AI's Healing Touch: Transforming Healthcare from Diagnosis to Recovery

Authors

  • C.Sowjanya Department of Pharmaceutical Analysis, Raghavendra Institute of Pharmaceutical Education and Research, K.R Palli cross, Chiyyedu, Ananthapuramu-515721(AP).
  • Shakir Basha Shaik Department of Pharmaceutical Analysis, Raghavendra Institute of Pharmaceutical Education and Research, K.R Palli cross, Chiyyedu, Ananthapuramu-515721(AP).
  • M.Sainath Yadav Department of Pharmaceutical Analysis, Raghavendra Institute of Pharmaceutical Education and Research, K.R Palli cross, Chiyyedu, Ananthapuramu-515721(AP).

DOI:

https://doi.org/10.35516/jjps.v18i3.3120

Keywords:

Artificial Intelligence (AI), Predictive Analytics, Telemedicine, Algorithmic Bias, Healthcare Efficiency

Abstract

Artificial intelligence (AI) is transforming healthcare by enhancing diagnostic accuracy, personalizing treatment, and improving patient care. This review explores the key applications of AI, including predictive analytics, machine learning, and telemedicine, which contribute to better patient outcomes, increased operational efficiency, and cost reductions. Despite these benefits, challenges such as data privacy, algorithmic bias, and regulatory compliance persist. The review emphasizes the need for healthcare professionals to receive adequate training to effectively utilize AI technologies. Addressing these challenges is essential to realizing AI’s full potential in providing personalized and efficient healthcare.

References

Patil S, Shankar H. Transforming healthcare: harnessing the power of AI in the modern era. International Journal of Multidisciplinary Sciences and Arts. 2023 Jul 10;2(1):60-70. DOI: https://doi.org/10.47709/ijmdsa.v2i1.2513

Chen Z, Liang N, Zhang H, Li H, Yang Y, Zong X, Chen Y, Wang Y, Shi N. Harnessing the power of clinical decision support systems: challenges and opportunities. Open Heart. 2023 Nov 1;10(2):e002432. DOI: https://doi.org/10.1136/openhrt-2023-002432

Husnain A, Rasool S, Saeed A, Gill AY, Hussain HK. AI'S healing touch: examining machine learning's transformative effects on healthcare. Journal of World Science. 2023 Oct 30;2(10):1681-95. DOI: https://doi.org/10.58344/jws.v2i10.448

Sufyan M, Shokat Z, Ashfaq UA. Artificial intelligence in cancer diagnosis and therapy: Current status and future perspective. Computers in Biology and Medicine. 2023 Aug 14:107356. DOI: https://doi.org/10.1016/j.compbiomed.2023.107356

Allami RH, Yousif MG. Integrative AI-driven strategies for advancing precision medicine in infectious diseases and beyond: a novel multidisciplinary approach. arXiv preprint arXiv:2307.15228. 2023 Jul 27.

Sahu M, Gupta R, Ambasta RK, Kumar P. Artificial intelligence and machine learning in precision medicine: A paradigm shift in big data analysis. Progress in molecular biology and translational science. 2022 Jan 1;190(1):57-100. DOI: https://doi.org/10.1016/bs.pmbts.2022.03.002

Mak KK, Wong YH, Pichika MR. Artificial intelligence in drug discovery and development. Drug Discovery and Evaluation: Safety and Pharmacokinetic Assays. 2023 Sep 28:1-38.

Kuziemsky C, Maeder AJ, John O, Gogia SB, Basu A, Meher S, Ito M. Role of artificial intelligence within the telehealth domain. Yearbook of medical informatics. 2019 Aug;28(01):035-40.

HENEL WIND JK. AI-Powered Virtual Health Assistants: Transforming Patient Engagement Through Virtual Nursing.

Prabhod KJ. The Role of Artificial Intelligence in Reducing Healthcare Costs and Improving Operational Efficiency. Quarterly Journal of Emerging Technologies and Innovations. 2024 Apr 16;9(2):47-59.

