://doi.org/10.2147/CCID.S114830
Donkor E., Onakuse S., Bogue J., and De Los Rios-Carmenado I. Fertiliser adoption and sustainable rural livelihood improvement in Nigeria. Land Use Policy. 2019; 88: 104193.
https://doi.org/10.1016/j.landusepol.2019.104193 DOI: https://doi.org/10.1016/j.landusepol.2019.104193
Hassoun A., Linden P.K., and Friedman B. Incidence, prevalence, and management of MRSA bacteremia across patient populations—a review of recent developments in MRSA management and treatment. Critical care. 2017; 21(1): 211. Doi: 10.1186/s13054-017-1801-3. DOI: https://doi.org/10.1186/s13054-017-1801-3
Maddiboyina B., Roy H., Ramaiah M., Sarvesh C.N., Kosuru S.H., Nakkala R.K., and Nayak B.S. Methicillin-resistant Staphylococcus aureus: novel treatment approach breakthroughs. Bulletin National Res Centre. 2023; 47(1): 47-95 DOI: https://doi.org/10.1186/s42269-023-01072-3
https://doi.org//10.1186/s42269-023-01072-3
Apraj V.D., and Pandita N.S. Evaluation of skin anti-aging potential of Citrus reticulata blanco peel. Pharm Res 2016; 8(3): 160-168. Doi: https://doi.org/10.4103/0974-8490.182913 DOI: https://doi.org/10.4103/0974-8490.182913
Al‐Halaseh L.K., Al‐Adaileh S., Mbaideen A., Hajleh M.N., Al‐Samydai A., Zakaraya Z.Z., and Dayyih W.A. Implication of parabens in cosmetics and cosmeceuticals: Advantages and limitations. J Cosm Dermatol. 2022; 21(8): 3265-71. https://doi.org/10.1111/jocd.14775 DOI: https://doi.org/10.1111/jocd.14775
Senthilkumar A., Karuvantevida N., Rastrelli L., Kurup S.S., and Cheruth A.J. Traditional uses, pharmacological efficacy, and phytochemistry of Moringa peregrina (Forssk.) Fiori. a review. Front Pharmacol. 2018; 9: 465. https://doi.org/10.3389/fphar.2018.00465 DOI: https://doi.org/10.3389/fphar.2018.00465
Al-Dabbas M.M., Ahmad R.A., Ajo R.Y., Abulaila K.H., Akash M.U., and Al-Ismail K.H. Chemical composition and oil components in seeds of Moringa peregrina (Forssk) Fiori. Crop Res. 2010; 40(1): 161-167
Moichela F.T., Adefolaju G.A., Henkel R.R., Opuwari C.S. Aqueous leaf extract of Moringa oleifera reduced intracellular ROS production, DNA fragmentation and acrosome reaction in Human spermatozoa in vitro. Andrologia. 2021; 53(1): e13903. https://doi.org/10.1111/and.13903 DOI: https://doi.org/10.1111/and.13903
Dehshahri S., Afsharypuor S., Asghari G., and Mohagheghzadeh A. Determination of volatile glucosinolate degradation products in seed coat, stem and in vitro cultures of Moringa peregrina (Forssk.) Fiori. Res Pharm Sci. 2012; 7(1): 51-56.
Ghazanfar S. A., and Al-Al-Sabahi A. M. Medicinal plants of Northern and Central Oman (Arabia). Econ Botany. 1993; 47, 89–98. https://doi.org/10.1007/BF02862209 DOI: https://doi.org/10.1007/BF02862209
Al-Dhaheri S.M. In vitro re Generation and Marker Assisted Evaluation of Genetic Fidelity in Endangered Tree Species Moringa peregrina (Forsk) Fiori. Master thesis, United Arab Emirates University, Al Ain Abu Dhabi. 2016.
