IN SILICO GENE EXPRESSION ANALYSIS OF THE STRESS-RELATED NAC-A GENE SUBFAMILY TO DISSECT THEIR ROLE IN ABIOTIC STRESS TOLERANCE IN BREAD WHEAT (TRITICUM AESTIVUM L.)

Authors

  • Rabea Al-Sayaydeh Al-Balqa Applied University, Shoubak, Jordan
  • Khaled Al-Habahbeh Al-Balqa Applied University, Shoubak, Jordan
  • Zahera Akkeh The University of Jordan, Amman, Jordan.
  • Randa N. Albdaiwi

DOI:

https://doi.org/10.35516/jjas.v17i3.90

Keywords:

Abiotic stress, In silico gene expression, Phylogenetic analysis,, Wheat

Abstract

Wheat is a major staple crop that is largely affected by different abiotic stresses that include heat, drought, and salinity. The main objective of this study was to identify wheat NAC transcription factors that are related to the NAC-a subfamily, which is involved in mediating stress tolerance in different plant species. Furthermore, in silico gene expression analysis was conducted to detect differential changes in wheat NAC-a subfamily members in different organs, developmental stages, and under various abiotic stress. Herein, using phylogenetic analysis for 488 NAC transcription factors, 41 proteins were identified as wheat NAC-a subfamily members. In silico gene expression analysis found that NAC-related wheat transcription factors are expressed exclusively at the anthesis stage till dough development with high expression levels detected in flag leaves. The in-silico gene expression analysis identified SNAC1-related members, which had high expression levels under drought, cold, and heat stresses. The identified stress-induced wheat NAC-a subfamily members can be utilized in the future to develop climate-smart wheat cultivars with improved tolerance against abiotic stresses.

Downloads

Download data is not yet available.

Author Biographies

Rabea Al-Sayaydeh , Al-Balqa Applied University, Shoubak, Jordan

Shoubak collage, Department of Agricultural Science Al-Balqa Applied University, Shoubak, Jordan

Khaled Al-Habahbeh, Al-Balqa Applied University, Shoubak, Jordan

Shoubak collage, Department of Agricultural Science Al-Balqa Applied University, Shoubak, Jordan

Zahera Akkeh, The University of Jordan, Amman, Jordan.

Department of Horticulture and Crop Science, School of Agriculture, The University of Jordan, Amman 11942, Jordan.

Randa N. Albdaiwi

Department of Land, Water and Environment, School of Agriculture, The University of Jordan, Amman 11942, Jordan.

References

Abdelrahman M, El-Sayed M, Jogaiah S, Burritt DJ and Tran LSP. 2017. The "STAY-GREEN" trait and phytohormone signalling networks in plants under heat stress. Plant Cell Rep., 36(7): 1009-1025. https://doi.org/10.1007/s00299-017-2119-y

Al Abdallat AM, Ayad, JY, Elenein JA, Al Ajlouni Z and Harwood WA. 2014. Overexpression of the transcription factor HvSNAC1 improves drought tolerance in barley (Hordeum vulgare L.). Mol. Breed., 33(2): 401-414. https://doi.org/10.1007/s11032-013-9958-1

Allimuthu E, Dalal M, Kumar KG, Sellathdurai D, Kumar RR, Sathee L and Chinnusamy V. 2020. Characterization of Atypical Protein Tyrosine Kinase (PTK) Genes and Their Role in Abiotic Stress Response in Rice. Plant J., 9(5): 664. https://doi.org/10.3390/plants9050664

Borrill P, Harrington SA and Uauy C. 2017 Genome-wide sequence and expression analysis of the NAC transcription factor family in polyploid wheat. G3-GENES GENOM GENET. 7(9): 3019-3029. https://doi.org/10.1534/g3.117.043679

Borrill P, Harrington SA, Simmonds J and Uauy C. 2019. Identification of transcription factors regulating senescence in wheat through gene regulatory network modelling. Plant Physiol., 180(3): 1740-1755. https://doi.org/10.1104/pp.19.00380

