Potential Drug-Drug Interactions and their Associated Factors at the University Children's Hospital in Syria: A Cross-Sectional Study

Authors

  • Linda Hsien Pharmaceutical Department, Faculty of Pharmacy, Arab International University, Syria
  • Samir Srour Department of Paediatric Cardiology at Faculty of Medicine, Damascus University, Syria.

DOI:

https://doi.org/10.35516/jjps.v17i1.1606

Keywords:

Drug-drug interactions, pediatrics, pediatric inpatients, drug safety, Syria

Abstract

Objective: Polypharmacy among pediatric inpatients is common and exposes children to the risk of drug-drug interactions (DDIs). This study aimed to characterize potential DDIs (pDDIs) and their associated risk factors among pediatric inpatients.

Methods: A cross-sectional study was conducted over six months at the University Children's Hospital in Damascus. A total of 575 children taking two drugs or more participated. pDDIs were checked using Lexi-Interact® software. pDDIs within risk category B (No action needed), C (Monitor therapy), D (Modify regimen), and X (Avoid combination) were included. Logistic regression was used to identify factors associated with pDDIs.

Results: At least one pDDI was detected in 49.7% of children. Overall, 744 pDDIs were identified. The majority of pDDIs were within risk category C (71.6%), followed by D (14%), B (12.8%), and X (1.6%). The most common pDDIs were: aminoglycosides - penicillins (n=56), aminoglycosides - cephalosporins (n=27), and vitamin D analogs - calcium salts (n=23). The number of prescribed drugs and nervous system drugs were significantly associated with the presence of pDDIs.

Conclusion: pDDIs among pediatric inpatients were prevalent. The majority of the pDDIs were within risk category C, which necessitates therapy monitoring and necessary action to avoid adverse consequences.

References

Baker C., Feinstein J. A., Ma X., Bolen S., Dawson N. V., Golchin N. et al. Variation of the prevalence of pediatric polypharmacy: A scoping review. Pharmacoepidemiol Drug Saf. 2019; 28(3):275-287. DOI: https://doi.org/10.1002/pds.4719

Feinstein J., Dai D., Zhong W., Freedman J. and Feudtner C. Potential drug-drug interactions in infant, child, and adolescent patients in children's hospitals. Pediatrics. 2015; 135(1):e99-108. DOI: https://doi.org/10.1542/peds.2014-2015

Obreli Neto P. R., Nobili A., Marusic S., Pilger D., Guidoni C. M., Baldoni Ade O. et al. Prevalence and predictors of potential drug-drug interactions in the elderly: a cross-sectional study in the brazilian primary public health system. J Pharm Pharm Sci. 2012; 15(2):344-354. DOI: https://doi.org/10.18433/J37K5W

De Paepe P., Petrovic M., Outtier L., Van Maele G. and Buylaert W. Drug interactions and adverse drug reactions in the older patients admitted to the emergency department. Acta Clin Belg. 2013; 68(1):15-21. DOI: https://doi.org/10.2143/ACB.68.1.2062714

Ray S., Pramanik J., Bhattacharyya M. and Todi S. Prospective observational evaluation of incidences and implications of drug-drug interactions induced adverse drug reactions in critically ill patients. Indian J Pharm Sci. 2010; 72(6):787-792. DOI: https://doi.org/10.4103/0250-474X.84597

Sugioka M., Tachi T., Mizui, T., Koyama A., Murayama A., Katsuno H. et al. Effects of the number of drugs used on the prevalence of adverse drug reactions in children. Sci Rep 2020; 10: 21341. DOI: https://doi.org/10.1038/s41598-020-78358-3

Lima E.C, Camarinha B.D., Ferreira Bezerra N.C., Panisset A.G., Belmino de Souza R., Silva M.T. et al. Severe Potential Drug-Drug Interactions and the Increased Length of Stay of Children in Intensive Care Unit. Front Pharmacol. 2020; 11:555407. DOI: https://doi.org/10.3389/fphar.2020.555407

Rashed A.N., Wong I.C., Cranswick N., Tomlin S., Rascher W. and Neubert A. Risk factors associated with adverse drug reactions in hospitalised children: international multicentre study. Eur J Clin Pharmacol. 2012;68(5):801-10. DOI: https://doi.org/10.1007/s00228-011-1183-4

Giurin M. S., Trojniak M. P., Arbo A., Carrozzi M., Abbracciavento G., Monasta L. et al. Safety of Off-Label Pharmacological Treatment in Pediatric Neuropsychiatric Disorders: A Global Perspective from an Observational Study at an Italian Third Level Children's Hospital. Front. Pharmacol. 2022; 12;13:837692. DOI: https://doi.org/10.3389/fphar.2022.837692

EMA. ICH Topic E11. Clinical investigation of medicinal products in the pediatric population. CPMP/ICH/2711/99. 2001. https://www.ema.europa.eu/en/documents/scientific-guideline/international-conference-harmonisation-technical-requirements-registration-pharmaceuticals-human-use_en-1.pdf. Accessed 23.11.2022.

WHO Collaborating Centre for Drug Statistics Methodology. ATC classification index with DDDs. Oslo, Norway 2021. 2022. Available at https://www.whocc.no/atc_ddd_index/. Accessed 23.11.2022.

