Effect of Yeast Cell Wall on Gut Health, Immunity and Milk Production of Dairy Cattle in Normal and Heat Stress Conditions. Review

Authors

DOI:

https://doi.org/10.35516/jjas.v19i3.149

Keywords:

Yeast, Yeast cell wall, Dairy cow, Performance

Abstract

This review focuses on the most recent literature to bring to light the major beneficial effects of the yeast cell wall (YCW) and its products on dairy cattle. These products include viable yeast, yeast culture, nutritional yeast, and fractionated yeast products. The yeast cell wall is one of these products and belongs to the fractionated yeast products used to promote production performance and health in dairy cows.  The yeast and YCW were proven to have positive impacts on dairy cattle performance in terms of milk yield, milk components, and overall quality. As well, these products showed beneficial effects under heat stress conditions.  The YCW is a natural fermentation derivative of yeast cells such as Saccharomyces cerevisiae species consists mainly of β-glucan (29% to 64%), mannan (31%), and some other compounds like protein (13%), lipids (9%), chitin (1–2%) with β-glucan and mannan being the main bioactive molecules. The mode of action through which YCW elicit their beneficial functions in dairy cow explain their effect on cows' metabolism and digestion, immunity, rumen and intestine health, and subsequent performance and well-being. These modes of action include improving gastrointestinal (GI) tract health, stimulating immune system components as it is considered an immunomodulator additive, mycotoxin binding ability, and improving antioxidant capacity. Therefore, yeast and YCW products are one of the promising areas of ruminant nutrition in dairy cows, not only because of their nutritional and health benefits to dairy cows but also due to their negligible residual effects on dairy cows’ bodies and products.

Downloads

Download data is not yet available.

Author Biographies

Ola K. Mahasneh , The University of Jordan, Amman 11942, Jordan

Department of Animal Production, School of Agriculture, the University of Jordan, Amman 11942, Jordan.

Abdur-Rahman A. Al-Fataftah , The University of Jordan, Amman 11942, Jordan

Department of Animal Production, School of Agriculture, the University of Jordan, Amman 11942, Jordan

References

AAFCO. )2017). Official Publication of the Association of American Feed Control Officials.‏

Abbott, D. W., Martens, E. C., Gilbert, H.J., Cuskin, F., & Lowe, E. C., (2015). Coevolution of yeast mannan digestion: Convergence of the civilized human diet, distal gut microbiome, and host immunity. Gut microbes 6(5), 334-339.‏

Al-Qaisi, M., Horst, E. A., Mayorga, E. J., Goetz, B. M., Abeyta, M. A., Yoon, I., ... & Baumgard, L. H., (2020). Effects of a Saccharomyces cerevisiae fermentation product on heat-stressed dairy cows. Journal of Dairy Science 103(10), 9634-9645.‏

AlZahal, O., Dionissopoulos, L., Laarman, A. H., Walker, N., & McBride, B. W., (2014). Active dry Saccharomyces cerevisiae can alleviate the effect of subacute ruminal acidosis in lactating dairy cows. Journal of Dairy Science 97(12), 7751-7763.‏

Aung, M., Ohtsuka, H., & Izumi, K., (2019). Effect of yeast cell wall supplementation on production performances and biochemical blood indices of dairy cows in different lactation periods. Veterinary World 12(6), 796.‏

Bradford, B. J., Yuan, K., Farney, J. K., Mamedova, L. K., & Carpenter, A. J., (2015). Invited review: Inflammation during the transition to lactation: new adventures with an old flame. Journal of Dairy Science 98(10), 6631-6650.‏

Bruno, R. G., Rutigliano, H. M., Cerri, R., L., Robinson, P. H., & Santos, J. E. (2009). Effect of feeding Saccharomyces cerevisiae on the performance of dairy cows during summer heat stress. Animal Feed Science and Technology 150(3-4), 175-186.‏

Burdick Sanchez, N. C., Broadway, P. R., & Carroll, J. A., (2021). Influence of yeast products on modulating metabolism and immunity in cattle and swine. Animals 11(2), 371.‏

