Virtual Screening for Molecular Targets of Emodin Against Red Complex Pathogens
DOI:
https://doi.org/10.35516/jjps.v17i4.2347Keywords:
Emodin, Red complex pathogens, Epitopes, computational tools, virulent proteinAbstract
Objective: Periodontitis is a chronic inflammatory disease affecting teeth' supporting tissues. It is caused by specific bacterial species, including Porphyromonas gingivalis (Pg), Tannerella forsythia (Tf), and Treponema denticola, known as the "red complex" group. These bacteria manipulate the immune response and promote tissue destruction, making them key players in periodontal pathogenesis. The present study aims to identify the potential molecular targets of Emodin against the red complex pathogens.
Method: The interaction between the phytocompound Emodin and red complex pathogens was identified using the STITCH tool. The proteins identified were then classified into functional categories using the VICMPred. The virulent proteins identified were then subjected to Bepired prediction, which provided information about the epitopes in the virulent proteins. Finally, the subcellular location of the proteins was demonstrated with the pSORTb tool.
Results: Carbamoyl-phosphate synthase is a large subunit identified as a virulence protein in Pg and Tf. DNA topoisomerase IV subunit A was found to be the common virulence protein for Pg and Td. The DNA gyrase subunit A and ATPase/histidine kinase/DNA gyrase B/HSP90 domain-containing protein were found to be identified in Td and Tf. It was the only protein predicted to be in the cytoplasmic membrane, while others were found in the cytoplasm. The four virulent proteins targeted by Emodin were found to harbor multiple epitopes.
Conclusion: Emodin was found to interact with all three pathogens of the red complex group. However, further experimental validation is warranted to prove the antimicrobial effect of Emodin against periodontal pathogens.
References
Darveau R.P. Periodontitis: a polymicrobial disruption of host homeostasis. Nat Rev Microbiol. 2010; 8(7):481-90. doi: 10.1038/nrmicro2337. DOI: https://doi.org/10.1038/nrmicro2337
Mysak J., Podzimek S., Sommerova P., Lyuya-Mi Y., Bartova J., Janatova T., Prochazkova J. and Duskova J. Porphyromonas gingivalis: major periodontopathic pathogen overview. J Immunol Res. 2014; 2014:476068. doi: 10.1155/2014/476068. DOI: https://doi.org/10.1155/2014/476068
Zeng H., Chan Y., Gao W., Leung W.K. and Watt R.M. Diversity of Treponema denticola and Other Oral Treponeme Lineages in Subjects with Periodontitis and Gingivitis. Microbiol Spectr. 2021; 9(2):e0070121. doi: 10.1128/Spectrum.00701-21. DOI: https://doi.org/10.1128/Spectrum.00701-21
Veith P.D., Scott N.E. and Reynolds E.C. Characterization of the O-Glycoproteome of Tannerella forsythia. mSphere. 2021; 6(5):e0064921. doi: 10.1128/mSphere.00649-21. DOI: https://doi.org/10.1128/mSphere.00649-21
Stompor-Gorący M. The Health Benefits of Emodin, a Natural Anthraquinone Derived from Rhubarb-A Summary Update. Int J Mol Sci. 2021; 22(17):9522.
doi: 10.3390/ijms22179522. DOI: https://doi.org/10.3390/ijms22179522
Ma W., Liu C., Li J., Hao M., Ji Y. and Zeng X. The effects of aloe emodin-mediated antimicrobial photodynamic therapy on drug-sensitive and resistant Candida albicans. Photochem Photobiol Sci. 2020; 19(4):485-494.
doi: 10.1039/c9pp00352e. DOI: https://doi.org/10.1039/c9pp00352e
Abu-Darwish D., Shibli R. and Al-Abdallat A.M. Phenolic Compounds and Antioxidant Activity of Chiliadenus montanus (Vhal.) Brullo grown in vitro. Jordan Journal of Pharmaceutical Sciences. 2024; 17(3):611–628. doi: 10.35516/jjps.v17i3.2248. DOI: https://doi.org/10.35516/jjps.v17i3.2248
Sowndhariya S.S., Ravi S., Dharani J.D. and Sripathi R.S. Chemical Constitution, In-silico Molecular Docking Studies and Antibacterial Activity of Flower Essential Oil of Artabotrys hexapetalus. Jordan Journal of Pharmaceutical Sciences. 2022; 15(3):341–354.
