Methanol Leaves Extract of Zingiber officinale (Roscoe) exhibited Anti-Obesity Effect in Wistar Rats Fed with a High Fat Diet

Authors

  • Osebhahiemen Ibukun Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Nigeria.
  • Esosa S. Uhunmwangho Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Nigeria.
  • Iyanuoluwa Ademola Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Nigeria.
  • Nisi-Dominus Olokor Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Nigeria.
  • Oluwasina Akinnaso Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Ondo State, Nigeria.

DOI:

https://doi.org/10.35516/jjps.v16i4.1128

Keywords:

Zingiber officinale, body weight, adipose tissues, cytokines, orlistat, adipokines, antioxidants

Abstract

This study evaluated the anti-obesity properties of the methanol extract of Zingiber officinale leaves in Wistar rats. Thirty male rats were distributed into five groups, with six rats in each group, and different groups were treated with a normal fat diet (NFD), high-fat diet (HFD), HFD + orlistat (20 mg/kg) p.o, HFD + Zingiber officinale (200 mg/kg) p.o, and HFD + Zingiber officinale (400 mg/kg) p.o for fifty-six days. After all administrations, the animals were sacrificed by cervical dislocation, and various biochemical analyses were carried out. Results showed that there was a significant decrease (p < 0.05) in body weight and adiposity in the Zingiber officinale, NFD, and orlistat groups compared to the HFD control. However, there was no significant difference in the body weights of rats in the Zingiber officinale groups compared to the NFD control and orlistat groups. Furthermore, rats in the Zingiber officinale groups had normal lipid concentrations, antioxidant status, adipokines, cytokines, liver, kidney, and cardiac function parameters that were comparable to orlistat and normal control but in contrast with the HFD control. Findings from the study suggest that Zingiber officinale leaves have significant anti-obesity, antioxidant, and anti-inflammatory properties.

Author Biographies

Osebhahiemen Ibukun, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Nigeria.

Department of Biochemistry, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Ondo State, Nigeria.

Esosa S. Uhunmwangho, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Nigeria.

Department of Biochemistry, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Ondo State, Nigeria.

Iyanuoluwa Ademola, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Nigeria.

Department of Biochemistry, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Ondo State, Nigeria.

Nisi-Dominus Olokor, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Nigeria.

Department of Biochemistry, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Ondo State, Nigeria.

Oluwasina Akinnaso, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Ondo State, Nigeria.

Department of Biochemistry, Faculty of Basic Medical Sciences, University of Medical Sciences, Ondo, Ondo State, Nigeria.

References

Chooi Y.C., Ding C. and Magkos F. The epidemiology of obesity. Metabolism. 2019; 92: 6-10. DOI: https://doi.org/10.1016/j.metabol.2018.09.005

Bhaskaran K., dos-Santos-Silva I., Leon D.A., Douglas I.J. and Smeeth L. Association of BMI with overall and cause-specific mortality: a population-based cohort study of 3·6 million adults in the UK. Lancet Diabetes Endocrinol. 2018; 16(12):944-953. DOI: https://doi.org/10.1016/S2213-8587(18)30288-2

Lei X.G., Ruan J.Q., Lai C., Sun Z. and Yang X. Efficacy and safety of phentermine/topiramate in adults with overweight or obesity: a systematic review and meta-analysis. Obesity (Silver Spring). 2021; 29:985-994. DOI: https://doi.org/10.1002/oby.23152

Chakhtoura M., Haber R., Ghezzawi M., Rhayem C., Tcheroyan R., and Mantzoros C.S. Pharmacotherapy of obesity: an update on the available medications and drugs under investigation. The lancet. 2023; 58:1-8. DOI: https://doi.org/10.1016/j.eclinm.2023.101882

Muller T.D., Clemmensen C., Finan B., DiMarchi R.D. and Tschop M.H. Anti-obesity therapy: from rainbow pills to polyagonists. Pharmacol. Rev. 2018; 70:712-746. DOI: https://doi.org/10.1124/pr.117.014803

Karri S., Sharma S., Hatware K. and Patil K. Natural anti-obesity agents and their therapeutic role in management of obesity: A future trend perspective. Biomed. Pharmacother. 2019; 110:224-238. DOI: https://doi.org/10.1016/j.biopha.2018.11.076

Tugume P., Kakudidi E.K., Buyinza M., Namaalwa J., Kamatenesi M., Mucunguzi P. and Kalema J. Ethnobotanical survey of medicinal plant species used by communities around Mabira Central Forest Reserve, Uganda. J. Ethnobiol. Ethnomed. 2016; 12:5-32. DOI: https://doi.org/10.1186/s13002-015-0077-4