Chaucheyras-Durand, F., & Fonty, G., (2001). Establish cellulolytic bacteria and develop fermentative activities in the rumen of gnotobiotically-reared lambs receiving the microbial additive Saccharomyces cerevisiae CNCM I-1077. Reproduction Nutrition Development 41(1), 57-68.‏

Chen, Z., Lin, S., Jiang, Y., Liu, L., Jiang, J., Chen, S., ... & Wang, P., (2019). Effects of bread yeast cell wall beta-glucans on mice with loperamide-induced constipation. Journal of medicinal food 22(10), 1009-1021.‏

Dann, H. M., Drackley, J. K., McCoy, G., C., Hutjens, M. F., & Garrett, J. E., (2000). The effects of yeast culture (Saccharomyces cerevisiae) on prepartum intake, postpartum intake, and milk production of Jersey cows. Journal of Dairy Science 83(1), 123-127.

Dehghan-Banadaky, M., Ebrahimi, M., Motameny, R., & Heidari, S. R., (2013). Effects of live yeast supplementation on mid-lactation dairy cows’ performances, milk composition, rumen digestion, and plasma metabolites during the hot season. Journal of Applied Animal Research 41(2), 137-142.‏

Desnoyers, M., Giger-Reverdin, S., Bertin, G., Duvaux-Ponter, C., & Sauvant, D., (2009). Meta-analysis of the influence of Saccharomyces cerevisiae supplementation on ruminal parameters and milk production of ruminants. Journal of Dairy Science 92(4), 1620-1632.‏

Dubey, R.C., Maheshwari, D.K., Saravanamurthu, R., (2010). Industrial Exploitation of Microorganisms. International Publishing House Pvt. Ltd., New Delhi.

Fomenky, B. E., Chiquette, J., Lessard, M., Bissonnette, N., Talbot, G., Chouinard, Y. P., & Ibeagha-Awemu, E. M., (2018). Saccharomyces cerevisiae var. boulardii CNCM I-1079 and Lactobacillus acidophilus BT1386 influence innate immune response and serum levels of acute-phase proteins during weaning in Holstein calves. Canadian Journal of Animal Science 98(3), 576-588.‏

Franklin, S. T., Newman, M. C., Newman, K. E., & Meek, K. I., (2005). Immune parameters of dry cows fed mannan oligosaccharide and subsequent transfer of immunity to calves. Journal of Dairy Science 88(2), 766-775.‏

Fröhdeová, M., Mlejnková, V., Lukešová, K., & Doležal, P., (2014). Effect of prepartum supplementation of yeast culture (saccharomyces cerevisiae) on biochemical parameters of dairy cows and their newborn calves. Acta Universitatis Agriculturae Et Silviculturae Mendelianae Brunensis 62(5), 897-904.‏

Ganan, M., Carrascosa, A. V., de Pascual‐Teresa, S., & Martinez‐Rodriguez, A. J., (2012). Effect of mannoproteins on the growth, gastrointestinal viability, and adherence to Caco‐2 cells of lactic acid bacteria. Journal of Food Science 77(3), M176-M180.‏

Halasz, A., Lasztity, R., (1991). Use of yeast biomass in food production. CRC Press, Inc, Boca Raton, FL, pp. 23–44

Hassan, H. M. (2011). Antioxidant and immunostimulating activities of yeast (Saccharomyces cerevisiae) autolysates. World Applied Sciences Journal. 15(8), 1110-9.‏

Hossain, F. M. A., Islam, M. M., Ara, A., & Iliyas, N., (2014). Supplementing probiotics (Saccharomyces cerevisiae) in multiparous crossbred cow's ration provokes milk yield and composition. Online Journal of Animal and Feed Research 4(2), 18-24.‏

Ingraham, J. L. (2010). March of the microbes: sighting the unseen. Harvard University Press.‏

Jang, Y. D., Kang, K. W., Piao, L. G., Jeong, T. S., Auclair, E., Jonvel, S., ... & Kim, Y. Y., (2013). Effects of live yeast supplementation to gestation and lactation diets on reproductive performance, immunological parameters, and milk composition in sows. Livestock Science 152(2-3), 167-173.‏

