Diclofenac Adsorption from Contaminated Water onto Olive-Leaf-Derived Adsorbent

Authors

  • Zuhier Alakayleh Civil and Environmental Engineering Department, College of Engineering, Mutah University, 6170 Al-Karak, Jordan

DOI:

https://doi.org/10.35516/jjps.v18i1.2644

Keywords:

Contamination, Emerging Contaminant, Thermodynamics, Water Treatment, Adsorption

Abstract

This study investigates the adsorption of diclofenac (DCF) onto an olive leaf-derived adsorbent. The harvested olive leaves were washed, dried, and powdered then extracted with 80% ethanol. The extraction was filtered, washed with sodium hypochlorite, and ethanol, and then dried. The material was then activated using sodium hydroxide, phosphoric acid, and dead sea water, for the adsorption of DCF from contaminated water being investigated. Various operational parameters such as dosage, contact time, DCF concentration, and pH were systematically varied to understand their influence on adsorption efficiency. The kinetics of DCF adsorption followed pseudo-second-order kinetics. Isothermal studies revealed that the adsorption process conforms well with the Freundlich isotherm, suggesting multilayer adsorption onto a heterogeneous surface. Thermodynamic analysis indicated that the adsorption process is spontaneous and exothermic. Morphological analysis completed using the SEM data demonstrated a transformation in the porous structure of the adsorbent, indicating effective pore occupation by DCF molecules post-adsorption. Overall, the results demonstrate the effectiveness of olive leaf-derived adsorbent in efficiently removing DCF from aqueous solutions.

References

Beltrán F.J., Pocostales P., Álvarez P.M., López-Piñeiro F. Catalysts to improve the abatement of sulfamethoxazole and the resulting organic carbon in water during ozonation. Appl. Catal. B Environ. 2009; 92(3-4):262–270. DOI: https://doi.org/10.1016/j.apcatb.2009.08.001

Silveira C., Shimabuku-Biadola Q.L., Silva M.F., Vieira M.F., Bergamasco R. Development of an activated carbon impregnation process with iron oxide nanoparticles by green synthesis for diclofenac adsorption. Environ. Sci. Pollut. Res. 2020; 27:6088–6102. DOI: https://doi.org/10.1007/s11356-019-07329-7

Al-Zaubai N.M.S., Al-Anbari H.G., Alsaady A.A.H. The efficacy and tolerability of the use of combined versus single analgesic and prophylactic medications in severe migraine. Jordan J. Pharm. Sci. 2023; 16(2). DOI: https://doi.org/10.35516/jjps.v16i2.1320

Schwaiger J., Ferling H., Mallow U., Wintermayr H., Negele R. Toxic effects of the non-steroidal anti-inflammatory drug diclofenac: Part I: histopathological alterations and bioaccumulation in rainbow trout. Aquat. Toxicol. 2004; 68(2):141–150. DOI: https://doi.org/10.1016/j.aquatox.2004.03.014

Sotelo J.L., Ovejero G., Rodríguez A., Álvarez S., Galán J., García J. Competitive adsorption studies of caffeine and diclofenac aqueous solutions by activated carbon. Chem. Eng. J. 2014; 240:443–453. DOI: https://doi.org/10.1016/j.cej.2013.11.094

Loos R., Gawlik B.M., Locoro G., Rimaviciute E., Contini S., Bidoglio G. EU-wide survey of polar organic persistent pollutants in European river waters. Environ. Pollut. 2009; 157(2):561–568. DOI: https://doi.org/10.1016/j.envpol.2008.09.020

Dai G., Wang B., Huang J., Dong R., Deng S., Yu G. Occurrence and source apportionment of pharmaceuticals and personal care products in the Beiyun River of Beijing, China. Chemosphere. 2015; 119:1033–1039. DOI: https://doi.org/10.1016/j.chemosphere.2014.08.056

Lin A.Y.-C., Yu T.-H., Lin C.-F. Pharmaceutical contamination in residential, industrial, and agricultural waste streams: risk to aqueous environments in Taiwan. Chemosphere. 2008; 74(1):131–141. DOI: https://doi.org/10.1016/j.chemosphere.2008.08.027

Benotti M.J., Trenholm R.A., Vanderford B.J., Holady J.C., Stanford B.D., Snyder S.A. Pharmaceuticals and endocrine disrupting compounds in US drinking water. Environ. Sci. Technol. 2009; 43(3):597–603. DOI: https://doi.org/10.1021/es801845a

Behera S.K., Kim H.W., Oh J.-E., Park H.-S. Occurrence and removal of antibiotics, hormones and several other pharmaceuticals in wastewater treatment plants of the largest industrial city of Korea. Sci. Total Environ. 2011; 409(20):4351–4360. DOI: https://doi.org/10.1016/j.scitotenv.2011.07.015