Kumar J.U.S., Chaitanya M.J.K. and Semotiuk A.J.V.K. Indigenous knowledge on medicinal plants used by ethnic communities of South India. Ethnobot. Res. Appl. 2019; 18: 1-112. DOI: https://doi.org/10.32859/era.18.4.1-112

Chaves E.M.F., Siqueira J.I.A., Morais R.F. and Barros R.F.M. Conocimiento y Uso de Plantas Alimenticias Silvestres en Comunidades Campesinas del Semiárido de Piauí, Noreste de Brasil. Ethnobot. Res. Appl. 2019; 18: 1-20. DOI: https://doi.org/10.32859/era.18.33.1-20

Ahmad W., Jantan I. and Bukhari S.N. Tinospora crispa (L.) Hook. f. & Thomson: A Review of Its Ethnobotanical, Phytochemical, and Pharmacological Aspects. Front. Pharmacol. 2016; 7:59-77. DOI: https://doi.org/10.3389/fphar.2016.00059

Bussmann R.W. and Sharon D. Plantas medicinales de los Andes y la Amazonía-La flora mágica y medicinal del Norte del Perú. Ethnobot. Res. Appl. 2018; 15: 1-293. DOI: https://doi.org/10.32859/era.15.1.001-293

Lafi, Z., Aboalhaija, N. and Afifi, F. Ethnopharmacological importance of local flora in the traditional medicine of Jordan: (A mini review). Jordan J. Pharm. Sci. 2022; 15(1): 132-144. DOI: https://doi.org/10.35516/jjps.v15i1.300

Jarzab A. and Kukula-Koch, W. Recent advances in obesity: the role of turmeric tuber and its metabolites in the prophylaxis and therapeutical strategies. Curr. Med. Chem. 2018; 25(37):4837-4853. DOI: https://doi.org/10.2174/0929867324666161118095443

Kim G.N., Shin M.R., Shin S.H., Lee A.R., Lee J.Y., Seo B.I., Kim M.Y., Kim, T.H., Noh JS., M.H. Rhee M.H. and Roh S.S. Study of antiobesity effect through inhibition of pancreatic lipase activity of Diospyros kaki fruit and Citrus unshiu peel. Biomed. Res. Int. 2016; 2016. DOI: https://doi.org/10.1155/2016/1723042

Choe W.K., Tae Kang B. and Kim S.O. Water extracted plum (Prunus salicina L. Cv. Soldam) attenuates adipogenesis in murine 3T3 L1 adipocyte cells through the PI3K/Akt signaling pathway. Exp. Ther. Med. 2018; 15: 1608-1615.

Maia-Landim A., Ramírez J.M., Lancho C.M., Poblador C. and Lancho J.L. Long-term effects of Garcinia cambogia/Glucomannan on weight loss in people with obesity, PLIN4, FTO and Trp64Arg polymorphisms. BMC Complement, Altern. Med. 2018; 18: 26-34. DOI: https://doi.org/10.1186/s12906-018-2099-7

Nepali S. Cha J.Y., Ki H.H., Lee H.Y., Kim Y.H., Kim D.K., Song B.J. and Lee Y.M. Chrysanthemum indicum inhibits adipogenesis and activates the AMPK pathway in high-fat-Diet-Induced obese mice. Am. J. Chin. Med. 2018; 12(9): 2726-2243.

Kumar G., Kathie L. and Rao K.V.B. A review on pharmacological and phytochemical properties of Zingiber officinale. J Pharm Res. 2011; 4:2963-2966.

Kattuoa, M.L., Issa, R. and Beitawi, S. Commonly used herbal remedies for the treatment of Primary Dysmenorrhea and Heavy Menstrual Bleeding by herbalists in Amman, Jordan: A cross-sectional survey. Jordan J. Pharm. Sci. 2020; 4 (13) 467- 483.

Shahrajabian M.S., Sun W. and Cheng Q. Clinical aspects and health benefits of ginger (Zingiber officinale) in both traditional Chinese medicine and modern industry, Acta Agriculturae Scandinavica, Section B — Soil & Plant Science. 2019; 69:6-17. DOI: https://doi.org/10.1080/09064710.2019.1606930

Akhani S.P., Vishwakarma S.L. and Goyal R.K. Anti-diabetic activity of Zingiber officinale in streptozotocin-induced type I diabetic rats. J Pharm Pharmacol. 2004; 56:101-105. DOI: https://doi.org/10.1211/0022357022403

Al-Amin Z.M., Thomson M., Al-Qattan K.K., Peltonen-Shalaby R. and Ali M. Antidiabetic and hypolipidaemic properties of ginger Zingiber officinale in streptozotocin-induced diabetic rats. Br J Nutr. 2006; 96:660-666. DOI: https://doi.org/10.1079/BJN20061849

