Evaluation of Anti-Inflammatory, Antioxidant Activities and Molecular Docking Analysis of Rubus idaeus Leaf Extract

Authors

  • Olexander Maslov Department of General Chemistry, National University of Pharmacy, Ukraine
  • Mykola Komisarenko Department of Pharmacognosy and Nutriciology, National University of Pharmacy, Ukraine
  • Sergii Kolisnyk Department of General Chemistry, National University of Pharmacy, Ukraine
  • Lyudmyla Derymedvid Department of Pharmacology and Pharmacotherapy, National University of Pharmacy, Ukraine.

DOI:

https://doi.org/10.35516/jjps.v17i1.1808

Keywords:

Rubus idaeus L., Leaf, HPLC, Molecular docking, Antioxidant activity, Anti-inflammatory activity, Correlation

Abstract

The study aimed to identify the most abundant compounds in raspberry leaf extract via HPLC analysis, conduct theoretical and practical assessments of antioxidant and anti-inflammatory activities both in silico, in vitro, and in vivo, and evaluate the correlation between antioxidant and anti-inflammatory activities. Polyphenols were quantified using HPLC; molecular docking was carried out using AutoDockTools 1.5.6; antioxidant activity was ascertained via the potentiometric method; and anti-inflammatory activity was examined based on the carrageenan edema method. The extract was found to be rich in epicatechin (0.417%), (+)-catechin (0.501%), and ellagitannins (0.401%). The free energy of (+)-catechin and epicatechin was -8.40 and -7.20 respectively for the active sites of cyclooxygenase-2 (COX-2), and -6.60 and -7.11 for nicotinamide adenine dinucleotide phosphate oxidase (NADPH oxidase). Notably, the antioxidant activity of the raspberry leaf extract was 1.43%, 1.04%, and 10.62% higher than that of green tea leaf extract for doses of 4.00, 2.00, 0.20 mg/mL, respectively. Treatment with the raspberry leaf extract at a dose of 13.0 mg/kg resulted in a significant decrease in edema after 1, 2, and 3 hours by 38.8%, 41.8%, and 48.8%, respectively, compared to the control group. The study demonstrated a correspondence between experimental and theoretical results in evaluating antioxidant and anti-inflammatory activities. Correlation analysis further substantiated that the anti-inflammatory action is dependent on antioxidant activity.

References

Biswas SK. Does the Interdependence between Oxidative Stress and Inflammation Explain the Antioxidant Paradox? Oxidative Med Cell Longev. 2016; 2016:1-9. Doi: https://doi.org/10.1155/2016/5698931 DOI: https://doi.org/10.1155/2016/5698931

Maslov OY., Kolisnyk SV., Komissarenko NA., Kostina TA. Development and validation potentiometric method for determination of antioxidant activity of epigallocatechin-3-O-gallate. Pharmacologyonline. 2021; 2:35-42.

Doi: https://doi.org/10.5281/zenodo.7813098

Maslov OY., Komisarenko MA., Golik MY., Kolisnyk SV., Altukhov AA., Baiurka SV., Karpushina SA., Tkachenko O., Iuliia K. Study of total antioxidant capacity of red raspberry (Rubus idaeous L.) shoots. Vitae. 2023; 30(1).

Doi: https://doi.org/10.17533/udea.vitae.v30n1a351486 DOI: https://doi.org/10.17533/udea.vitae.v30n1a351486

Li J., Lan T., Zhang C., Zeng C., Hou J., Yang Z., Zhang M., Liu J., Liu B. Reciprocal activation between IL-6/STAT3 and NOX4/Akt signalings promotes proliferation and survival of non-small cell lung cancer cells. Oncotarget. 2015; 6(2):1031-48. Doi: https://doi.org/10.18632/oncotarget.2671 DOI: https://doi.org/10.18632/oncotarget.2671

Fan Y., Mao R., Yang J. NF-κB and STAT3 signaling pathways collaboratively link inflammation to cancer. Protein Amp Cell. 2013; 4(3):176-85. Doi: https://doi.org/10.1007/s13238-013-2084-3 DOI: https://doi.org/10.1007/s13238-013-2084-3

Ismail WH., Abusara OH., Ikhmais B., Abul-Futouh H., Sunoqrot S., Ibrahim AI. Design, Synthesis, and Biological Activity of Coniferyl Aldehyde Derivatives as Potential Anticancer and Antioxidant Agents. Jordan j. pharm. Sci. 16(2):368-80.