Camacho-Muñoz D., Martín J., Santos J.L., Aparicio I., Alonso E. Concentration evolution of pharmaceutically active compounds in raw urban and industrial wastewater. Chemosphere. 2014; 111:70–79. DOI: https://doi.org/10.1016/j.chemosphere.2014.03.043

Camacho-Muñoz M., Santos J., Aparicio I., Alonso E. Presence of pharmaceutically active compounds in Donana Park (Spain) main watersheds. J. Hazard. Mater. 2010; 177(1-3):1159–1162. DOI: https://doi.org/10.1016/j.jhazmat.2010.01.030

Petrović M., Škrbić B., Živančev J., Ferrando-Climent L., Barcelo D. Determination of 81 pharmaceutical drugs by high performance liquid chromatography coupled to mass spectrometry with hybrid triple quadrupole–linear ion trap in different types of water in Serbia. Sci. Total Environ. 2014; 468:415–428. DOI: https://doi.org/10.1016/j.scitotenv.2013.08.079

Kosma C.I., Lambropoulou D.A., Albanis T.A. Investigation of PPCPs in wastewater treatment plants in Greece: occurrence, removal and environmental risk assessment. Sci. Total Environ. 2014; 466:421–438. DOI: https://doi.org/10.1016/j.scitotenv.2013.07.044

Lolić A., Paíga P., Santos L.H., Ramos S., Correia M., Delerue-Matos C. Assessment of non-steroidal anti-inflammatory and analgesic pharmaceuticals in seawaters of North of Portugal: occurrence and environmental risk. Sci. Total Environ. 2015; 508:240–250. DOI: https://doi.org/10.1016/j.scitotenv.2014.11.097

Ferrari B.T., Paxéus N., Giudice R.L., Pollio A., Garric J. Ecotoxicological impact of pharmaceuticals found in treated wastewaters: study of carbamazepine, clofibric acid, and diclofenac. Ecotoxicol. Environ. Saf. 2003; 55(3):359–370. DOI: https://doi.org/10.1016/S0147-6513(02)00082-9

Paul P.P., Kundu P., Karmakar U.K. Chemical and biological investigation of Sanchezia nobilis leaves extract. Jordan J. Pharm. Sci. 2022; 15(1):121–131. DOI: https://doi.org/10.35516/jjps.v15i1.299

Ternes T. Vorkommen von Pharmaka in Gewässern. Wasser und Boden 2001; 53(4):9–14.

Clara M., Strenn B., Ausserleitner M., Kreuzinger N. Comparison of the behaviour of selected micropollutants in a membrane bioreactor and a conventional wastewater treatment plant. Water Sci. Technol. 2004; 50(5):29–36. DOI: https://doi.org/10.2166/wst.2004.0305

Le T.K.N., Le N. Formulation and evaluation of herbal emulsion-based gel containing combined essential oils from Melaleuca alternifolia and Citrus hystrix. Jordan J. Pharm. Sci. 2024; 17(1):163–173. DOI: https://doi.org/10.35516/jjps.v17i1.1570

Aziz K.H.H., Miessner H., Mueller S., Kalass D., Moeller D., Khorshid I., Rashid M.A.M. Degradation of pharmaceutical diclofenac and ibuprofen in aqueous solution, a direct comparison of ozonation, photocatalysis, and non-thermal plasma. Chem. Eng. J. 2017; 313:1033–1041. DOI: https://doi.org/10.1016/j.cej.2016.10.137

Seifollahi Z., Rahbar-Kelishami A. Diclofenac extraction from aqueous solution by an emulsion liquid membrane: Parameter study and optimization using the response surface methodology. J. Mol. Liq. 2017; 231:1–10. DOI: https://doi.org/10.1016/j.molliq.2017.01.081

Yu H., Nie E., Xu J., Yan S., Cooper W.J., Song W. Degradation of diclofenac by advanced oxidation and reduction processes: kinetic studies, degradation pathways, and toxicity assessments. Water Res. 2013; 47(5):1909–1918. DOI: https://doi.org/10.1016/j.watres.2013.01.016

Bae S., Kim D., Lee W. Degradation of diclofenac by pyrite catalyzed Fenton oxidation. Appl. Catal. B Environ. 2013; 134:93–102. DOI: https://doi.org/10.1016/j.apcatb.2012.12.031

Viotti P.V., Moreira W.M., dos Santos O.A.A., Bergamasco R., Vieira A.M.S., Vieira M.F. Diclofenac removal from water by adsorption on Moringa oleifera pods and activated carbon: Mechanism, kinetic and equilibrium study. J. Clean. Prod. 2019; 219:809–817. DOI: https://doi.org/10.1016/j.jclepro.2019.02.129

Carmalin Sophia A., Lima E.C., Allaudeen N., Rajan S. Application of graphene-based materials for adsorption of pharmaceutical traces from water and wastewater—a review. Desalination Water Treat. 2016; 57(57):27573–27586. DOI: https://doi.org/10.1080/19443994.2016.1172989

Poorsharbaf Ghavi F., Raouf F., Dadvand Koohi A. A review on diclofenac removal from aqueous solution, emphasizing on adsorption method. Iran. J. Chem. Chem. Eng. 2020; 39(1):141–154.