doi: 10.35516/jjps.v15i3.408. DOI: https://doi.org/10.35516/jjps.v15i3.408
Szklarczyk D., Santos A., von Mering C., Jensen L.J., Bork P. and Kuhn M. STITCH 5: augmenting protein-chemical interaction networks with tissue and affinity data. Nucleic Acids Res. 2016; 44(D1): D380-4.
doi: 10.1093/nar/gkv1277. DOI: https://doi.org/10.1093/nar/gkv1277
Saha S. and Raghava G.P. VICMpred: an SVM-based method for the prediction of functional proteins of Gram-negative bacteria using amino acid patterns and composition. Genomics Proteomics Bioinformatics. 2006; 4(1):42-7.
doi: 10.1016/S1672-0229(06)60015-6. DOI: https://doi.org/10.1016/S1672-0229(06)60015-6
Larsen J.E., Lund O. and Nielsen M. Improved method for predicting linear B-cell epitopes. Immunome Res. 2006; 2:2. doi: 10.1186/1745-7580-2-2. DOI: https://doi.org/10.1186/1745-7580-2-2
Jespersen M.C., Peters B., Nielsen M. and Marcatili P. BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res. 2017; 45(W1):W24-W29. doi: 10.1093/nar/gkx346. DOI: https://doi.org/10.1093/nar/gkx346
Lau W.Y.V., Hoad G.R., Jin V., Winsor G.L., Madyan A., Gray K.L., Laird M.R., Lo R. and Brinkman F.S.L. PSORTdb 4.0: expanded and redesigned bacterial and archaeal protein subcellular localization database incorporating new secondary localizations. Nucleic Acids Res. 2021; 49(D1): D803-D808.
doi: 10.1093/nar/gkaa1095. DOI: https://doi.org/10.1093/nar/gkaa1095
Chigasaki O., Aoyama N., Sasaki Y., Takeuchi Y., Mizutani K., Ikeda Y., Gokyu M., Umeda M., Izumi Y., Iwata T. and Aoki A. Porphyromonas gingivalis, the most influential pathogen in red-complex bacteria: A cross-sectional study on the relationship between bacterial count and clinical periodontal status in Japan. J Periodontol. 2021; 92(12):1719-1729. doi: 10.1002/JPER.21-0011. DOI: https://doi.org/10.1002/JPER.21-0011
Deng Z., Sun H., Bheemanaboina R.R.Y., Luo Y. and Zhou C.H. Natural aloe emodin-hybridized sulfonamide aminophosphates as novel potential membrane-perturbing and DNA-intercalating agents against Enterococcus faecalis. Bioorg Med Chem Lett. 2022; 64:128695.
doi: 10.1016/j.bmcl.2022.128695. DOI: https://doi.org/10.1016/j.bmcl.2022.128695
Li L., Song X., Yin Z., Jia R., Li Z., Zhou X., Zou Y., Li L., Yin L., Yue G., Ye G., Lv C., Shi W. and Fu Y. The antibacterial activity and action mechanism of emodin from Polygonum cuspidatum against Haemophilus parasuis in vitro. Microbiol Res. 2016; 186-187:139-45. doi: 10.1016/j.micres.2016.03.008. DOI: https://doi.org/10.1016/j.micres.2016.03.008
Duan F., Li X., Cai S., Xin G., Wang Y., Du D., He S., Huang B., Guo X., Zhao H., Zhang R., Ma L., Liu Y., Du Q., Wei Z., Xing Z., Liang Y., Wu X., Fan C., Ji C., Zeng D., Chen Q., He Y., Liu X. and Huang W. Haloemodin as novel antibacterial agent inhibiting DNA gyrase and bacterial topoisomerase I. J Med Chem. 2014; 57(9):3707-14.
