An Outlook on the Chenopodium Quinoa Willd (Quinoa) Plant and the Role of the in Vitro Culture and Nanotechnology in Mitigation of Salinity Stress: A Review

Authors

  • Ruba M. AL-Mohusaien University of Jordan, Amman, Jordan.
  • Rida A. A . Shibli Al-Ahliyya Amman University, Amman 19328, Jordan;
  • Rund A. Abu-Zurayk The University of Jordan, Amman, Jordan P.O. Box 11942 Amman, Jordan.
  • Tamara S. Al-Qudah The University of Jordan, Amman, Jordan P.O. Box 11942 Amman, Jordan.
  • Reham Tahtamouni Al Balqa- Applied University, Salt, Jordan

DOI:

https://doi.org/10.35516/jjas.v18i1.101

Keywords:

Nanoparticles, Plant tissue culture, Physiological responses, Quinoa, Salinity stress

Abstract

Climate change and scarcity of water resources in many countries of the Middle East have led to a drastic decline in the quantities of the main crops and exacerbated the problem of soil salinity. Therefore, it is imperative to find alternative crops that would enhance food security and can tolerate abiotic stresses such as soil salinization. Quinoa is a multi-purpose crop, grown mainly because of its historical, ecological, economic, and high nutritional value. The plant is highly adapted to different environments, and it can be grown in areas with marginal soils that are poor in rainwater. The emergence of this crop's importance and its distinctive properties began in the seventies of the last century. So, there is a need to increase this crop production under salinity conditions using new technology. The plant tissue culture can play an important role to give suitable conditions to study the plant responses to salinity stress via using different factors such as nanoparticles and others. Beside that, the other factors and environmental conditions can be easily controlled in vitro which makes the study easier. In this review, the description and response of the quinoa plant to salinity stress were summarized. Furthermore, the ability to use plant tissue culture and study the effect of adding nanoparticles (NPs) to the culture media to increase salt tolerance was the hot spot of this review. This was to find out the importance of nanoparticles and the in vitro plant tissue culture to increase the quinoa tolerance against salinity stress. 

Downloads

Download data is not yet available.

Author Biographies

Ruba M. AL-Mohusaien, University of Jordan, Amman, Jordan.

 Department of Horticulture and Crop Sciences, Faculty of Agriculture, University of Jordan, Amman, Jordan.

Rida A. A . Shibli, Al-Ahliyya Amman University, Amman 19328, Jordan;

Department of Agricultural Biotechnology and Genetic Engineering, Faculty of Agriculture Technology, Al-Ahliyya Amman University, Amman 19328, Jordan;

Rund A. Abu-Zurayk, The University of Jordan, Amman, Jordan P.O. Box 11942 Amman, Jordan.

Hamdi Mango Center for Scientific Research, The University of Jordan, Amman, Jordan P.O. Box 11942 Amman, Jordan.

Tamara S. Al-Qudah, The University of Jordan, Amman, Jordan P.O. Box 11942 Amman, Jordan.

 Hamdi Mango Center for Scientific Research, The University of Jordan, Amman, Jordan P.O. Box 11942 Amman, Jordan.

Reham Tahtamouni, Al Balqa- Applied University, Salt, Jordan

Department of Biotechnology, Faculty of Agricultural Technology, Al Balqa- Applied University, Salt, Jordan

References

Adolf, V. I., Jacobsen, S. E., and Shabala, S. (2013). Salt tolerance mechanisms in quinoa (Chenopodium quinoa Willd.). Environmental and Experimental Botany, 92, 43-54.‏

Adolf, V. I., Shabala, S., Andersen, M. N., Razzaghi, F., and Jacobsen, S. E. (2012). Varietal differences of quinoa’s tolerance to saline conditions. Plant and Soil, 357(1), 117-129.‏

Aghdaei, M., Sarmast, M. K., and Salehi, H. (2012). Effects of Silver Nanoparticles on Tecomella undulata (Roxb.) Seem. Micropropagation, 21-24.‏