De Luna M.D.G., Budianta W., Rivera K.K.P., Arazo R.O. Removal of sodium diclofenac from aqueous solution by adsorbents derived from cocoa pod husks. J. Environ. Chem. Eng. 2017; 5(2):1465–1474. DOI: https://doi.org/10.1016/j.jece.2017.02.018

dos Reis G.S., Bin Mahbub M.K., Wilhelm M., Lima E.C., Sampaio C.H., Saucier C., Pereira Dias S.L. Activated carbon from sewage sludge for removal of sodium diclofenac and nimesulide from aqueous solutions. Korean J. Chem. Eng. 2016; 33:3149–3161. DOI: https://doi.org/10.1007/s11814-016-0194-3

Nam S.-W., Jung C., Li H., Yu M., Flora J.R., Boateng L.K., Her N., Zoh K.-D., Yoon Y. Adsorption characteristics of diclofenac and sulfamethoxazole to graphene oxide in aqueous solution. Chemosphere 2015; 136:20–26. DOI: https://doi.org/10.1016/j.chemosphere.2015.03.061

Gil A., Santamaría L., Korili S. Removal of caffeine and diclofenac from aqueous solution by adsorption on multiwalled carbon nanotubes. Colloid Interface Sci. Commun. 2018; 22:25–28. DOI: https://doi.org/10.1016/j.colcom.2017.11.007

Maia G.S., de Andrade J.R., da Silva M.G., Vieira M.G. Adsorption of diclofenac sodium onto commercial organoclay: kinetic, equilibrium and thermodynamic study. Powder Technol. 2019; 345:140–150. DOI: https://doi.org/10.1016/j.powtec.2018.12.097

Malhotra M., Suresh S., Garg A. Tea waste derived activated carbon for the adsorption of sodium diclofenac from wastewater: adsorbent characteristics, adsorption isotherms, kinetics, and thermodynamics. Environ. Sci. Pollut. Res. 2018; 25:32210–32220. DOI: https://doi.org/10.1007/s11356-018-3148-y

Ministry of Agriculture, D. o. S. a. S. Annual Reports, Amman-Jordan, www.moa.gov.jo 2021.

Mahyoob W., Alakayleh Z., Hajar H.A.A., Al-Mawla L., Altwaiq A.M., Al-Remawi M., Al-Akayleh F. A novel co-processed olive tree leaves biomass for lead adsorption from contaminated water. J. Contam. Hydrol. 2022; 248:104025. DOI: https://doi.org/10.1016/j.jconhyd.2022.104025

Yateem H., Afaneh I., Al-Rimawi F. Optimum conditions for oleuropein extraction from olive leaves. 2014.

Hamaidi M., Jaber N., Al-Remawi M., Elsayed A., Maghrabi I. A novel pharmaceutical excipient: Coprecipitation of calcium and magnesium silicate using brine-seawater in date palm cellulose as an absorbing host. J. Excipients Food Chem. 2017; 8(3).

Alakayleh Z., Al-Akayleh F., Al-Remawi M., Mahyoob W., Hajar H.A.A., Esaifan M., Shawabkeh R. Utilizing olive leaves biomass as an efficient adsorbent for ciprofloxacin removal: characterization, isotherm, kinetic, and thermodynamic analysis. Environ. Monit. Assess. 2024; 196(6):562. DOI: https://doi.org/10.1007/s10661-024-12712-0

Amoo K.O., Amoo T.E., Olafadehan O.A., Alagbe E.E., Adesina A.J., Bamigboye M.O., Olowookere B.D., Ajayi K.D. Adsorption of cobalt (II) ions from aqueous solution using cow bone and its derivatives: Kinetics, equilibrium and thermodynamic comparative studies. Results Eng. 2023; 20:101635. DOI: https://doi.org/10.1016/j.rineng.2023.101635

Zhang W., Sheng X., Yan J., Wang J., Sun J., Zuo Q., Zhu X., Wang M., Gong L. The crucial role of different NaOH activation pathways on the algae-derived biochar toward carbamazepine adsorption. Results Eng. 2023; 20:101509. DOI: https://doi.org/10.1016/j.rineng.2023.101509