Sarker M. Assessing the Integration of AI Technologies in Enhancing Patient Care Delivery in US Hospitals. Journal of Knowledge Learning and Science Technology. 2023;2(2):338-51. DOI: https://doi.org/10.60087/jklst.vol2.n2.p351

Zahra MA, Al-Taher A, Alquhaidan M, Hussain T, Ismail I, Raya I, Kandeel M. The synergy of artificial intelligence and personalized medicine for the enhanced diagnosis, treatment, and prevention of disease. Drug Metabolism and Personalized Therapy. 2024 Jul 15. DOI: https://doi.org/10.1515/dmpt-2024-0003

Qayyum MU, Sherani AM, Khan M, Hussain HK. Revolutionizing Healthcare: The Transformative Impact of Artificial Intelligence in Medicine. BIN: Bulletin Of Informatics. 2023;1(2):71-83.

Williamson SM, Prybutok V. Balancing privacy and progress: a review of privacy challenges, systemic oversight, and patient perceptions in AI-driven healthcare. Applied Sciences. 2024 Jan 12;14(2):675. DOI: https://doi.org/10.3390/app14020675

Ueda D, Kakinuma T, Fujita S, Kamagata K, Fushimi Y, Ito R, Matsui Y, Nozaki T, Nakaura T, Fujima N, Tatsugami F. Fairness of artificial intelligence in healthcare: review and recommendations. Japanese Journal of Radiology. 2024 Jan;42(1):3-15. DOI: https://doi.org/10.1007/s11604-023-01474-3

Esmaeilzadeh P. Challenges and strategies for wide-scale artificial intelligence (AI) deployment in healthcare practices: A perspective for healthcare organizations. Artificial Intelligence in Medicine. 2024 May 1;151:102861.

Nadella GS, Satish S, Meduri K, Meduri SS. A Systematic Literature Review of Advancements, Challenges and Future Directions of AI And ML in Healthcare. International Journal of Machine Learning for Sustainable Development. 2023 Sep 8;5(3):115-30.

Hlávka JP. Security, privacy, and information-sharing aspects of healthcare artificial intelligence. In Artificial intelligence in healthcare. 2020 Jan 1 (pp. 235-270). Academic Press. DOI: https://doi.org/10.1016/B978-0-12-818438-7.00010-1

Esmaeilzadeh P. Challenges and strategies for wide-scale artificial intelligence (AI) deployment in healthcare practices: A perspective for healthcare organizations. Artificial Intelligence in Medicine. 2024 May 1;151:102861. DOI: https://doi.org/10.1016/j.artmed.2024.102861

Ferrara E. Fairness and bias in artificial intelligence: A brief survey of sources, impacts, and mitigation strategies. Sci. 2023 Dec 26;6(1):3. DOI: https://doi.org/10.3390/sci6010003

Gomis-Pastor M, Berdún J, Borrás-Santos A, De Dios López A, Fernández-Montells Rama B, García-Esquirol Ó, Gratacòs M, Ontiveros Rodríguez GD, Pelegrín Cruz R, Real J, Bachs i Ferrer J. Clinical Validation of Digital Healthcare Solutions: State of the Art, Challenges and Opportunities. In Healthcare. 2024 May 22 (Vol. 12, No. 11, p. 1057). MDPI. DOI: https://doi.org/10.3390/healthcare12111057

Gouripur K. The Impact of Artificial Intelligence on Healthcare: A Revolution in Progress. The North and West London Journal of General Practice. 2024 Feb 14;10(1).

Pillai AS. Utilizing Deep Learning in Medical Image Analysis for Enhanced Diagnostic Accuracy and Patient Care: Challenges, Opportunities, and Ethical Implications. Journal of Deep Learning in Genomic Data Analysis. 2021 May 11;1(1):1-7.

Oyeniyi J, Oluwaseyi P. Emerging Trends in AI-Powered Medical Imaging: Enhancing Diagnostic Accuracy and Treatment Decisions.