Mohammadpour H., Sadrameli S.M., Eslami F., and Asoodeh A. Optimization of ultrasound-assisted extraction of Moringa peregrina oil with response surface methodology and comparison with Soxhlet method. Indust Crops Products. 2019; 131: 106-116. https://doi.org/10.1016/j.indcrop.2019.01.030 DOI: https://doi.org/10.1016/j.indcrop.2019.01.030
Padhi S. Phytochemical studies and multipurpose use of seed oil of Moringa oleifera. J Humanity Sci En Language. 2016; 3(15): 3662-3672.
Sureshkumar J., Jenipher C., Sriramavaratharajan V., Gurav S. S., Gandhi G. R., Ravichandran K., & Ayyanar M. Genus Equisetum L: Taxonomy, toxicology, phytochemistry and pharmacology. J Ethnopharmacol. 2023; 116630. https://doi.org/10.1016/j.jep.2023.116630 DOI: https://doi.org/10.1016/j.jep.2023.116630
Savaya N.S., Issa R.A., and Talib W.H. In vitro evaluation of the antioxidant, anti-Propioni bacterium acne and antityrosinase effects of Equisetum ramosissimum (Jordanian horsetail). Trop J Pharm Res. 2022; 19(10): 2147-2152. Doi: https://doi.org/10.4314/tjpr.v19i10.19 DOI: https://doi.org/10.4314/tjpr.v19i10.19
Makia R., Al-Halbosiy M. M., & Al-Mashhadani M. H. Phytochemistry of the Genus Equisetum (Equisetum arvense). GSC Bio Pharm Sci. 2022; 18(2), 283-289. https://doi.org/10.30574/gscbps.2022.18.2.0059 DOI: https://doi.org/10.30574/gscbps.2022.18.2.0059
Vanithamani M., Mathivani G., Yamuna K., Kaviya S. Formulation and Evaluation of Traditional Herbal Cosmetics. Agricultural Science: Res Rev. 2023; 95.
Lohvina H., and Sándor M. Wink M. Effect of Ethanol Solvents on Total Phenolic Content and Antioxidant Properties of Seed Extracts of Fenugreek (Trigonella foenum-graecum L.) varieties and determination of phenolic Composition by HPLC-ESI-MS. Diversity. 2021; 14(1):7. https://doi.org/10.3390/d14010007 DOI: https://doi.org/10.3390/d14010007
Chang C.C., Yang M.H., Wen H.M., and Chern J.C. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J Food Drug Anal. 2002; 10(3). https://doi.org/10.38212/2224-6614.2748 DOI: https://doi.org/10.38212/2224-6614.2748
Nurzaman M., Permadi N., Setiawati T., Hasan R., Irawati Y., Julaeha E., and Herlina T. DPPH Free Radical Scavenging Activity of Citrus aurantifolia Swingle Peel Extracts and their Impact in Inhibiting the Browning of Musa Paradisiaca L. Var. Kepok Tanjung Explants. Jo J Biolo Sci. 2022; 15(5).
https://doi.org/10.54319/jjbs/150505 DOI: https://doi.org/10.54319/jjbs/150505
Re R., Pellegrini N., Proteggente A., Pannala A., Yang M., and Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol Med. 1999; 26(9-10):1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3 DOI: https://doi.org/10.1016/S0891-5849(98)00315-3
Ubaydee A.H., Issa R., Hajleh M.N., Ghanim B.Y., Al‐Akayleh F., and Qinna N.A. The effect of Medicago sativa extract and light on skin hypopigmentation disorders in C57/BL6 mice. J Cosm Dermatol. 2022; 21(11):6270-6280. https://doi.org/10.1111/jocd.15233 DOI: https://doi.org/10.1111/jocd.15233
Sheikh K.A., Baie S., Khan G.M. And Haruan. Haruan (Channa striatus) incorporated palm-oil creams: formulation and stability studies. Pakistan J Pharm Sci. 2005; 18(1): 1-5.