FAOSTAT. 2019. Food and Agriculture Organization Corporate Statistical Database. FAO. Fendrych M, Van Hautegem T, Van Durme M, Olvera-Carrillo Y, Huysmans M, Karimi M, Lippens S, Guérin CJ, Krebs M, Schumacher K and Nowack, MK. 2014. Programmed cell death controlled by ANAC033/SOMBRERO determines root cap organ size in Arabidopsis. Curr. Biol., 24(9): 931-940. https://doi.org/10.1016/j.cub.2014.03.025

Fujiwara S and Mitsuda N. 2016. ANAC075, a putative regulator of VASCULAR-RELATED NAC-DOMAIN7, is a repressor of flowering. Plant Biotechnol. J., 16:0215. https://doi.org/10.5511/plantbiotechnology.16.0215b

He L, Xu J, Wang Y and Yang K. 2018. Transcription Factor ANAC074 Binds to NRS1, NRS2, or MybSt1 Element in Addition to the NACRS to Regulate Gene Expression. Int. J. Mol. Sci., 19(10): 3271. https://doi.org/10.3390/ijms19103271

He XJ, Mu RL, Cao WH, Zhang ZG, Zhang JS and Chen, SY. 2005. AtNAC2, a transcription factor downstream of ethylene and auxin signalling pathways, is involved in salt stress response and lateral root development. Plant J., 44(6): 903-916. https://doi.org/10.1111/j.1365-313X.2005.02575.x

Hisako Ooka, Kouji Satoh, Koji Doi, Toshifumi Nagata, Yasuhiro Otomo, Kazuo Murakami, Kenichi Matsubara, Naoki Osato, Jun Kawai, Piero Carninci, Yoshihide Hayashizaki, Koji Suzuki, Keiichi Kojima, Yoshinori Takahara, Koji Yamamoto, Shoshi Kikuchi. 2003. Comprehensive Analysis of NAC Family Genes in Oryza sativa and Arabidopsis thaliana, DNA Research, Volume 10, Issue 6, Pages 239–247. https://doi.org/10.1093/dnares/10.6.239

Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q and Xiong L. 2006. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. PNAS, 103(35): 12987-12992. https://doi.org/10.1073/pnas.0604882103

Hu H, You J, Fang Y, Zhu X, Qi Z and Xiong L. 2008. Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol. Biol., 67(1-2): 169-181. https://doi.org/10.1007/s11103-008-9309-5

Hu R, Qi G, Kong Y, Kong D, Gao Q and Zhou G. 2010. Comprehensive analysis of NAC domain transcription factor gene family in Populus trichocarpa. BMC Plant Biol., 10(1): 145. https://doi.org/10.1186/1471-2229-10-145

Huang Q, Wang Y, Li B, Chang J, Chen M, Li K, Yang G and He G. 2015. TaNAC29, a NAC transcription factor from wheat, enhances salt and drought tolerance in transgenic Arabidopsis. BMC Plant Biol., 15(1): 268. https://doi.org/10.1186/s12870-015-0644-9

Hussain SS, Kayani MA and Amjad M. 2011. Transcription factors as tools to engineer enhanced drought stress tolerance in plants. Biotechnol. Prog., 27(2): 297-306. https://doi.org/10.1002/btpr.514

Kaneda T, Taga Y, Takai R, Iwano M, Matsui H, Takayama S, Isogai A and Che FS. 2009. The transcription factor OsNAC4 is a key positive regulator of plant hypersensitive cell death. EMBO J., 28(7): 926-936. https://doi.org/10.1038/emboj.2009.39

Kato H, Motomura T, Komeda Y, Saito T and Kato A. 2010. Overexpression of the NAC transcription factor family gene ANAC036 results in a dwarf phenotype in Arabidopsis thaliana. J. Plant Physiol., 167(7): 571-577. https://doi.org/10.1016/j.jplph.2009.11.004