McKinney S.M., Sieniek M., Godbole V., et al. International evaluation of an AI system for breast cancer screening. Nature. 2020; 577(7788):89-94. DOI: https://doi.org/10.1038/s41586-019-1799-6

Goswami N.G., Sampathila N., Bairy G.M., Chadaga K., Goswami A. and Belurkar S. Digital pathology in healthcare: current trends and future perspective. Int. J. Online Biomed. Eng. 2024; 20(9). DOI: https://doi.org/10.3991/ijoe.v20i09.47277

De Fauw J., Schmidt M.H., Franke R., et al. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat. Med. 2018; 24(9):1342-1350. DOI: https://doi.org/10.1038/s41591-018-0107-6

Ahmed Z., Mohamed K., Zeeshan S. and Dong X. Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine. Database. 2020; 2020:baaa010.

Khalifa M. and Albadawy M. Artificial intelligence for clinical prediction: exploring key domains and essential functions. Comput. Methods Programs Biomed. Update. 2024; 100148. DOI: https://doi.org/10.1016/j.cmpbup.2024.100148

Krittanawong C., Zhang H., Wang Z., Aydar M. and Kitai T. Artificial intelligence in precision cardiovascular medicine. J. Am. Coll. Cardiol. 2017; 69(21):2657-2664. DOI: https://doi.org/10.1016/j.jacc.2017.03.571

Rajliwall N.S., Davey R. and Chetty G. Machine learning based models for cardiovascular risk prediction. Proc. Int. Conf. Mach. Learn. Data Eng. 2018; 142-148. DOI: https://doi.org/10.1109/iCMLDE.2018.00034

Edunjobi T.E. and Odejide O.A. Theoretical frameworks in AI for credit risk assessment: towards banking efficiency and accuracy. Int. J. Sci. Res. Updates. 2024; 7(01):92-102. DOI: https://doi.org/10.53430/ijsru.2024.7.1.0030

Jamil K., Fatima M.A. and Al Saiqali M. Exciting advancements in artificial intelligence and machine learning for type 2 diabetes.

Hunter B., Hindocha S. and Lee R.W. The role of artificial intelligence in early cancer diagnosis. Cancers 2022; 14(6):1524. DOI: https://doi.org/10.3390/cancers14061524

Kenner B., Chari S.T., Kelsen D., Klimstra D.S., Pandol S.J., Rosenthal M., Rustgi A.K., Taylor J.A., Yala A., Abul-Husn N. and Andersen D.K. Artificial intelligence and early detection of pancreatic cancer: 2020 summative review. Pancreas. 2021; 50(3):251-279. DOI: https://doi.org/10.1097/MPA.0000000000001762

Kann B.H., Hosny A. and Aerts H.J. Artificial intelligence for clinical oncology. Cancer Cell. 2021; 39(7):916-927. DOI: https://doi.org/10.1016/j.ccell.2021.04.002

Sofi P.A., Zargar S.M., Hamadani A., Shafi S., Zaffar A., Riyaz I., Bijarniya D. and Prasad P.V. Decoding life: genetics, bioinformatics, and artificial intelligence. In: A Biologist's Guide to Artificial Intelligence. 2024; 47-66. Academic Press. DOI: https://doi.org/10.1016/B978-0-443-24001-0.00004-X

Aradhya S., Facio F.M., Metz H., Manders T., Colavin A., Kobayashi Y., Nykamp K., Johnson B. and Nussbaum R.L. Applications of artificial intelligence in clinical laboratory genomics. Am. J. Med. Genet. Part C: Semin. Med. Genet. 2023; 193(3):e32057. DOI: https://doi.org/10.1002/ajmg.c.32057

Patrinos G.P., Sarhangi N., Sarrami B., Khodayari N., Larijani B. and Hasanzad M. Using ChatGPT to predict the future of personalized medicine. Pharmacogenomics J. 2023; 23(6):178-184. DOI: https://doi.org/10.1038/s41397-023-00316-9

Sebastian A.M. and Peter D. Artificial intelligence in cancer research: trends, challenges and future directions. Life 2022; 12(12):1991.

Kováč P., Jackuliak P., Bražinová A., Varga I., Aláč M., Smatana M., Lovich D. and Thurzo A. Artificial intelligence-driven facial image analysis for the early detection of rare diseases: legal, ethical, forensic, and cybersecurity considerations. AI. 2024; 5(3):990-1010. DOI: https://doi.org/10.3390/ai5030049

Singh A.P., Saxena R., Saxena S. and Maurya N.K. Artificial intelligence revolution in healthcare: transforming diagnosis, treatment, and patient care. Asian J. Adv. Res. 2024; 7(1):241-263.