Doi: https://doi.org/10.35516/jjps.v16i2.1463 DOI: https://doi.org/10.35516/jjps.v16i2.1463

Yarza R., Vela S., Solas M., Ramirez MJ. c-Jun N-terminal Kinase (JNK) Signaling as a Therapeutic Target for Alzheimer’s Disease. Front Pharmacol. 2016; 6. Doi: https://doi.org/10.3389/fphar.2015.00321 DOI: https://doi.org/10.3389/fphar.2015.00321

Gudej J. and Tomczyk M. Determination of Flavonoids, Tannins and Ellagic acid in leaves from Rubus L. species. Arc Pharm Res. 2004; 27(11):1114-1119. Doi: https://doi.org/10.1007/BF02975114 DOI: https://doi.org/10.1007/BF02975114

Kim M., Sutton K., Harris G. Raspberries and Related Fruits, second ed.; Academic Press, Oxford, UK 2016.

Doi: https://doi.org/10.1016/B978-0-12-384947-2.00586-9 DOI: https://doi.org/10.1016/B978-0-12-384947-2.00586-9

Jemal K., Sandeep BV., Pola S. Phytochemical screening and in vitro antioxidant activity analysis of leaf and callus extracts of Allophylus serratus (ROXB) KURZ. Jordan j. pharm. sci. 2022; 15(1):51-69. Doi: https://doi.org/10.35516/jjps.v15i1.291 DOI: https://doi.org/10.35516/jjps.v15i1.291

Durgo K., Belščak-Cvitanović A., Stančić A., Franekić J., Komes D. The Bioactive Potential of Red Raspberry (Rubus idaeus L.) Leaves in Exhibiting Cytotoxic and Cytoprotective Activity on Human Laryngeal Carcinoma and Colon Adenocarcinoma. J Med Food. 2012; 15(3):258-268.

Doi: https://doi.org/10.1089/jmf.2011.0087 DOI: https://doi.org/10.1089/jmf.2011.0087

Polischuk IM., Koshovyi OM., Osolodchenko TP., Komissarenko MA. The study of phenolic compounds and the antimicrobial action of the alcoholic extract from the cake of the red raspberry fruit. Visnik Farm. 2018; 3(95):30-3. Doi: https://doi.org/10.24959/nphj.18.2220 DOI: https://doi.org/10.24959/nphj.18.2220

Polishchuk IM., Komisarenko MA., Golik MY., Upyr TV. The study of saponins of the raspberry cake alcoholic extract by HPLC. Visnik Farm. 2018; 4(96):24-7. Doi: https://doi.org/10.24959/nphj.18.2230 DOI: https://doi.org/10.24959/nphj.18.2230

Komisarenko MA., Polischuk IM., Upyr TV., Saidov NB. Study of Amino acid composition and immunomodulatory activity of Rubus idaeus alcoholic extract. RES J PHARM TECHNOL. 2021; 14(3):1329-32.

Doi: https://doi.org/10.5958/0974-360x.2021.00236.5 DOI: https://doi.org/10.5958/0974-360X.2021.00236.5

Ghorbanzadeh B., Mansouri M., Hemmati A., Naghizadeh B., Mard S., Rezaie A. A study of the mechanisms underlying the anti-inflammatory effect of ellagic acid in carrageenan-induced paw edema in rats. Indian J Pharmacol. 2015; 47(3):292.