Khan, A. A., Gani, A., Masoodi, F. A., Amin, F., Wani, I. A., Khanday, F. A., & Gani, A., (2016). Structural, thermal, functional, antioxidant & antimicrobial properties of β-d-glucan extracted from baker's yeast (Saccharomyces cerevisiae)—Effect of γ-irradiation. Carbohydrate polymers 140, 442-450.‏

Kuczaj, M., Pres, J., Zachwieja, A., Twardon, J., Orda, J., & Dobicki, A., (2014). Effect of supplementing dairy cows with live yeasts cells and dried brewer's yeasts on milk chemical composition, somatic cell count, biochemical indices. Electronic Journal of Polish Agricultural Universities 17(06).‏

Kumprechtová, D., Illek, J., Julien, C., Homolka, P., Jančík, F., & Auclair, E., (2019). Effect of live yeast (Saccharomyces cerevisiae) supplementation on dairy cows' rumen fermentation and metabolic profile in early lactation. Journal of animal physiology and animal nutrition 103(2), 447-455.‏

Lean, I. J., Wade, L. K., Curtis, M. A., & Porter, J., (2000). New approaches to control ruminal acidosis in dairy cattle. Asian Australasian Journal of Animal Sciences 13, 266-269.‏

Lees, A. M., Olm, J. C. W., Lees, J. C., & Gaughan, J. B., (2021). Influence of feeding Saccharomyces cerevisiae on the heat load responses of lactating dairy cows during summer. International Journal of Biometeorology 1-14.‏ Lehloenya, K. V., Stein, D. R., Allen, D.

Lim, D. H., Han, M. H., Ki, K. S., Kim, T. I., Park, S. M., Kim, D. H., & Kim, Y., (2021). Changes in milk production and blood metabolism of lactating dairy cows fed Saccharomyces cerevisiae culture fluid under heat stress. Journal of Animal Science and Technology 63(6), 1433.‏

Liu, J., Ye, G., Zhou, Y., Liu, Y., Zhao, L., Liu, Y., ... & Huang, K., (2014). Feeding glycerol-enriched yeast culture improves performance, energy status, and heat shock protein gene expression of lactating Holstein cows under heat stress. Journal of Animal Science, 92(6), 2494-2502.‏

Liu, Y., Wu, Q., Wu, X., Algharib, S. A., Gong, F., Hu, J., ... & Wang, Y., (2021). Structure, preparation, modification, and bioactivities of β-glucan and Mannan from yeast cell wall: A review. International Journal of Biological Macromolecules.‏

Ma, J., Shah, A. M., Shao, Y., Wang, Z., Zou, H., & Kang, K., (2020). Dietary supplementation of yeast cell walls improves the gastrointestinal development of weaned calves. Animal Nutrition 6(4), 507-512.‏

Majtán, J., Kogan, G., Kováčová, E., Bíliková, K., & Šimúth, J., (2005). Stimulation of TNF-α release by fungal cell wall polysaccharides. Zeitschrift für Naturforschung C 60(11-12), 921-926.‏

Nasiri, A. H., Towhidi, A., Shakeri, M., Zhandi, M., Dehghan-Banadaky, M., Pooyan, H. R., ... & Ahmadi, F., (2019). Effects of Saccharomyces cerevisiae supplementation on milk production, insulin sensitivity, and immune response in transition dairy cows during the hot season. Animal Feed Science and Technology 251, 112-123.‏

Nocek, J. E., & Kautz, W. P., (2006). Direct-fed microbial supplementation on ruminal digestion, health, and pre-and postpartum dairy cattle performance. Journal of Dairy Science 89(1), 260-266.‏

Nocek, J. E., Holt, M. G., & Oppy, J., (2011). Effects of supplementation with yeast culture and enzymatically hydrolyzed yeast on the performance of early lactation dairy cattle. Journal of Dairy Science 94(8), 4046-4056.‏