Gouripur K. The impact of artificial intelligence on healthcare: a revolution in progress. North West London J. Gen. Pract. 2024; 10(1).

Mulukuntla S. and Venkata S.P. AI-driven personalized medicine: assessing the impact of federal policies on advancing patient-centric care. EPH-Int. J. Med. Health Sci. 2020; 6(2):20-26.

Dykstra S. Integrating multi-domain electronic health data, machine learning, and automated cardiac phenomics for personalized cardiovascular care.

Noorbakhsh-Sabet N., Zand R., Zhang Y. and Abedi V. Artificial intelligence transforms the future of health care. Am. J. Med. 2019; 132(7):795-801. DOI: https://doi.org/10.1016/j.amjmed.2019.01.017

Johnson K.B., Wei W.Q., Weeraratne D., Frisse M.E., Misulis K., Rhee K., Zhao J. and Snowdon J.L. Precision medicine, AI, and the future of personalized health care. Clin. Transl. Sci. 2021; 14(1):86-93.

Dogheim G.M. and Hussain A. Patient care through AI-driven remote monitoring: analyzing the role of predictive models and intelligent alerts in preventive medicine. J. Contemp. Healthc. Anal. 2023; 7(1):94-110.

Martínez-Sellés M. and Marina-Breysse M. Current and future use of artificial intelligence in electrocardiography. J. Cardiovasc. Dev. Dis. 2023; 10(4):175. DOI: https://doi.org/10.3390/jcdd10040175

Sebastian A.M. and Peter D. Artificial intelligence in cancer research: trends, challenges and future directions. Life. 2022; 12(12):1991. DOI: https://doi.org/10.3390/life12121991

Patel V. and Shah M. Artificial intelligence and machine learning in drug discovery and development. Intell. Med. 2022; 2(3):134-140. DOI: https://doi.org/10.1016/j.imed.2021.10.001

Han R., Yoon H., Kim G., Lee H. and Lee Y. Revolutionizing medicinal chemistry: the application of artificial intelligence (AI) in early drug discovery. Pharmaceuticals. 2023; 16(9):1259. DOI: https://doi.org/10.3390/ph16091259

Mak K.K., Wong Y.H. and Pichika M.R. Artificial intelligence in drug discovery and development. Drug Discov. Eval. Safety Pharmacokinetic Assays 2023; 1-38. DOI: https://doi.org/10.1007/978-3-030-73317-9_92-1

Mackie J. and Graepel T. AI-driven healthcare transformation: enhancing clinical outcomes through personalized care and remote patient monitoring.

Shaid T. and Graepel T. Harnessing the power of AI in healthcare: remote patient monitoring, telemedicine, and predictive analytics for improved clinical outcomes.

Magni D. Revolutionizing healthcare: unveiling the transformative power of chatbots through a systematic literature review. Des. Dev. Emerg. Chatbot Technol. 2024; 199-217. DOI: https://doi.org/10.4018/979-8-3693-1830-0.ch012

Van der Eijk M., Faber M.J., Aarts J.W., Kremer J.A., Munneke M. and Bloem B.R. Using online health communities to deliver patient-centered care to people with chronic conditions. J. Med. Internet Res. 2013; 15(6):e115. DOI: https://doi.org/10.2196/jmir.2476

Zeadally S. and Bello O. Harnessing the power of internet of things-based connectivity to improve healthcare. Internet Things. 2021; 14:100074. DOI: https://doi.org/10.1016/j.iot.2019.100074

Ingale M.S. AI-powered healthcare chatbots: designing intelligent virtual assistants for patient education, symptom triage, and remote monitoring in telemedicine services.

