A Review on Puncturing Potential: Microneedles' Present Landscape And Prospective Horizons

Authors

  • Boyeekati Mohammad Rizwan Department of Pharmaceutics, Raghavendra Institute of Pharmaceutical Education and Research, K.R. Palli Cross, Anantapur, Chiyyedu, Andhra Pradesh-India
  • Nawaz Mahammed Department of Pharmaceutics, Raghavendra Institute of Pharmaceutical Education and Research, K.R. Palli Cross, Anantapur, Chiyyedu, Andhra Pradesh-India
  • Shaik Farheen Taj Department of Pharmaceutics, Raghavendra Institute of Pharmaceutical Education and Research, K.R. Palli Cross, Anantapur, Chiyyedu, Andhra Pradesh-India
  • V. Sivasai Bharath Kumar Department of Pharmaceutics, Raghavendra Institute of Pharmaceutical Education and Research, K.R. Palli Cross, Anantapur, Chiyyedu, Andhra Pradesh-India
  • B. Yamuna Department of Pharmaceutics, Raghavendra Institute of Pharmaceutical Education and Research, K.R. Palli Cross, Anantapur, Chiyyedu, Andhra Pradesh-India

DOI:

https://doi.org/10.35516/jjps.v18i2.2763

Keywords:

Microneedles, drug delivery, vaccination, diagnostics, fabrication techniques, biocompatibility, clinical translation, future perspectives

Abstract

Microneedle technology has emerged as a promising approach for drug delivery, vaccination, diagnostics, and cosmetic treatments. This review provides an overview of microneedle technology, covering the various types of microneedles, fabrication techniques, applications, advantages, challenges, safety considerations, clinical translation, and future perspectives. Solid, hollow, dissolving, coated, and hydrogel-forming microneedles are discussed, along with their structures, materials, and fabrication methods. Applications in drug delivery, vaccination, diagnostics, and cosmetic treatments are explored, with an emphasis on emerging and novel uses. The review highlights the advantages of microneedle technology, including enhanced patient compliance, improved drug absorption, and reduced pain, as well as challenges such as manufacturing scalability and regulatory approval. Fabrication techniques, biocompatibility, safety issues, clinical translation, and commercialization aspects are examined, along with future directions and emerging trends such as multifunctional microneedles and personalized medicine. Overall, microneedle technology holds tremendous promise for revolutionizing healthcare and biomedical engineering, but further research and development are required to address current challenges and realize its full potential.

References

Vora LK, Moffatt K, Tekko IA, Paredes AJ, Volpe-Zanutto F, Mishra D, et al. Microneedle array systems for long-acting drug delivery. European Journal of Pharmaceutics and Biopharmaceutics. 2021;159:44-76. DOI: https://doi.org/10.1016/j.ejpb.2020.12.006

Mdanda S, Ubanako P, Kondiah PP, Kumar P, Choonara YE. Recent advances in microneedle platforms for transdermal drug delivery technologies. Polymers. 2021;13(15):2405. DOI: https://doi.org/10.3390/polym13152405

Kulkarni D, Gadade D, Chapaitkar N, Shelke S, Pekamwar S, Aher R, et al. Polymeric Microneedles: An Emerging Paradigm for Advanced Biomedical Applications. Scientia Pharmaceutica. 2023;91(2):27. DOI: https://doi.org/10.3390/scipharm91020027

Erdem Ö, Eş I, Akceoglu GA, Saylan Y, Inci F. Recent advances in microneedle-based sensors for sampling, diagnosis and monitoring of chronic diseases. Biosensors. 2021;11(9):296. DOI: https://doi.org/10.3390/bios11090296

Prausnitz MR. Microneedles for transdermal drug delivery. Advanced drug delivery reviews. 2004;56(5):581-7. DOI: https://doi.org/10.1016/j.addr.2003.10.023

Cárcamo-Martínez Á, Mallon B, Domínguez-Robles J, Vora LK, Anjani QK, Donnelly RF. Hollow microneedles: A perspective in biomedical applications. International journal of pharmaceutics. 2021;599:120455. DOI: https://doi.org/10.1016/j.ijpharm.2021.120455

Rajendhiran N, Bhattacharyya S. Preparation and Evaluation of Nanolipid Carriers of Bedaquiline-In vitro Evaluation and in silico Prediction. Jordan Journal of Pharmaceutical Sciences. 2024;17(3):450-67. DOI: https://doi.org/10.35516/jjps.v17i3.1970