Bin-meferij M.M., El-kott A.F., Shati A.A. and Eid R.A. Ginger extract ameliorates renal damage in high fat dietinduced obesity in rats: biochemical and ultrastructural study. Int. J. Morphol. 2019; 37(2):438-447. DOI: https://doi.org/10.4067/S0717-95022019000200438

Ibukun O. and Oluwadare E.E. In vitro Antioxidant Property and Acute Toxicity Study of Methanol Extract of Leaves of Zingiber officinale and Curcuma longa. Free Radicals and Antioxidants. 2021; 11(2): 42-5. DOI: https://doi.org/10.5530/fra.2021.2.10

Olfert E.D., Cross, B.M. and McWilliam A.A. Guide to the care and use of experimental animals. CCAC. 1993; 1:82-89.

Cha M.C. and Jones P.J. Dietary fat type and energy restriction interactively influence plasma leptin concentration in rats. J. Lipid Res. 1998; 39:1655-1660. DOI: https://doi.org/10.1016/S0022-2275(20)32195-7

Novelli E.L.B., Diniz Y.S., Galhardi C.M., Ebaid G.M.X., Rodrigues H.G., Mani F., Fernandes A.A.H., Cicogna A.C. and Novelli F. Anthropometrical parameters and markers of obesity in rats. Lab Anim. 2007; 41:111-119. DOI: https://doi.org/10.1258/002367707779399518

Boustany, C.M., Brown, D.R., Randall, D.C., Cassis, L.A. AT1-receptor antagonism reverses the blood pressure elevation associated with diet-induced obesity. Am J Physiol. 2005; 289:181-186. DOI: https://doi.org/10.1152/ajpregu.00507.2004

Friedewald W.T, Levy R.I. and Fredrickson D.S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 1972; 18:499-502. DOI: https://doi.org/10.1093/clinchem/18.6.499

Buege J.A. and Aust S.D. Microsomal lipid peroxidation. Methods Enzymol. 1978; 52:302-310. DOI: https://doi.org/10.1016/S0076-6879(78)52032-6

Ellman G.L. Tissue sulphydryl groups. Arch Biochem Biophys. 1959; 82:70-77. DOI: https://doi.org/10.1016/0003-9861(59)90090-6

Rotruck J.T., Pope A.L., Ganther H.E., Swanson A.B., Hafeman D.G. and Hoekstra W.G. Selenium: Biochemical role as a component of glutathione peroxidase. Science. 1973; 179:588-590. DOI: https://doi.org/10.1126/science.179.4073.588

Carleton H.M. Carleton’s Histological Technique. 5th Edition, Oxford University Press, Oxford. 1980; 520.

Bais S., Singh G.S. and Sharma R. Antiobesity and Hypolipidemic Activity of Moringa oleifera Leaves against High Fat Diet-Induced Obesity in Rats. Adv Biol. 2014; 10:1-9. DOI: https://doi.org/10.1155/2014/162914

Viner R.M., Hsia Y. and Tomsic T. Efficacy and safety of anti-obesity drugs in children and Adolescents: Systematic Review and Meta-analysis. Obes Rev. 2010; 11:593-602. DOI: https://doi.org/10.1111/j.1467-789X.2009.00651.x

Nazish S.H., Arora A.P. and Ahmad A. Antiobesity activity of Zingiber officinale. Pharmacogn. J. 2016; 8(5):440-446. DOI: https://doi.org/10.5530/pj.2016.5.5

Al shukor N., Raes K., Smagghe G. and Camp J.V. Flavonoids: Evidence for Inhibitory Effects against obesity and their possible mechanisms of action. RPMP. 2016; 40:496-514.

Tan Y., Zhang X., Zhou Y., Miao L., Xu, B., Khan H., Wang Y., Yu H. and San W. Cheang. Panax notoginseng extract and total saponin suppress diet-induced obesity and endoplasmic reticulum stress in epididymal white adipose tissue in mice, Chin. Med. 2022; 17:75-85. DOI: https://doi.org/10.1186/s13020-022-00629-0

Barrett P., Mercer J.G., Morgan P.J. Preclinical models for obesity research. Dis model mech. 2016; 9:1245-1255. DOI: https://doi.org/10.1242/dmm.026443

Ramadan O.I., Nasr M., El-Hay O.M.M.A., Hasan A., Abd-Allah E.E.E., Mahmoud M.E., Abd-Allah F.M., Abuamara T.M.M., Hablas M.G.A., Awad M.M.Y., Diab M., Taha A.M., Abulkhair N.H., Radwan M.K. and Abdel-Hady A.A. Potential Protective Effect of Zingiber officinale in Comparison to Rosuvastatin on High-fat diet-induced Non-alcoholic Fatty Liver Disease in Rats. Open-Access Maced. J. Med. Sci. 2022; 10:916-923. DOI: https://doi.org/10.3889/oamjms.2022.9643