Kelley L.T., Phung M., Stamenova V., Fujioka J., Agarwal P., Onabajo N., Wong I., Nguyen M., Bhatia R.S. and Bhattacharyya O. Exploring how virtual primary care visits affect patient burden of treatment. Int. J. Med. Inform. 2020; 141:104228. DOI: https://doi.org/10.1016/j.ijmedinf.2020.104228

Marquis Y., Oladoyinbo T.O., Olabanji S.O., Olaniyi O.O. and Ajayi S.A. Proliferation of AI tools: a multifaceted evaluation of user perceptions and emerging trend. Asian J. Adv. Res. Rep. 2024; 18(1):30-55. DOI: https://doi.org/10.9734/ajarr/2024/v18i1596

Junaid S.B., Imam A.A., Shuaibu A.N., Basri S., Kumar G., Surakat Y.A., Balogun A.O., Abdulkarim M., Garba A., Sahalu Y. and Mohammed A. Artificial intelligence, sensors and vital health signs: a review. Appl. Sci. 2022; 12(22):11475. DOI: https://doi.org/10.3390/app122211475

Farid F., Bello A., Ahamed F. and Hossain F. The roles of AI technologies in reducing hospital readmission for chronic diseases: a comprehensive analysis.

Kuziemsky C., Maeder A.J., John O., Gogia S.B., Basu A., Meher S. and Ito M. Role of artificial intelligence within the telehealth domain. Yearb. Med. Inform. 2019; 28(1):35-40. DOI: https://doi.org/10.1055/s-0039-1677897

Tolu-Akinnawo O., Ezekwueme F. and Awoyemi T. Telemedicine in cardiology: enhancing access to care and improving patient outcomes. Cureus. 2024; 16(6). DOI: https://doi.org/10.7759/cureus.62852

Singh P. and Tiwari S. Machine learning models for cost-effective healthcare delivery systems. In: Digital Transformation in Healthcare 5.0: Volume 1: IoT, AI and Digital Twin. 2024; 245. DOI: https://doi.org/10.1515/9783111327853-009

Nwaimo C.S., Adegbola A.E. and Adegbola M.D. Transforming healthcare with data analytics: predictive models for patient outcomes. GSC Biol. Pharm. Sci. 2024; 27(3):25-35. DOI: https://doi.org/10.30574/gscbps.2024.27.3.0190

Mohsin S.N., Gapizov A., Ekhator C., Ain N.U., Ahmad S., Khan M., Barker C., Hussain M., Malineni J., Ramadhan A. and Nagaraj R.H. The role of artificial intelligence in prediction, risk stratification, and personalized treatment planning for congenital heart diseases. Cureus. 2023; 15(8). DOI: https://doi.org/10.7759/cureus.44374

Johnson K.B., Wei W.Q., Weeraratne D., Frisse M.E., Misulis K., Rhee K., Zhao J. and Snowdon J.L. Precision medicine, AI, and the future of personalized health care. Clin. Transl. Sci. 2021; 14(1):86-93. DOI: https://doi.org/10.1111/cts.12884

Badidi E. Edge AI for early detection of chronic diseases and the spread of infectious diseases: opportunities, challenges, and future directions. Future Internet. 2023; 15(11):370. DOI: https://doi.org/10.3390/fi15110370

Ahmed Z., Mohamed K., Zeeshan S. and Dong X. Artificial intelligence with multi-functional machine learning platform development for better healthcare and precision medicine. Database. 2020; 2020:baaa010. DOI: https://doi.org/10.1093/database/baaa010

Thethi S.K. Machine learning models for cost-effective healthcare delivery systems: a global perspective. In: Digital Transformation in Healthcare 5.0: Volume 1: IoT, AI and Digital Twin. 2024; 199. DOI: https://doi.org/10.1515/9783111327853-008

Qadri Y.A., Nauman A., Zikria Y.B., Vasilakos A.V. and Kim S.W. The future of healthcare internet of things: a survey of emerging technologies. IEEE Commun. Surv. Tutorials. 2020; 22(2):1121-1167. DOI: https://doi.org/10.1109/COMST.2020.2973314

Siddiq M. ML-based medical image analysis for anomaly detection in CT scans, X-rays, and MRIs. Devotion: J. Res. Community Serv. 2020; 2(1):53-64. DOI: https://doi.org/10.59188/devotion.v3i13.469

Hisan U.K., Chaaben A.B., Adeleye A.O. and Kaushik A. Impact of natural language processing on healthcare quality: a review of clinical and public health applications. J. Adv. Anal. Healthc. Manag. 2022; 6(1):19-42.