Kim HJ, Park JH, Kim J, Kim JJ, Hong S, Kim J, Kim JH, Woo HR, Hyeon C, Lim PO and Nam HG. 2018. Time-evolving genetic networks reveal a NAC troika that negatively regulates leaf senescence in Arabidopsis. PNAS, 115(21): E4930-E4939. https://doi.org/10.1073/pnas.1721523115

Lee BH, Jeon JO, Lee MM and Kim JH. 2015. Genetic interaction between growth-regulating factor and cup-shaped cotyledon in organ separation. Plant Signal. Behav., 10(2): e988071. https://doi.org/10.4161/15592324.2014.988071

Li P, Zhou H, Shi X, Yu B, Zhou Y, Chen S, Wang Y, Peng Y, Meyer RC, Smeekens SC and Teng S. 2014. The ABI4-induced Arabidopsis ANAC060 transcription factor attenuates ABA signalling and renders seedlings sugar insensitive when present in the nucleus. PLoS Genet., 10(3): e1004213. https://doi.org/10.1371/journal.pgen.1004213

Lu PL, Chen NZ, An R, Su Z, Qi BS, Ren F, Chen J and Wang XC. 2007. A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis. Plant Mol. Biol., 63(2): 289-305. https://doi.org/10.1007/s11103-006-9089-8

Mahajan S and Tuteja N. 2005. Cold, salinity and drought stress an overview. Arch. Biochem. Biophys., 444(2):139-158. https://doi.org/10.1016/j.abb.2005.10.018

Mito T, Seki M, Shinozaki K, Ohme‐Takagi M and Matsui K. 2011. Generation of chimeric repressors that confer salt tolerance in Arabidopsis and rice. Plant Biotechnol. J., 9(7): 736-746. https://doi.org/10.1111/j.1467-7652.2010.00578.x

Ning YQ, Ma ZY, Huang HW, Mo H, Zhao TT, Li L, Cai T, Chen S, Ma L and He XJ. 2015. In two novels NAC transcription factors regulate gene expression and flowering time by associating with the histone demethylase JMJ14. Nucleic Acids Res., 43(3): 1469-1484. https://doi.org/10.1093/nar/gku1382

Oda-Yamamizo C, Mitsuda N, Sakamoto S, Ogawa D, Ohme-Takagi M and Ohmiya A. 2016. The NAC transcription factor ANAC046 is a positive regulator of chlorophyll degradation and senescence in Arabidopsis leaves. Sci. Rep., 6(1): 1-13. https://doi.org/10.1038/srep23609

Ohbayashi I and Sugiyama M. 2018. Plant nucleolar stress response, a new face in the NAC-dependent cellular stress responses. Front. Plant Sci., 8: 2247. https://doi.org/10.3389/fpls.2017.02247

Ohbayashi I, Lin CY, Shinohara N, Matsumura Y, Machida Y, Horiguchi G, Tsukaya H and Sugiyama M. 2017. Evidence for a role of ANAC082 as a ribosomal stress response mediator leading to growth defects and developmental alterations in Arabidopsis. Plant Cell, 29(10): 2644-2660. https://doi.org/10.1105/tpc.17.00255

Ooka H, Satoh K, Doi K, Nagata T, Otomo Y, Murakami K, Matsubara K, Osato N, Kawai J, Carninci P and Hayashizaki Y. 2003. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res., 10(6): 239-247. https://doi.org/10.1093/dnares/10.6.239

Ortiz R, Sayre KD, Govaerts B, Gupta R, Subbarao GV, Ban T, Hodson D, Dixon JM, Ortiz-Monasterio JI and Reynolds M. 2008. Climate change: can wheat beat the heat?. Agric Ecosyst Environ, 126(1-2): 46-58. https://doi.org/10.1016/j.agee.2008.01.019

Riechmann JL and Ratcliffe OJ. 2000. A genomic perspective on plant transcription factors. Curr. Opin. Plant Biol., 3(5): 423-434. https://doi.org/10.1016/S1369-5266(00)00107-2