Ghasemi M.R., Nazemi A.H., Bozorgzadeh H.R. Continuous adsorption process of CO2/N2/H2O from CH4 flow using type A zeolite adsorbents in the presence of ultrasonic waves. Results Eng. 2023; 20:101490. DOI: https://doi.org/10.1016/j.rineng.2023.101490

De Almeida Ohana N., HM L.F., Luis N.-G. Adsorption of arsenic anions in water using modified lignocellulosic adsorbents. Results Eng. 2022; 13:100340. DOI: https://doi.org/10.1016/j.rineng.2022.100340

Du X., Cui S., Fang X., Wang Q., Liu G. Adsorption of Cd (II), Cu (II), and Zn (II) by granules prepared using sludge from a drinking water purification plant. J. Environ. Chem. Eng. 2020; 8(6):104530. DOI: https://doi.org/10.1016/j.jece.2020.104530

Saimeh A.S., Alakayleh Z., Al-Akayleh F., Mahyoob W., Al-Remawi M., Abu Hajar H.A., Shawabkeh R., Ali Agha A.S. Chemically activated olive leaves biomass for efficient removal of methylene blue from contaminated aqueous solutions. Emerg. Mater. 2024; 1-15. DOI: https://doi.org/10.1007/s42247-024-00672-7

Cherik D., Louhab K. A kinetics, isotherms, and thermodynamic study of diclofenac adsorption using activated carbon prepared from olive stones. J. Dispersion Sci. Technol. 2018; 39(6):814-825. DOI: https://doi.org/10.1080/01932691.2017.1395346

Homagai P.L., Ghimire K.N., Inoue K. Adsorption behavior of heavy metals onto chemically modified sugarcane bagasse. Bioresour. Technol. 2010; 101(6):2067-2069. DOI: https://doi.org/10.1016/j.biortech.2009.11.073

Shirahama N., Moon S., Choi K.-H., Enjoji T., Kawano S., Korai Y., Tanoura M., Mochida I. Mechanistic study on adsorption and reduction of NO2 over activated carbon fibers. Carbon 2002; 40(14):2605-2611. DOI: https://doi.org/10.1016/S0008-6223(02)00190-2

Bhutani P., Joshi G., Raja N., Bachhav N., Rajanna P.K., Bhutani H., Paul A.T., Kumar R. US FDA approved drugs from 2015–June 2020: a perspective. J. Med. Chem. 2021; 64(5):2339-2381. DOI: https://doi.org/10.1021/acs.jmedchem.0c01786

Kaur M., Datta M. Adsorption characteristics of acid orange 10 from aqueous solutions onto montmorillonite clay. Adsorption Sci. Technol. 2011; 29(3):301-318. DOI: https://doi.org/10.1260/0263-6174.29.3.301

Kaur M., Datta M. Diclofenac sodium adsorption onto montmorillonite: adsorption equilibrium studies and drug release kinetics. Adsorption Sci. Technol. 2014; 32(5):365-387. DOI: https://doi.org/10.1260/0263-6174.32.5.365

Koopal L., Tan W., Avena M. Equilibrium mono-and multicomponent adsorption models: From homogeneous ideal to heterogeneous non-ideal binding. Adv. Colloid Interface Sci. 2020; 280:102138. DOI: https://doi.org/10.1016/j.cis.2020.102138

Park S.-H., Shin S.S., Park C.H., Jeon S., Gwon J., Lee S.-Y., Kim S.-J., Kim H.-J., Lee J.-H. Poly (acryloyl hydrazide)-grafted cellulose nanocrystal adsorbents with an excellent Cr (VI) adsorption capacity. J. Hazard. Mater. 2020; 394:122512. DOI: https://doi.org/10.1016/j.jhazmat.2020.122512

Alakayleh Z. From inactive biomass in removing amoxicillin to new active chitosan-biomass composite adsorbents. Results Eng. 2025; 25:103709. DOI: https://doi.org/10.1016/j.rineng.2024.103709

Tran H.N., Lima E.C., Juang R.-S., Bollinger J.-C., Chao H.-P. Thermodynamic parameters of liquid–phase adsorption process calculated from different equilibrium constants related to adsorption isotherms: A comparison study. J. Environ. Chem. Eng. 2021; 9(6):106674. DOI: https://doi.org/10.1016/j.jece.2021.106674

Alakayleh Z. Sulfuric acid-activated carbon from guava leaves for paracetamol adsorption. Results Eng. 2025; 25:103685. DOI: https://doi.org/10.1016/j.rineng.2024.103685

Downloads

Published

2025-03-25

How to Cite

Alakayleh, Z. (2025). Diclofenac Adsorption from Contaminated Water onto Olive-Leaf-Derived Adsorbent. Jordan Journal of Pharmaceutical Sciences, 18(1), 132–145. https://doi.org/10.35516/jjps.v18i1.2644

Issue

Section

Articles