Oltramari, C. E., Pinheiro, M. D. G., de Miranda, M. S., Arcaro, J. R., Castelani, L., Toledo, L. M., ... & Júnior, I. A., (2014). Selenium sources in the diet of dairy cows and their effects on milk production and quality, on udder health, and on physiological indicators of heat stress. Italian Journal of Animal Science 13(1), 2921.‏

Øverland, M., Karlsson, A., Mydland, L. T., Romarheim, O. H., & Skrede, A. (2013). Evaluation of Candida utilis, Kluyveromyces marxianus and Saccharomyces cerevisiae yeasts as protein sources in diets for Atlantic salmon (Salmo salar). Aquaculture, 402, 1-7.

Posadas, G. A., Broadway, P. R., Thornton, J. A., Carroll, J. A., Lawrence, A., Corley, J. R., ... & Donaldson, J. R., (2017). Yeast pro-and para probiotics have the capability to bind pathogenic bacteria associated with animal disease. Translational animal science 1(1), 60-68.‏

Proudfoot, K., Weary, D., & von Keyserlingk, M., (2009). The effect of enzymatically hydrolyzed yeast on feeding behavior and immune function in early lactation dairy cows. American Dairy Science Association.‏

Riba, J., Zimmermann, S., & Koltay, P. (2021). Technologies for Automated Single Cell Isolation. Handbook of Single-Cell Technologies, 235-262.

Robinson, P. H., & Erasmus, L. J., 2016. Effects of two yeast-based direct-fed microbials on the performance of high producing dairy cows. Animal Feed Science and Technology 215, 58-72.‏

Rop, O., Mlcek, J., & Jurikova, T., 2009. Beta-glucans in higher fungi and their health effects. Nutrition Reviews 67(11), 624-631.‏

Rossow, H. A., Riordan, T., & Riordan, A., 2018. Effects of addition of a live yeast product on dairy cattle performance. Journal of Applied Animal Research 46(1), 159-163.‏

Ryman, V. E., Nickerson, S. C., Kautz, F. M., Hurley, D. J., Ely, L. O., Wang, Y. Q., & Forsberg, N. E., 2013. Effect of dietary supplementation on the antimicrobial activity of blood leukocytes isolated from Holstein heifers. Research in veterinary science 95(3), 969-974.‏

Sanchez, N. C. B., Young, T. R., Carroll, J. A., Corley, J. R., Rathmann, R. J., & Johnson, B. J., 2013. Yeast cell wall supplementation alters aspects of the physiological and acute phase responses of crossbred heifers to an endotoxin challenge. Innate immunity 19(4), 411-419.‏

Sanchez, N. C. B., Young, T. R., Carroll, J. A., Corley, J. R., Rathmann, R. J., & Johnson, B. J., 2014. Yeast cell wall supplementation alters the metabolic responses of crossbred heifers to an endotoxin challenge. Innate immunity 20(1), 104-112.‏

Sanchez, N. C., Carroll, J. A., Mcbride, M. L., Ortiz, X. A., Collier, J. L., Chapman, J. D., ... & Collier, R. J., 2015. OmniGen-AF alters rectal temperature (RT) and leukocyte profiles in dairy cows exposed to heat stress (HS) following acute activation of the stress axis. Journal of Animal Science 93, 323.‏

Shurson, G. C., 2017. The role of biofuels coproducts in feeding the world sustainably. Annual review of animal biosciences 5, 229-254.‏

Spring, P., Wenk, C., Connolly, A., & Kiers, A., 2015. A review of 733 published trials on Bio-Mos®, a mannan oligosaccharide, and Actigen®, a second-generation mannose-rich fraction, on-farm and companion animals. Journal of Applied Animal Nutrition 3.‏

Stone, C. W., 2006. Yeast products in the feed industry: A practical guide for feed professionals.