Dayyih WA, Hailat M, Albtoush S, Albtoush E, Dayah AA, Alabbadi I, et al. Nanomedicine Advancements in Cancer Therapy: A Scientific Review. Jordan Journal of Pharmaceutical Sciences. 2024;17(3):506-29. DOI: https://doi.org/10.35516/jjps.v17i3.2384

Tucak A, Sirbubalo M, Hindija L, Rahić O, Hadžiabdić J, Muhamedagić K, et al. Microneedles: Characteristics, materials, production methods and commercial development. Micromachines. 2020;11(11):961. DOI: https://doi.org/10.3390/mi11110961

Wang QL, Zhu DD, Chen Y, Guo XD. A fabrication method of microneedle molds with controlled microstructures. Materials Science and Engineering: C. 2016;65:135-42. DOI: https://doi.org/10.1016/j.msec.2016.03.097

Yang C, Yin X-H, Cheng G-M. Microinjection molding of microsystem components: new aspects in improving performance. Journal of Micromechanics and Microengineering. 2013;23(9):093001. DOI: https://doi.org/10.1088/0960-1317/23/9/093001

Thanuja R, Kumar KV, Sree BD, Karthick S, Reshma T. A Comprehensive Review on Documentation Practices in the Pharmaceutical Manufacturing Industry. Jordan Journal of Pharmaceutical Sciences. 2024;17(4):829-47. DOI: https://doi.org/10.35516/jjps.v17i4.1405

Mack C. Fundamental principles of optical lithography: the science of microfabrication. John Wiley & Sons. 2007. DOI: https://doi.org/10.1002/9780470723876

Vieu C, Carcenac F, Pepin A, Chen Y, Mejias M, Lebib A, et al. Electron beam lithography: resolution limits and applications. Applied surface science. 2000;164(1-4):111-7. DOI: https://doi.org/10.1016/S0169-4332(00)00352-4

Traub MC, Longsine W, Truskett VN. Advances in nanoimprint lithography. Annual review of chemical and biomolecular engineering. 2016;7:583-604. DOI: https://doi.org/10.1146/annurev-chembioeng-080615-034635

Ahmed N, Darwish S, Alahmari AM. Laser ablation and laser-hybrid ablation processes: a review. Materials and Manufacturing Processes. 2016;31(9):1121-42. DOI: https://doi.org/10.1080/10426914.2015.1048359

Hazzan KE, Pacella M, See TL. Laser processing of hard and ultra-hard materials for micro-machining and surface engineering applications. Micromachines. 2021;12(8):895. DOI: https://doi.org/10.3390/mi12080895

Limongi T, Tirinato L, Pagliari F, Giugni A, Allione M, Perozziello G, et al. Fabrication and applications of micro/nanostructured devices for tissue engineering. Nano-micro letters. 2017;9:1-13. DOI: https://doi.org/10.1007/s40820-016-0103-7

Praveena B, Lokesh N, Buradi A, Santhosh N, Praveena B, Vignesh R. A comprehensive review of emerging additive manufacturing (3D printing technology): Methods, materials, applications, challenges, trends and future potential. Materials Today: Proceedings. 2022;52:1309-13. DOI: https://doi.org/10.1016/j.matpr.2021.11.059

Nyirjesy SC, Heller M, von Windheim N, Gingras A, Kang SY, Ozer E, et al. The role of computer aided design/computer assisted manufacturing (CAD/CAM) and 3-dimensional printing in head and neck oncologic surgery: A review and future directions. Oral Oncology. 2022;132:105976. DOI: https://doi.org/10.1016/j.oraloncology.2022.105976

Javaid M, Haleem A, Singh RP, Suman R. 3D printing applications for healthcare research and development. Global Health Journal. 2022;6(4):217-26. DOI: https://doi.org/10.1016/j.glohj.2022.11.001

Park J-H, Choi S-O, Kamath R, Yoon Y-K, Allen MG, Prausnitz MR. Polymer particle-based micromolding to fabricate novel microstructures. Biomedical microdevices. 2007;9:223-34. DOI: https://doi.org/10.1007/s10544-006-9024-4

Ozyilmaz ED, Turan A, Comoglu T. An overview on the advantages and limitations of 3D printing of microneedles. Pharmaceutical Development and Technology. 2021;26(9):923-33. DOI: https://doi.org/10.1080/10837450.2021.1965163

Nguyen HX, Banga AK. Delivery of methotrexate and characterization of skin treated by fabricated PLGA microneedles and fractional ablative laser. Pharmaceutical research. 2018;35:1-20. DOI: https://doi.org/10.1007/s11095-018-2369-6