Romani F and Moreno JE. 2020. Molecular mechanisms involved in functional macroevolution of plant transcription factors. New Phytologist (in press). https://doi.org/10.1111/nph.17161

Saga H, Ogawa T, Kai K, Suzuki H, Ogata Y, Sakurai N, Shibata D and Ohta D. 2012. Identification and characterization of ANAC042, a transcription factor family gene involved in the regulation of camalexin biosynthesis in Arabidopsis. Mol. Plant Microbe Interact., 25(5): 684-696. https://doi.org/10.1094/MPMI-09-11-0244

Sakuraba Y, Kim YS, Han SH, Lee BD and Paek NC. 2015. The Arabidopsis transcription factor NAC016 promotes drought stress responses by repressing AREB1 transcription through a trifurcate feed-forward regulatory loop involving NAP. Plant Cell, 27(6): 1771-1787. https://doi.org/10.1105/tpc.15.00222

Shen H, Yin Y, Chen F, Xu Y and Dixon RA. 2009. Bioinformatic analysis of NAC genes for plant cell wall development about lignocellulosic bioenergy production. BioEnergy Res., 2(4): 217. https://doi.org/10.1007/s12155-009-9047-9

Singh M, Kumar J, Singh S, Singh VP and Prasad SM. 2015. Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. Reviews in

Environ. Biotechnol., 14(3): 407-426. https://doi.org/10.1007/s11157-015-9372-8

Tamura K, Stecher G, Peterson D, Filipski A and Kumar S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol., 30(12): 2725-2729. https://doi.org/10.1093/molbev/mst197

Tardieu F and Tuberosa R. 2010. Dissection and modelling of abiotic stress tolerance in plants. Curr. Opin. Plant Biol., 13(2): 206-212. https://doi.org/10.1016/j.pbi.2009.12.012

Uauy C, Distelfeld A, Fahima T, Blechl A, and Dubcovsky J. 2006. A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science, 314(5803): 1298-1301. https://doi.org/10.1126/science.1133649

Wu Y, Deng Z, Lai J, Zhang Y, Yang C, Yin B, Zhao Q, Zhang L, Li Y, Yang C and Xie Q. 2009. Dual function of Arabidopsis ATAF1 in abiotic and biotic stress responses. Cell Res., 19(11): 1279-1290. https://doi.org/10.1038/cr.2009.108

Zhong R and Ye ZH. 2015. The Arabidopsis NAC transcription factor NST2 functions together with SND1 and NST1 to regulate secondary wall biosynthesis in fibres of inflorescence stems. Plant Signal. Behav., 10(2): e989746. https://doi.org/10.4161/15592324.2014.989746

Zhou J, Zhong R and Ye, ZH. 2014. Arabidopsis NAC domain proteins, VND1 to VND5, are transcriptional regulators of secondary wall biosynthesis in vessels. PloS one, 9(8): e105726. https://doi.org/10.1371/journal.pone.0105726

Zhu JK. 2002. Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol., 53(1): 247-273. https://doi.org/10.1146/annurev.arplant.53.091401.143329

Zimmermann P, Hennig L and Gruissem W. 2005. Gene-expression analysis and network discovery using Genevestigator. Trends Plant Sci., 10(9): 407-409. https://doi.org/10.1016/j.tplants.2005.07.003

Downloads

Published

01-09-2021

How to Cite

Al-Sayaydeh , R. ., Al-Habahbeh, K., Akkeh, Z. ., & Albdaiwi, R. N. . (2021). IN SILICO GENE EXPRESSION ANALYSIS OF THE STRESS-RELATED NAC-A GENE SUBFAMILY TO DISSECT THEIR ROLE IN ABIOTIC STRESS TOLERANCE IN BREAD WHEAT (TRITICUM AESTIVUM L.). Jordan Journal of Agricultural Sciences, 17(3), 341–354. https://doi.org/10.35516/jjas.v17i3.90

Issue

Section

Articles