Reis A. M. M. and Cassiani S. H. D. B. Evaluation of three brands of drug interaction software for use in intensive care units. PharmWorld Sci. 2010; 32(6):822–828. DOI: https://doi.org/10.1007/s11096-010-9445-2

Vonbach P., Dubied A., Krähenbühl S. and Beer J. H. Evaluation of frequently used drug interaction screening programs. Pharm World Sci. 2008; 30(4):367–374. DOI: https://doi.org/10.1007/s11096-008-9191-x

Getachew H., Assen M., Dula F. and Bhagavathula A. S. Potential drug–drug interactions in pediatric wards of Gondar University Hospital, Ethiopia: A cross sectional study. Asian Pac J Trop Biomed. 2016; 6(6):534-538. DOI: https://doi.org/10.1016/j.apjtb.2016.04.002

Nawaz H. A., Khan T. M., Adil Q., Goh K. W., Ming L. C., Blebil A. Q. et al. A Prospective Study of Medication Surveillance of a Pediatric Tertiary Care Hospital in Lahore, Pakistan. Pediatr Rep. 2022; 14(2):312-319. DOI: https://doi.org/10.3390/pediatric14020038

Bebitoğlu B. T., Oğuz E., Nuhoğlu Ç., Dalkılıç A. E. K., Çirtlik P., Temel F. et al. Evaluation of potential drug-drug interactions in a pediatric population. Turk Pediatri Ars. 2020; 55(1):30-38.

Langerová P., Prokeš M., Konvalinka M., Fürstová J. and Urbánek K. Incidence of potential drug interactions in medication prescriptions for children and adolescents in the University Hospital Olomouc, Czech Republic. Eur J Pediatr. 2013; 172(5):631-638. DOI: https://doi.org/10.1007/s00431-013-1933-7

Dai D., Feinstein J. A., Morrison W., Zuppa A. F. and Feudtner C. Epidemiology of Polypharmacy and Potential Drug-Drug Interactions Among Pediatric Patients in ICUs of U.S. Children's Hospitals. Pediatr Crit Care Med. 2016; 17(5):e218-e228. DOI: https://doi.org/10.1097/PCC.0000000000000684

Qorraj-Bytyqi H., Hoxha R., Krasniqi S., Bahtiri E. and Kransiqi V. The incidence and clinical relevance of drug interactions in pediatrics. J Pharmacol Pharmacother. 2012; 3(4):304-307. DOI: https://doi.org/10.4103/0976-500X.103686

Martinbiancho J, Zuckermann J, Dos Santos L, Silva MM. Profile of drug interactions in hospitalised children. Pharm Pract (Granada). 2007; 5(4):157-161. DOI: https://doi.org/10.4321/S1886-36552007000400003

Farchione L. A. Inactivation of aminoglycosides by penicillins. Journal of Antimicrobial Chemotherapy. 1981; 8, Suppl A: 27-36. DOI: https://doi.org/10.1093/jac/8.suppl_A.27

Rao C., Shenoy V. and Udaykumar P. Potential Drug–Drug Interactions in the Pediatric Intensive Care Unit of a Tertiary Care Hospital. Journal of Pharmacology and Pharmacotherapeutics; 2019; 10(2):63-68. DOI: https://doi.org/10.4103/jpp.JPP_27_19

Tavousi F., Sadeghi A., Darakhshandeh A. and Moghaddas A. Potential Drug-drug Interactions at a Referral Pediatric Oncology Ward in Iran: A Cross-sectional Study. J Pediatr Hematol Oncol. 2019; 41(3):e146-e151. DOI: https://doi.org/10.1097/MPH.0000000000001346

Mannion J. C., Bloch R. and Popovich N. G. Cephalosporin-aminoglycoside synergistic nephrotoxicity: fact or fiction? Drug Intell Clin Pharm. 1981; 15(4):248-56. DOI: https://doi.org/10.1177/106002808101500401

Rankin G. O. and Sutherland C. H. Nephrotoxicity of aminoglycosides and cephalosporins in combination. Adverse Drug React Acute Poisoning Rev. 1989; 8(2):73-88.

Wright D. N., Marble D. A., Saxon B., Johnson C. C., Bosso J. A. and Matsen J. M. In vitro inactivation of aminoglycosides by cephalosporin antibiotics. Arch Pathol Lab Med. 1988; 12(5):526-8.

Flynn Pharma Ltd. Tobramycin 40 mg/ml solution for injection vials SmPC. 2022.

https://www.medicines.org.uk/emc/product/10194/smpc. Accessed 03.02.2023.

Neon Healthcare Ltd. Amikacin 250mg/ml solution for injection/infusion SmPC. 2022. Available at: https://www.medicines.org.uk/emc/product/14189/smpc.Accessed 16.03.2023.

Magro L., Moretti U. and Leone R. Epidemiology and characteristics of adverse drug reactions caused by drug-drug interactions. Expert Opin Drug Saf. 2012;11(1):83–94. DOI: https://doi.org/10.1517/14740338.2012.631910

Abu-Oliem1 A. S., Al-Sharayri M. G., AlJabra R. J. and Hakuz N. M. A Clinical Trial to Investigate the role of Clinical Pharmacist in Resolving/Preventing Drug Related Problems in ICU Patients Who Receive Anti-infective Therapy. Jordan j. pharm. sci. 2013; 6(3):292-8. DOI: https://doi.org/10.12816/0001507

Issa A., Abu Farha R., Elayeh E. and Bustanji Y. The Impact of Lack of Pharmacist Contribution on the Prescription Patterns and the Appropriateness of Indications of NSAIDs, A Cross-Sectional Study. Jordan j. pharm. sci. 2013; 6(2):258-69. DOI: https://doi.org/10.12816/0000371

Downloads

Published

2024-03-19

How to Cite

Hsien, L., & Srour, S. (2024). Potential Drug-Drug Interactions and their Associated Factors at the University Children’s Hospital in Syria: A Cross-Sectional Study. Jordan Journal of Pharmaceutical Sciences, 17(1), 187–198. https://doi.org/10.35516/jjps.v17i1.1606

Issue

Section

Articles