Ijaz M.J., Karimi H., Ahmad A., Gillani S.A., Anwar N., and Chaudhary M.A. Comparative efficacy of routine physical therapy with and without neuromobilization in the treatment of patients with mild to moderate carpal tunnel syndrome. BioMed Res Int. 2022; 2155765. Doi: https://doi.org/10.1155/2022/2155765 DOI: https://doi.org/10.1155/2022/2155765
Akhtar N., Khan B.A., Khan M.S., Mahmood T., Khan H.M., Iqbal M., and Bashir S. Formulation development and moiturising effects of a topical cream of Aloe vera extract. World Academy Sci Eng Technol. 2011; 51: 172-179.
Helgeson M.E. Colloidal behavior of nanoemulsions: Interactions, structure, and rheology. Current opinion in colloid & interface Sci. 2016; 25:39-50.
https://doi.org/10.1016/j.cocis.2016.06.006 DOI: https://doi.org/10.1016/j.cocis.2016.06.006
Rodrigues F., Sarmento B., Amaral M.H., and Oliveira M.B.P. Exploring the antioxidant potentiality of two food by-products into a topical cream: Stability, in vitro and in vivo evaluation. Drug Develop Indust Pharm. 2016; 42(6):880-889.
DOI: https://doi.org/10.3109/03639045.2015.1088865 DOI: https://doi.org/10.3109/03639045.2015.1088865
Hemmati M., Ghasemzadeh A., Haji Malek-kheili M., Khoshnevisan K., and Koohi M.K. Investigation of acute dermal irritation/corrosion, acute inhalation toxicity and cytotoxicity tests for Nanobiocide®. Nanomed Res J. 2016; 1(1): 23-29.
Doi: https://doi.org/10.7508/nmrj.2016.01.004
Aremu O., Olayemi O., Ajala T., Isimi Y., Oladosu P., Ekere K., John J., and Emeje M. Antibacterial evaluation of Acacia nilotica Lam (Mimosaceae) seed extract in dermatological preparations. J Res Pharm. 2020; 24(1): 170-181. DOI : https://doi.org/10.35333/jrp.2020.124 DOI: https://doi.org/10.35333/jrp.2020.124
Nasim N., Sandeep I.S., and Mohanty S. Plant-derived natural products for drug discovery: Current approaches and prospects. The Nucleus. 2022; 65(3):399-411. Doi: https://doi.org/10.1007/s13237-022-00405-3 DOI: https://doi.org/10.1007/s13237-022-00405-3
Hajleh M.A., Alzweiri M., Bustanji Y. and Al-Dujaili E., 2020. Biodegradable Poly (lactic-co-glycolic acid) Microparticles Controlled Delivery System: A Review. Jordan Journal of Pharmaceutical Sciences. 2020; 13(3).
Di Sotto A., Gullì M., Percaccio E., Vitalone A., Mazzanti G., Di Giacomo S., Di Sotto A., Gullì M., Percaccio E., Vitalone A., Mazzanti G., and Di Giacomo S. Efficacy and Safety of Oral Green Tea Preparations in Skin Ailments: A Systematic Review of Clinical Studies. Nutrients. 2022; 14(15): 3149. https://doi.org/10.3390/nu14153149 DOI: https://doi.org/10.3390/nu14153149
Lali M.A., Issa R.A., Al-Halaseh L.K., Al-Suhaimat R., Alrawashdeh R. Reduction of reproductive toxicity in murine sperm model using Moringa peregrina leaves extracts. J Applied Pharm Sci. 2023; 13(11):050-6. Doi: https://doi.org/10.7324/JAPS.2023.141064 DOI: https://doi.org/10.7324/JAPS.2023.141064
Parham S., Kharazi A.Z., Bakhsheshi-Rad H.R., Nur H., Ismail A.F., Sharif S., RamaKrishna S., and Berto F. Antioxidant, antimicrobial and antiviral properties of herbal materials. Antioxidants. 2020: 9(12):1309. DOI: https://doi.org/10.3390/antiox9121309
Kattuoa M., Issa R., Beitawi S. Commonly used herbal remedies for the treatment of Primary Dysmenorrhea and Heavy Menstrual Bleeding by herbalists in Amman, Jordan: A cross-sectional survey. Jordan Journal of pharmaceutical sciences. 2020; 28(13)