Jyothi N.M. AI-enabled genomic biomarkers: the future of pharmaceutical industry and personalized medicine.

Telo J. AI for enhanced healthcare security: an investigation of anomaly detection, predictive analytics, access control, threat intelligence, and incident response. J. Adv. Anal. Healthc. Manag. 2017; 1(1):21-37.

Dogheim G.M. and Hussain A. Patient care through AI-driven remote monitoring: analyzing the role of predictive models and intelligent alerts in preventive medicine. J. Contemp. Healthc. Anal. 2023; 7(1):94-110.

Johansson B., Eriksson E., Berglund N. and Lindgren I. Robotic surgery: review on minimally invasive techniques. Fusion Multidiscip. Res. Int. J. 2021; 2(2):201-210.

Thakare V., Khire G. and Kumbhar M. Artificial intelligence (AI) and internet of things (IoT) in healthcare: opportunities and challenges. ECS Trans. 2022; 107(1):7941.

Abdelhadi N.N., Dabbous A. and Jaddoua S.M. Role of clinical pharmacy services in vitamin supplementation in critically ill cancer patients: a 3-year retrospective study at a comprehensive cancer centre. Jordan J. Pharm. Sci. 2025; 18(2):332-340. DOI: https://doi.org/10.35516/jjps.v18i2.2557

Alfalahi A.N., Matalqah S.M., Issa R., Al-Daghistani H.I. and Abed A. Evaluation of cytotoxicity and antibacterial activity of green synthesized silver nanoparticles using Hedera helix extract. Jordan J. Pharm. Sci. 2025; 18(2):524-537. DOI: https://doi.org/10.35516/jjps.v18i2.2620

Abu Dayyih W., Hailat M., Albtoush S., Albtoush E., Abu Dayah A., Alabbadi I. and Hamad M.F. Nanomedicine advancements in cancer therapy: a scientific review. Jordan J. Pharm. Sci. 2024; 17(3):506-529. DOI: https://doi.org/10.35516/jjps.v17i3.2384

Alwidyan T., Abudalo R., Odeh M., Tayyem M. and Banat A. Community pharmacists’ attitudes toward the implementation of good pharmacy practice guidelines in Jordan: a cross-sectional survey. Jordan J. Pharm. Sci. 2025; 18(2):389-409. DOI: https://doi.org/10.35516/jjps.v18i2.2643

Yusuf I. and Ibrahim R. The predictive value of neutrophil/lymphocyte ratio for CK-MB elevation in myocardial infarction: a study in Syrian ACS patients. Jordan J. Pharm. Sci. 2025; 18(2):586-595. DOI: https://doi.org/10.35516/jjps.v18i2.2793

Jyothi N.M. AI-enabled genomic biomarkers: the future of pharmaceutical industry and personalized medicine.

Telo J. AI for enhanced healthcare security: an investigation of anomaly detection, predictive analytics, access control, threat intelligence, and incident response. J. Adv. Anal. Healthc. Manag. 2017; 1(1):21-37.

Dogheim G.M. and Hussain A. Patient care through AI-driven remote monitoring: analyzing the role of predictive models and intelligent alerts in preventive medicine. J. Contemp. Healthc. Anal. 2023; 7(1):94-110.

Johansson B., Eriksson E., Berglund N. and Lindgren I. Robotic surgery: review on minimally invasive techniques. Fusion Multidiscip. Res. Int. J. 2021; 2(2):201-210. DOI: https://doi.org/10.63995/GQNC2594

Thakare V., Khire G. and Kumbhar M. Artificial intelligence (AI) and internet of things (IoT) in healthcare: opportunities and challenges. ECS Trans. 2022; 107(1):7941 DOI: https://doi.org/10.1149/10701.7941ecst

Downloads

Published

2025-09-24

How to Cite

chelimi, sowjanya, Shaik, S. B., & Maddikari, S. Y. (2025). AI’s Healing Touch: Transforming Healthcare from Diagnosis to Recovery. Jordan Journal of Pharmaceutical Sciences, 18(3), 642–659. https://doi.org/10.35516/jjps.v18i3.3120

Issue

Section

Articles