doi: 10.1021/jm401685f. DOI: https://doi.org/10.1021/jm401685f
Li J., Qin M., Liu C., Ma W., Zeng X. and Ji Y. Antimicrobial photodynamic therapy against multidrug-resistant Acinetobacter baumannii clinical isolates mediated by aloe-emodin: An in vitro study. Photodiagnosis Photodyn Ther. 2020; 29:101632.
doi: 10.1016/j.pdpdt.2019.101632. DOI: https://doi.org/10.1016/j.pdpdt.2019.101632
Liu J., Wu F. and Chen C. Design and synthesis of aloe-emodin derivatives as potent anti-tyrosinase, antibacterial and anti-inflammatory agents. Bioorg Med Chem Lett. 2015; 25(22):5142-6. doi: 10.1016/j.bmcl.2015.10.004. DOI: https://doi.org/10.1016/j.bmcl.2015.10.004
Horvat M., Avbelj M., Durán-Alonso M.B., Banjanac M., Petković H. and Iskra J. Antiviral Activities of Halogenated Emodin Derivatives against Human Coronavirus NL63. Molecules. 2021; 26(22):6825.
doi: 10.3390/molecules26226825. DOI: https://doi.org/10.3390/molecules26226825
Lin C.W., Wu C.F., Hsiao N.W., Chang C.Y., Li S.W., Wan L., Lin Y.J. and Lin W.Y. Aloe-emodin is an interferon-inducing agent with antiviral activity against Japanese encephalitis virus and enterovirus 71. Int J Antimicrob Agents. 2008; 32(4):355-9.
doi: 10.1016/j.ijantimicag.2008.04.018. DOI: https://doi.org/10.1016/j.ijantimicag.2008.04.018
Luo Y., Yang Y., Wang W., Gao Q., Gong T., Feng Y., Wu D., Zheng X., Zhang G. and Wang H. Aloe-emodin inhibits African swine fever virus replication by promoting apoptosis via regulating NF-κB signaling pathway. Virol J. 2023; 20(1):158.
doi: 10.1186/s12985-023-02126-8. DOI: https://doi.org/10.1186/s12985-023-02126-8
Widyananda M.H., Kurniasari C.A., Alam F.M., Rizky W.C., Dings T.G.A., Ansori A.N.M. and Antonius Y. Exploration of Potentially Bioactive Compounds from Fingerroot (Boesenbergia rotunda L.) as Inhibitor of Atherosclerosis-Related Proteins (CETP, ACAT1, OSC, sPLA2): An in silico Study. Jordan Journal of Pharmaceutical Sciences. 2023; 16(3):550–564.
doi: 10.35516/jjps.v16i3.1609. DOI: https://doi.org/10.35516/jjps.v16i3.1609
Girija A.S.S, Gunasekaran S., Habib S., Aljeldah M., Al Shammari B.R., Alshehri A.A., Alwashmi A.S.S., Turkistani S.A., Alawfi A., Alshengeti A., Garout M., Alwarthan S., Alsubki R.A., Moustafa N.M. and Rabaan A.A. Prediction of Putative Epitope Peptides against BaeR Associated with TCS Adaptation in Acinetobacter baumannii Using an In Silico Approach. Medicina (Kaunas). 2023; 59(2):343.
doi: 10.3390/medicina59020343. DOI: https://doi.org/10.3390/medicina59020343
Uma Maheswari K. and Sankar S. In Silico Molecular Docking of Phytochemicals of Murraya koenigii Against Streptococcus mutans. Cureus. 2024; 16(2):e53679. doi:10.7759/cureus.53679 DOI: https://doi.org/10.7759/cureus.53679
Suresh M., Sai K.V., Mitra K., Ravindran R. and Doble M. A pharmacology-based approach to understanding the mechanism of action of anti-mycobacterial activity of Acacia nilotica: a modeling and experimental study. Mol Divers. doi:10.1007/s11030-024-10985-8 DOI: https://doi.org/10.1007/s11030-024-10985-8