Ahmad, M., Ali, Q., Hafeez, M. M., and Malik, A. (2021). Improvement for biotic and abiotic stress tolerance in crop plants. Biological and Clinical Sciences Research Journal, 2021(1), e004-e004.‏

Al Gethami, F. R., and El Sayed, H. E. S. A. (2020). Assessment Various Concentrations of ZnO-Nanoparticles on Micropropagation for Chenopodium quinoa Willd. Plant. Journal of Advances in Biology and Biotechnology, 33-42.‏

Ali, S., Chattha, M. U., Hassan, M. U., Khan, I., Chattha, M. B., Iqbal, B., Rehman, M., Nawas,M., and Amin, M. Z. (2020). Growth, Biomass Production, and Yield Potential of Quinoa (Chenopodium quinoa Willd.) as Affected by Planting Techniques Under Irrigated Conditions. International Journal of Plant Production, 1-15.‏

Almeida, D. M., Oliveira, M. M., and Saibo, N. J. (2017). Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genetics and molecular biology, 40, 326-345.‏

‏Azooz, M. M., and Ahmad, P. (2016). Plant-environment interaction. Wiley Blackwell, Hoboken.‏

Bastidas, E. G., Roura, R., Rizzolo, D. A. D., Massanés, T., and Gomis, R. (2016). Quinoa (Chenopodium quinoa Willd), from nutritional value to potential health benefits: An integrative review. Journal of Nutrition & Food Sciences, 2016, vol. 6, num. 3.‏

Bilalis, D., Roussis, I., Kakabouki, I., and Folina, A. (2019). Quinoa (Chenopodium quinoa Willd.) crop under Mediterranean conditions: a review. International Journal of Agriculture and Natural Resources, 46(2), 51-68

Das, A., and Das, B. (2019). Nanotechnology a Potential Tool to Mitigate Abiotic Stress in Crop Plants. In Abiotic and Biotic Stress in Plants. IntechOpen.‏

‏Eisa, S., Koyro, H. W., Kogel, K. H., and Imani, J. (2005). Induction of somatic embryogenesis in cultured cells of Chenopodium quinoa. Plant cell, tissue and organ culture, 81(2), 243-246.‏

Elouafi, I., Shahid, M. A., Begmuratov, A., & Hirich, A. (2020). The Contribution of Alternative Crops to Food Security in Marginal Environments. In Emerging Research in Alternative Crops (pp. 1-23). Springer, Cham.‏

Elsohaimy, S. A., Refaay, T. M., and Zaytoun, M. A. M. (2015). Physicochemical and functional properties of quinoa protein isolate. Annals of Agricultural Sciences, 60(2), 297-305.‏

Filho, A. M. M., Pirozi, M. R., Borges, J. T. D. S., Pinheiro Sant'Ana, H. M., Chaves, J. B. P., and Coimbra, J. S. D. R. (2017). Quinoa: nutritional, functional, and antinutritional aspects. Critical Reviews in Food Science nnd Nutrition, 57(8), 1618-1630.‏

Gull, A., Lone, A. A., and Wani, N. U. I. (2019). Biotic and abiotic stresses in plants. Abiotic and biotic stress in plants, 1-19.‏

Gulzar, B., Mujib, A., Malik, M. Q., Mamgain, J., Syeed, R., and Zafar, N. (2020). Plant tissue culture: agriculture and industrial applications. In Transgenic technology-based value addition in plant biotechnology (pp. 25-49). Academic Press.‏

Gunes, A., Inal, A., Alpaslan, M., Eraslan, F., Bagci, E. G., and Cicek, N. (2007). Salicylic acid-induced changes on some physiological parameters symptomatic for oxidative stress and mineral nutrition in maize (Zea mays L.) grown under salinity. Journal of Plant Physiology, 164(6), 728-736.‏

Hesami, M., and Daneshvar, M. H. (2016). Development of a regeneration protocol through indirect organogenesis in Chenopodium quinoa wild. Indo-American Journal of Agricultural and Veterinary Sciences, 4(2), 25-32.‏