Escobar‐Chávez JJ, Bonilla‐Martínez D, Angélica M, Molina‐Trinidad E, Casas‐Alancaster N, Revilla‐Vázquez AL. Microneedles: a valuable physical enhancer to increase transdermal drug delivery. The Journal of Clinical Pharmacology. 2011;51(7):964-77. DOI: https://doi.org/10.1177/0091270010378859

Ganeson K, Alias AH, Murugaiyah V, Amirul A-AA, Ramakrishna S, Vigneswari S. Microneedles for efficient and precise drug delivery in cancer therapy. Pharmaceutics. 2023;15(3):744. DOI: https://doi.org/10.3390/pharmaceutics15030744

Gupta J, Gupta R, Vanshita. Microneedle technology: an insight into recent advancements and future trends in drug and vaccine delivery. Assay and drug development technologies. 2021;19(2):97-114. DOI: https://doi.org/10.1089/adt.2020.1022

Raikar AS, Kalaskar D, Bhilegaonkar S, Somnache SN, Bodaghi M. Revolutionizing drug delivery by bioinspired 4D transdermal microneedles: Advances and future horizons. European Polymer Journal. 2024:112952. DOI: https://doi.org/10.1016/j.eurpolymj.2024.112952

Rezania N. Design of minimally invasive diagnostic and dermal fluids sampling microneedle. 2024.

Saifullah KM, Faraji Rad Z. Sampling dermal interstitial fluid using microneedles: a review of recent developments in sampling methods and microneedle‐based biosensors. Advanced Materials Interfaces. 2023;10(10):2201763. DOI: https://doi.org/10.1002/admi.202201763

Qu F, Geng R, Liu Y, Zhu J. Advanced nanocarrier-and microneedle-based transdermal drug delivery strategies for skin diseases treatment. Theranostics. 2022;12(7):3372. DOI: https://doi.org/10.7150/thno.69999

Lyu S, Dong Z, Xu X, Bei H-P, Yuen H-Y, Cheung C-WJ, et al. Going below and beyond the surface: Microneedle structure, materials, drugs, fabrication, and applications for wound healing and tissue regeneration. Bioactive Materials. 2023;27:303-26. DOI: https://doi.org/10.1016/j.bioactmat.2023.04.003

Ribet F, Stemme G, Roxhed N. Real-time intradermal continuous glucose monitoring using a minimally invasive microneedle-based system. Biomedical microdevices. 2018;20:1-10. DOI: https://doi.org/10.1007/s10544-018-0349-6

Thakur Singh RR, Tekko I, McAvoy K, McMillan H, Jones D, Donnelly RF. Minimally invasive microneedles for ocular drug delivery. Expert opinion on drug delivery. 2017;14(4):525-37. DOI: https://doi.org/10.1080/17425247.2016.1218460

Paredes AJ, Volpe-Zanutto F, Vora LK, Tekko IA, Permana AD, Picco CJ, et al. Systemic delivery of tenofovir alafenamide using dissolving and implantable microneedle patches. Materials Today Bio. 2022;13:100217. DOI: https://doi.org/10.1016/j.mtbio.2022.100217

Romito B, Jewell J, Jackson M, Ernst K, Hill V, Hsu B, et al. Child life services. Pediatrics. 2021;147(1). DOI: https://doi.org/10.1542/peds.2020-040261

Rahbar M. Design, Fabrication and Testing of Magnetic Composite Polymer Actuators Integrated With Microfluidic Devices and Systems. 2016.

Korrapati PS, Karthikeyan K, Satish A, Krishnaswamy VR, Venugopal JR, Ramakrishna S. Recent advancements in nanotechnological strategies in selection, design and delivery of biomolecules for skin regeneration. Materials Science and Engineering: C. 2016;67:747-65. DOI: https://doi.org/10.1016/j.msec.2016.05.074

Narayan SM, Wan EY, Andrade JG, Silva JNA, Bhatia NK, Deneke T, et al. Visions for digital integrated cardiovascular care: HRS Digital Health Committee perspectives. Cardiovascular Digital Health Journal. 2024;5(2):37-49. DOI: https://doi.org/10.1016/j.cvdhj.2024.02.003

Larrañeta E, Lutton RE, Woolfson AD, Donnelly RF. Microneedle arrays as transdermal and intradermal drug delivery systems: Materials science, manufacture and commercial development. Materials Science and Engineering: R: Reports. 2016;104:1-32. DOI: https://doi.org/10.1016/j.mser.2016.03.001