Issa R., Khattabi A., Alkarem T., Altameemi O. The Use of antidiabetic herbal remedies by Jordanian herbalist: A Comparison of folkloric practice vs. evidence-based pharmacology. Jordan Journal of Pharmaceutical Sciences. 2019; 7(12)
Panat N.A., Maurya D.K., Ghaskadbi S.S., and Sandur S.K. Troxerutin, a plant flavonoid, protects cells against oxidative stress-induced cell death through radical scavenging mechanism. Food Chem. 2016; 194:32-45. Doi. https://doi.org//10.1016/j.foodchem.2015.07.078 DOI: https://doi.org/10.1016/j.foodchem.2015.07.078
Hasan A., Issa R., Al-Halaseh L., Abbas M.A., Al-Jawabri N., and Al-Suhaimat R. Investigation of the nephroprotective activity of Moringa peregrina leaves aqueous extract in mice. Pharmacia. 2022; 69(4): 1095-1102. DOI https://doi.org/10.3897/pharmacia.69.e90506 DOI: https://doi.org/10.3897/pharmacia.69.e90506
Al-Bayati M., Issa R., Abu-Samak M., Alnsour L., and Awwad S. Phytochemical analysis and evaluation of anti-hyperlipidaemic effect for ethanolic leaf extract of Equisetum ramosissimum L.: in vivo study on rats’ models. Pharmacia. 2023; 70(3): 557-568. DOI https://doi.org/10.3897/pharmacia.70.e101623 DOI: https://doi.org/10.3897/pharmacia.70.e101623
Majali I. S., Oran S. A., Khaled M. A., Qaralleh H., Rayyan W. A., & Althunibat O. Y. Assessment of the antibacterial effects of Moringa peregrina extracts. African J Microbiol Res. 2015; 9(51): 2410-2414. DOI: https://doi.org/10.5897/AJMR2015.7787 DOI: https://doi.org/10.5897/AJMR2015.7787
Karak J. Discovering antimicrobial powers of some herbs used by Bedouin in the Jordanian Petra. Ecology Envir Conservation. 2020; 26(1): 433-440.
Issa R.A., Afifi F.U., Amro B.I. Studying the anti‐tyrosinase effect of Arbutus andrachne L. extracts. Int J of Cosmetic Sci. 2008; 30(4):271-6. DOI: https://doi.org/10.1111/j.1468-2494.2008.00439.x
Doi. https://doi.org//10.1111/j.1468-2494.2008.00439.x
Prommaban A., Kuanchoom R., Seepuan N., and Chaiyana W. Evaluation of fatty acid compositions, antioxidant, and pharmacological activities of pumpkin (Cucurbita moschata) seed oil from aqueous enzymatic extraction. Plants. 2022; 10(8):1582. DOI: https://doi.org/10.3390/plants10081582
https://doi.org//10.3390/plants10081582
Da Costa e Silva R. M. F., Alves Diniz I.M., and da Fonte Ferreira J.M. Extracts and Composites of Equisetum for Bone Regeneration. Bioactive Compounds in Bryophytes and Pteridophytes. 2023; 713-739. Reference Series in Phytochemistry. Springer, Cham. DOI: https://doi.org/10.1007/978-3-031-23243-5_31 DOI: https://doi.org/10.1007/978-3-031-23243-5_31
El-Alfy T.S., Ezzat S.M., Hegazy A.K., Amer A.M., and Kamel G.M. Isolation of biologically active constituents from Moringa peregrina (Forssk.) Fiori. (family: Moringaceae) growing in Egypt. Pharmacog Magazine. 2011; 7(26): 109-115. Doi: https://doi.org/10.4103/0973-1296.80667 DOI: https://doi.org/10.4103/0973-1296.80667
Yasmeen S., and Gupta P. Interaction of selected terpenoids from Dalbergia sissoo with catalytic domain of matrix metalloproteinase-1: An in silico assessment of their anti-wrinkling potential. Bioinform Biolo Insights. 2019; 13:1177932219896538. DOI: https://doi.org/10.1177/1177932219896538