Hesami, M., Naderi, R., and Yoosefzadeh-Najafabadi, M. (2018). Optimizing sterilization conditions and growth regulator effects on in vitro shoot regeneration through direct organogenesis in Chenopodium quinoa. Biotechnologie. Journal of Biotechnology Computational Biology and Bionanotechnology, 99(1).‏

Hinojosa, L., Gonzalez, J. A., Barrios-Masias, F. H., Fuentes, F., and Murphy, K. M. (2018). Quinoa abiotic stress responses: A review. Plants, 7(4), 106.‏

Hussain, M. I., Al-Dakheel, A. J., and Reigosa, M. J. (2018). Genotypic differences in agro-physiological, biochemical and isotopic responses to salinity stress in quinoa (Chenopodium quinoa Willd.) plants: Prospects for salinity tolerance and yield stability. Plant Physiology and Biochemistry, 129, 411-420.‏

Hussain, S., Zhang, J. H., Zhong, C., Zhu, L. F., Cao, X. C., Yu, S. M., Bohr, J. A., Hu, J., and Jin, Q. Y. (2017). Effects of salt stress on rice growth, development characteristics, and the regulating ways: A review. Journal of Integrative Agriculture, 16(11), 2357-2374.‏

Jaberzadeh, A., Moaveni. P., Moghadam, H.R.T., and Zahedi, H.(2013). Influence of bulk and nanoparticles titanium foliar application on some agronomic traits, seed gluten and starch contents of wheat subjected to water deficit stress. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 41(1):201-207

Kalteh, M., Alipour, Z. T., Ashraf, S., Marashi Aliabadi, M., and Falah Nosratabadi, A. (2018). Effect of silica nanoparticles on basil (Ocimum basilicum) under salinity stress. Journal of Chemical Health Risks, 4(3).‏

Kim, D. H., Gopal, J., and Sivanesan, I. (2017). Nanomaterials in plant tissue culture: the disclosed and undisclosed. RSC Advances, 7(58), 36492-36505.‏

Koyro, H. W., and Eisa, S. S. (2008). Effect of salinity on composition, viability, and germination of seeds of Chenopodium quinoa Willd. Plant and Soil, 302(1), 79-90.‏

Kumpun, S. Maria, A. Crouzet, S. Evrard-Todeschi, N. Girault, J.P.and Lafont, R. (2011). Ecdysteroids from Chenopodium quinoa Willd., an ancient Andean crop of high nutritional value. Food Chemistry, 125(4), 1226–1234.

Mariani, L., and Ferrante, A. (2017). Agronomic management for enhancing plant tolerance to abiotic stresses—drought, salinity, hypoxia, and lodging. Horticulturae, 3(4), 52.‏

Miranda, M. Vega-Galvez, A. Quispe-Fuentes, I. Rodriguez, M.J. Maureira, H. and Martinez, E.A. (2012). Nutritional Aspects of six quinoa (Chenopodium quinoa Willd.) Ecotypes from three Geographical Areas of Chile, Chilean Journal of Agricultural Research, 72(2), 175-181.

Orsini, F., Accorsi, M., Gianquinto, G., Dinelli, G., Antognoni, F., Carrasco, K. B. R., Martinez, E. A., Alnayef, M., Marotti, I., Bosi,S., and Biondi, S. (2011). Beyond the ionic and osmotic response to salinity in Chenopodium quinoa: functional elements of successful halophytism. Functional Plant Biology, 38(10), 818-831.‏

Pereira, E., Encina-Zelada, C., Barros, L., Gonzales-Barron, U., Cadavez, V., and Ferreira, I. C. (2019). Chemical and nutritional characterization of Chenopodium quinoa Willd (quinoa) grains: A good alternative to nutritious food. Food Chemistry, 280, 110-114.‏