Lee M.O. Determination of the Surface Area of the White Rat. Am J Physiol. 1928; 89:24-31. DOI: https://doi.org/10.1152/ajplegacy.1929.89.1.24

Malafaia A.B., Nassif P.A., Ribas P.M., Ariede B.L., Sue K.N. and Cruz M.A. Obesity Induction with High Fat Sucrose in Rats. Arq Bras Cir Dig. 2013; 26:17-21. DOI: https://doi.org/10.1590/S0102-67202013000600005

Angeloco L.R., Deminice R., Leme I.A., Lataro R.C. and Jordão, A.A. Bioelectrical Impedance Analysis and Anthropometry for the Determination of Body Composition in Rats: Effects of High-Fat and High-Sucrose Diets. Rev de Nutr. 2012; 25:331-339. DOI: https://doi.org/10.1590/S1415-52732012000300003

Hebbard L. and George J. Animal models of nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol. 2011; 8: 35-44. DOI: https://doi.org/10.1038/nrgastro.2010.191

Vanissa N.T.S., Fabien D.D.F., Landry L.L., Ghislain, M.T., William D.A., Christophe M.K.J., Calvin B.Z., De Goeithe M.H., Madeleine E.E.R. and Inocent G. Antioxidant and Antiobesogenic Properties of Aqueous Extracts of Hibiscus sabdariffa, Zingiber officinale and Mentha spicata in Wistar High-Fat Diet Rats. JFNS. 2022; 10(5):151-164.

Lavie C.J., Milani R.V. and Ventura H.O. Obesity and Cardiovascular Disease Risk Factor, Paradox, and Impact of Weight Loss. J Am Coll Cardiol. 2009; 53:1925-1932. DOI: https://doi.org/10.1016/j.jacc.2008.12.068

Ojo A.O., Ekomaye O.H., Owoade, O.M., Onaseso O.O., Adedayo L.D., Oluranti O.I., Timothy E.O. and Ayoka A. The effect of ginger (Zingiber officinale) feed on cardiac biomarker in medium-dose isoproterenol-induced myocardial toxicity. Avicenna J Phytomed. 2021; 11(1): 1-10.

Altunkaynak M.E., Özbek E., Altunkaynak B.Z., Can I., Unal D. and Unal, B. The effects of high-fat diet on the renal structure and morphometric parametric of kidneys in rats. J Anat. 2008; 212:845-852. DOI: https://doi.org/10.1111/j.1469-7580.2008.00902.x

Gennari F.J. and Maddox D.A. Renal regulation of acid-base homeostasis: Integrated response. In: The kidney: physiology and pathophysiology. Seldin D.W and Giebish G. (Ed). Lippincott Williams: Philadelphia, 2000; 3rd edition, pp 2015-2053.

Oliveros L.B., Videla A.M. and Giménez M.S. Effect of dietary fat saturation on lipid metabolism, arachidonic acid turnover and peritoneal macrophage oxidative stress in mice. Braz J Med Biol Res. 2004; 37(3):311- 320. DOI: https://doi.org/10.1590/S0100-879X2004000300004

Webber, J. Energy balance in obesity. Proc Nutr Soc. 2003; 62:539-543. DOI: https://doi.org/10.1079/PNS2003256

Hussain M.A., Abogresha N.M., Tamany D.A. and Lotfy M. Effect of feeding a high-fat diet independently of caloric intake on reproductive function in diet-induced obese female rats. Arch Med Sci. 2016; 12 (4):906-914. DOI: https://doi.org/10.5114/aoms.2016.59790

Kloting N., Fasshauer M., Dietrich A., Kovacs P., Schon M.R., Kern M., Stumvoll M. and Bluher M. Insulin-sensitive obesity. Am J Physiol Endocrinol Metab. 2010; 299:506-515. DOI: https://doi.org/10.1152/ajpendo.00586.2009

Bouassida A., Chamari K., Zaouali M., Feki Y., Zbidi A. and Tabka, Z. Review on leptin and adiponectin responses and adaptations to acute and chronic exercise. Br J Sports Med. 2010; 44:620-630. DOI: https://doi.org/10.1136/bjsm.2008.046151

Downloads

Published

2023-12-25

How to Cite

Ibukun, O., Uhunmwangho, E. S., Ademola, I., Olokor, N.-D., & Akinnaso, O. (2023). Methanol Leaves Extract of Zingiber officinale (Roscoe) exhibited Anti-Obesity Effect in Wistar Rats Fed with a High Fat Diet. Jordan Journal of Pharmaceutical Sciences, 16(4), 798–814. https://doi.org/10.35516/jjps.v16i4.1128

Issue

Section

Articles