Yang D, Chen M, Sun Y, Jin Y, Lu C, Pan X, et al. Microneedle-mediated transdermal drug delivery for treating diverse skin diseases. Acta Biomaterialia. 2021;121:119-33. DOI: https://doi.org/10.1016/j.actbio.2020.12.004

Pahal S, Badnikar K, Ghate V, Bhutani U, Nayak MM, Subramanyam DN, et al. Microneedles for extended transdermal therapeutics: a route to advanced healthcare. European Journal of Pharmaceutics and Biopharmaceutics. 2021;159:151-69. DOI: https://doi.org/10.1016/j.ejpb.2020.12.020

Amarnani R, Shende P. Microneedles in diagnostic, treatment and theranostics: An advancement in minimally-invasive delivery system. Biomedical Microdevices. 2022;24(1):4. DOI: https://doi.org/10.1007/s10544-021-00604-w

Bullock CJ, Bussy C. Biocompatibility considerations in the design of graphene biomedical materials. Advanced Materials Interfaces. 2019;6(11):1900229. DOI: https://doi.org/10.1002/admi.201900229

Vranić E, Tucak A, Sirbubalo M, Rahić O, Elezović A, Hadžiabdić J, editors. Microneedle-based sensor systems for real-time continuous transdermal monitoring of analytes in body fluids. CMBEBIH 2019: Proceedings of the International Conference on Medical and Biological Engineering, 16 ̶̶ 18 May 2019, Banja Luka, Bosnia and Herzegovina; 2020: Springer. DOI: https://doi.org/10.1007/978-3-030-17971-7_26

Wang R, Jiang G, Aharodnikau UE, Yunusov K, Sun Y, Liu T, et al. Recent advances in polymer microneedles for drug transdermal delivery: Design strategies and applications. Macromolecular Rapid Communications. 2022;43(8):2200037. DOI: https://doi.org/10.1002/marc.202270022

Aldawood FK, Andar A, Desai S. A comprehensive review of microneedles: Types, materials, processes, characterizations and applications. Polymers. 2021;13(16):2815. DOI: https://doi.org/10.3390/polym13162815

Chen Y, Alba M, Tieu T, Tong Z, Minhas RS, Rudd D, et al. Engineering micro–nanomaterials for biomedical translation. Advanced NanoBiomed Research. 2021;1(9):2100002. DOI: https://doi.org/10.1002/anbr.202100002

Arote KS, Salade DA, Patil NV. A Brief Review on Regulatory Affairs: Ensuring Compliance, Safety, and Market Access. International Journal of Pharmaceutical Sciences. 2023;1(09):1-.

Avcil M, Çelik A. Microneedles in drug delivery: progress and challenges. Micromachines. 2021;12(11):1321. DOI: https://doi.org/10.3390/mi12111321

Ertas YN, Ertas D, Erdem A, Segujja F, Dulchavsky S, Ashammakhi N. Diagnostic, Therapeutic, and Theranostic Multifunctional Microneedles. Small. 2024:2308479. DOI: https://doi.org/10.1002/smll.202308479

Carou‐Senra P, Rodríguez‐Pombo L, Awad A, Basit AW, Alvarez‐Lorenzo C, Goyanes A. Inkjet printing of pharmaceuticals. Advanced Materials. 2024;36(11):2309164. DOI: https://doi.org/10.1002/adma.202309164

Liu R, Li A, Lang Y, Cai H, Tang X, Li D, et al. Stimuli-responsive polymer microneedles: A rising transdermal drug delivery system and its applications in biomedical. Journal of Drug Delivery Science and Technology. 2023:104922. DOI: https://doi.org/10.1016/j.jddst.2023.104922

Alzoubi L, Aljabali AA, Tambuwala MM. Empowering precision medicine: the impact of 3d printing on personalized therapeutic. AAPS PharmSciTech. 2023;24(8):228. DOI: https://doi.org/10.1208/s12249-023-02682-w

Awad A, Trenfield SJ, Pollard TD, Ong JJ, Elbadawi M, McCoubrey LE, et al. Connected healthcare: Improving patient care using digital health technologies. Advanced Drug Delivery Reviews. 2021;178:113958. DOI: https://doi.org/10.1016/j.addr.2021.113958

Downloads

Published

2025-06-25

How to Cite

Rizwan, B. M., Mahammed, N., Taj, S. F., Kumar, V. S. B., & Yamuna, B. (2025). A Review on Puncturing Potential: Microneedles’ Present Landscape And Prospective Horizons. Jordan Journal of Pharmaceutical Sciences, 18(2), 566–585. https://doi.org/10.35516/jjps.v18i2.2763

Issue

Section

Articles

Most read articles by the same author(s)