Qureshi, A. S., and Daba, A. W. (2020). Evaluating Growth and Yield Parameters of Five Quinoa (Chenopodium quinoa W.) Genotypes Under Different Salt Stress Conditions. Journal of Agricultural Science 12, 128.‏

Regalado, J. J., Tossi, V. E., Burrieza, H. P., Encina, C. L., and Pitta-Alvarez, S. I. (2020). Micropropagation protocol for coastal quinoa. Plant Cell, Tissue and Organ Culture (PCTOC), 142(1), 213-219.‏

Rico, C. M., Majumdar, S., Duarte-Gardea, M., Peralta-Videa, J. R., and Gardea-Torresdey, J. L. (2011). Interaction of nanoparticles with edible plants and their possible implications in the food chain. Journal of Agricultural and Food Chemistry, 59(8), 3485-3498.‏

Roberts, N., Eastwood, W. J., Kuzucuoğlu, C., Fiorentino, G., and Caracuta, V. (2011). Climatic, vegetation, and cultural change in the eastern Mediterranean during the mid-Holocene environmental transition. The Holocene, 21(1), 147-162.‏

Ruiz, F. F., Bazile, D., Drucker, A. G., Tapia, M., and Chura, E. (2021). Geographical distribution of quinoa crop wild relatives in the Peruvian Andes: A participatory mapping initiative. Environment, Development, and Sustainability, 23(4), 6337-6358.‏

Ruiz, K. B., Biondi, S., Martínez, E. A., Orsini, F., Antognoni, F., and Jacobsen, S. E. (2016). Quinoa–a model crop for understanding salt-tolerance mechanisms in halophytes. Plant Biosystems-An International Journal Dealing with all Aspects of Plant Biology, 150(2), 357-371.‏

Sabagh, A. E., Hossain, A., Barutçular, C., Iqbal, M. A., Islam, M. S., Fahad, S.,Sytar, O., Cig, F.,Meena,R.S and Erman, M. (2020). Consequences of salinity stress on the quality of crops and its mitigation strategies for sustainable crop production: an outlook of arid and semi-arid regions. In Environment, Climate, Plant and Vegetation Growth (pp. 503-533). Springer, Cham.‏

Sadidi, H., Hooshmand, S., Ahmadabadi, A., Javad Hosseini, S., Baino, F., Vatanpour, M., and Kargozar, S. (2020). Cerium Oxide Nanoparticles (Nanoceria): Hopes in Soft Tissue Engineering. Molecules, 25(19), 4559.‏

Safdar, H., Amin, A., Shafiq, Y., Ali, A., Yasin, R., Shoukat, A., Hussan, U. H., and Sarwar, M. I. (2019). A review: Impact of salinity on plant growth. Nature and Science, 17(1), 34-40.‏

Sarmast, M. K., and Salehi, H. (2016). Silver nanoparticles: an influential element in plant nanobiotechnology. Molecular Biotechnology, 58(7), 441-449.‏

Scheben, A., Yuan, Y., and Edwards, D. (2016). Advances in genomics for adapting crops to climate change. Current Plant Biology, 6, 2-10.‏

Schmockel, S. M., Lightfoot, D. J., Razali, R., Tester, M., and Jarvis, D. E. (2017). Identification of putative transmembrane proteins involved in salinity tolerance in Chenopodium quinoa by integrating physiological data, RNAseq, and SNP analyses. Frontiers in Plant Science, 8, 1023.‏

Shabala, L., Mackay, A., Tian, Y., Jacobsen, S. E., Zhou, D., and Shabala, S. (2012). Oxidative stress protection and stomatal patterning as components of salinity tolerance mechanism in quinoa (Chenopodium quinoa). Physiologia Plantarum, 146(1), 26-38.‏

Shabala, S., and Mackay, A. (2011). Ion transport in halophytes. Advances in Botanical Research, 57, 151-199.‏

Shabala, S., and Pottosin, I. (2014). Regulation of potassium transport in plants under hostile conditions: implications for abiotic and biotic stress tolerance. Physiologia Plantarum, 151(3), 257-279.‏