Selk, T., G. E., Jones, D. A., Aleman, M. M., ... & Spicer, L. J., 2008. Feeding yeast and propionibacteria to dairy cows on milk yield and components and reproduction. Journal of animal physiology and animal nutrition, 92(2), 190-202.‏

Tangüler, H., & Erten, H. (2009). The effect of different temperatures on autolysis of baker’s yeast for the production of yeast extract. Turkish Journal of Agriculture and Forestry, 33(2), 149-154.

Terré, M., Maynou, G., Bach, A., & Gauthier, M., (2015). Effect of Saccharomyces cerevisiae CNCM I-1077 supplementation on performance and rumen microbiota of dairy calves. The Professional Animal Scientist 31(2), 153-158.‏

Thrune, M., Bach, A., Ruiz-Moreno, M., Stern, M. D., & Linn, J. G., (2009). Effects of Saccharomyces cerevisiae on ruminal pH and microbial fermentation in dairy cows: Yeast supplementation on rumen fermentation. Livestock Science 124(1-3), 261-265.‏

Trevisi, P., Priori, D., Gandolfi, G., Colombo, M., Coloretti, F., Goossens, T., & Bosi, P., (2012). In vitro test on the ability of a yeast cell wall-based product to inhibit the Escherichia coli F4ac adhesion on the brush border of porcine intestinal villi. Journal of Animal Science 90(suppl_4), 275-277.‏

Vetvicka, V., Vannucci, L., & Sima, P., (2014). The effects of β-glucan on pig growth and immunity. The open biochemistry journal 8, 89.‏

Wafa, W. M., Farag, M. A., & El-Kishk, M. A., (2020). Productive and Reproductive Performances of Primi-parous Friesian Cows Treated with Yeast Culture. Journal of Animal and Poultry Production 11(9), 331-337.‏

Weng, X., Monteiro, A. P. A., Guo, J., Li, C., Orellana, R. M., Marins, T. N., ... & Tao, S., (2018). Effects of heat stress and dietary zinc source on performance and mammary epithelial integrity of lactating dairy cows. Journal of Dairy Science 101(3), 2617-2630.‏

Wohlt, J. E., Corcione, T. T., & Zajac, P. K., (1998). Effect of yeast on feed intake and performance of cows fed diets based on corn silage during early lactation. Journal of Dairy Science 81(5), 1345-1352.‏

Xiao, J., Alugongo, G. M., Ji, S., Wu, Z., Dong, S., Li, S., ... & Cao, Z., (2019). Effects of Saccharomyces cerevisiae fermentation products on the microbial Community throughout the Gastrointestinal Tract of Calves. Animals 9(1), 4.‏

uan, K., Mendonça, L. G. D., Hulbert, L. E., Mamedova, L. K., Muckey, M. B., Shen, Y., ... & Bradford, B. J., (2015). Yeast product supplementation modulated humoral and mucosal immunity and uterine inflammatory signals in transition dairy cows. Journal of Dairy Science 98(5), 3236-3246.‏

Zhu, W., Wei, Z., Xu, N., Yang, F., Yoon, I., Chung, Y., ... & Wang, J., (2017). Effects of Saccharomyces cerevisiae fermentation products on performance and rumen fermentation and microbiota in dairy cows fed a diet containing low-quality forage. Journal of animal science and biotechnology 8(1), 1-9.‏

Zhu, W., Zhang, B. X., Yao, K. Y., Yoon, I., Chung, Y. H., Wang, J. K., & Liu, J. X., (2016). Effects of supplemental levels of Saccharomyces cerevisiae fermentation product on lactation performance in dairy cows under heat stress. Asian-Australasian journal of animal sciences 29(6), 801

Downloads

Published

01-09-2023

How to Cite

Mahasneh , O. K. ., Abdelqader, A., & Al-Fataftah , A.-R. A. . (2023). Effect of Yeast Cell Wall on Gut Health, Immunity and Milk Production of Dairy Cattle in Normal and Heat Stress Conditions. Review. Jordan Journal of Agricultural Sciences, 19(3), 281–299. https://doi.org/10.35516/jjas.v19i3.149

Issue

Section

Review
Received 2022-06-08
Accepted 2022-10-27
Published 2023-09-01