Shafi, A., Zahoor, I., and Mushtaq, U. (2019). Proline accumulation and oxidative stress: Diverse roles and mechanism of tolerance and adaptation under salinity stress. In Salt Stress, Microbes, and Plant Interactions: Mechanisms and Molecular Approaches (pp. 269-300). Springer, Singapore.‏

Sharma, A., Shahzad, B., Kumar, V., Kohli, S. K., Sidhu, G. P. S., Bali, A. S., Handa, N., Kapoor, D., Bhardwaj, R., and Zheng, B. (2019). Phytohormones regulate the accumulation of osmolytes under abiotic stress. Biomolecules, 9(7), 285.‏

Singh, A., Singh, N. B., Hussain, I., Singh, H., and Singh, S. C. (2015). Plant-nanoparticle interaction: an approach to improve agricultural practices and plant productivity. International Journal of Pharmaceutical Science Invention, 4(8), 25-40.‏

Stoleru, V., Slabu, C., Vitanescu, M., Peres, C., Cojocaru, A., Covasa, M., and Mihalache, G. (2019). Tolerance of three Quinoa cultivars (Chenopodium quinoa Willd.) to salinity and alkalinity stress during the germination stage. Agronomy, 9(6), 287.‏

Sturikova, H., Krystofova, O., Huska, D., and Adam, V. (2018). Zinc, zinc nanoparticles, and plants. Journal of Hazardous Materials, 349, 101-110.‏

Sun, Y., Lindberg, S., Shabala, L., Morgan, S., Shabala, S., and Jacobsen, S. E. (2017). A comparative analysis of cytosolic Na+ changes under salinity between halophyte quinoa (Chenopodium quinoa) and glycophyte pea (Pisum sativum). Environmental and Experimental Botany, 141, 154-160.‏

Talebnejad, R., and Sepaskhah, A. R. (2016). Physiological characteristics, gas exchange, and plant ion relations of quinoa to different saline groundwater depths and water salinity. Archives of Agronomy and Soil Science, 62(10), 1347-1367.‏

Thorpe, T. A. (2007). History of plant tissue culture. Molecular biotechnology, 37(2), 169-180.‏

Tnay, G. (2019). Too much salt: the growing threat that salinity poses to global food production. Future Directions International Pty Ltd., Dalkeith.‏

Torabi, M. (2014, January). Physiological and biochemical responses of plants to salt stress. In The 1st International Conference on New Ideas in Agriculture (pp. 26-27).‏

Vega‐Galvez, A., Miranda, M., Vergara, J., Uribe, E., Puente, L., and Martínez, E. A. (2010). Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: a review. Journal of the Science of Food and Agriculture, 90(15), 2541-2547.‏

Vilcacundo, R., and Hernández-Ledesma, B. (2017). Nutritional and biological value of quinoa (Chenopodium quinoa Willd.). Current Opinion in Food Science, 14, 1-6.‏

Zahra, N., Raza, Z. A., & Mahmood, S. (2020). Effect of salinity stress on various growth and physiological attributes of two contrasting maize genotypes. Brazilian Archives of Biology and Technology, 63.‏

Zeeshan, M., Lu, M., Sehar, S., Holford, P., and Wu, F. (2020). Comparison of biochemical, anatomical, morphological, and physiological responses to salinity stress in wheat and barley genotypes deferring in salinity tolerance. Agronomy, 10(1), 127.

Downloads

Published

01-03-2022

How to Cite

AL-Mohusaien, R. M., Shibli, R. A. A. . ., Abu-Zurayk, R. A. . ., Al-Qudah, T. S., & Tahtamouni, R. . (2022). An Outlook on the Chenopodium Quinoa Willd (Quinoa) Plant and the Role of the in Vitro Culture and Nanotechnology in Mitigation of Salinity Stress: A Review. Jordan Journal of Agricultural Sciences, 18(1), 17–27. https://doi.org/10.35516/jjas.v18i1.101

Issue

Section

Review