Doi: https://doi.org/10.4103/0253-7613.157127 DOI: https://doi.org/10.4103/0253-7613.157127

Yang DJ, Liu SC, Chen YC, Hsu SH, Chang YP, Lin JT. Three Pathways Assess Anti-Inflammatory Response of Epicatechin with Lipopolysaccharide-Mediated Macrophage RAW264.7 Cells. J Food Biochem. 2015; 39(3):334-43. Doi: https://doi.org/10.1111/jfbc.12134 DOI: https://doi.org/10.1111/jfbc.12134

Maslov O., Komisarenko M., Ponomarenko S., Horopashna D., Osolodchenko T., Kolisnyk S., Derymedvid L., Shovkova Z., Akhmedov E. Investigation the influence of biologically active compounds on the antioxidant, antibacterial and anti-inflammatory activities of red raspberry (Rubus idaeous l.) leaf extract. Curr Issues Pharm Med Sci. 2022. Doi: https://doi.org/10.2478/cipms-2022-0040 DOI: https://doi.org/10.2478/cipms-2022-0040

Maslov OY., Kolisnyk SV., Komisarenko MA., Kolisnyk OV., Ponomarenko SV. Antioxidant activity of green tea leaves (Camellia sinensis L.) liquid extracts. Pharmacologyonline. 2021; (3):291-8.

Doi: https://doi.org/10.5281/zenodo.7813115

Khoddami A., Wilkes M., Roberts T. Techniques for Analysis of Plant Phenolic Compounds. Molecules. 2013; 18(2):2328-75.

Doi: https://doi.org/10.3390/molecules18022328 DOI: https://doi.org/10.3390/molecules18022328

Morris GM., Huey R., Olson AJ. Using AutoDock for Ligand‐Receptor Docking. Curr Protoc Bioinform. 2008; 24(1).

Doi: https://doi.org/10.1002/0471250953.bi0814s24 DOI: https://doi.org/10.1002/0471250953.bi0814s24

RCSB PDB: Homepage. RCSB PDB: Homepage. Access: https://www.rcsb.org/.

PubChem. Access: https://pubchem.ncbi.nlm.nih.gov/

CASTp 3.0: Computed Atlas of Surface Topography of proteins. Access: http://sts.bioe.uic.edu/castp/index.html?201l

Maslov O., Kolisnyk S., Komisarenko M., Golik M. Study of total antioxidant activity of green tea leaves (Camellia sinensis L.). Herba Pol. 2022; 68(1):1-9. Doi: https://doi.org/10.2478/hepo-2022-0003 DOI: https://doi.org/10.2478/hepo-2022-0003

Stefanova OV. Preclinical studies of medicinal products: method.guidance. Kiev: Vidavnichy dim “Avitsena”; 2001:528.

Doi: https://doi.org/10.5281/zenodo.8139960

Maslov OY., Kolisnyk SV., Komisarenko MA., Altukhov AA., Dynnyk KV., Stepanenko VI. Study and evaluation antioxidant activity of dietary supplements with green tea extract. Curr Issues Pharm Med. 2021; 14(2):215-9.

Doi: https://doi.org/10.14739/2409-2932.2021.2.233306 DOI: https://doi.org/10.14739/2409-2932.2021.2.233306

Salminen JP. Recent Advances in Polyphenol Research. Chichester, UK: John Wiley & Sons, Ltd; 2014. The Chemistry and Chemical Ecology of Ellagitannins in Plant-Insect Interactions: From Underestimated Molecules to Bioactive Plant Constituents; 83-113. Doi: https://doi.org/10.1002/9781118329634.ch4 DOI: https://doi.org/10.1002/9781118329634.ch4

Kashchenko NI., Olennikov DN., Chirikova NK. Metabolites of Siberian Raspberries: LC-MS Profile, Seasonal Variation, Antioxidant Activity and, Thermal Stability of Rubus matsumuranus Phenolome. Plants. 10(11):2317.

Doi: https://doi.org/10.3390/plants10112317 DOI: https://doi.org/10.3390/plants10112317

Salminen JP., Roslin T., Karonen M., Sinkkonen J., Pihlaja K., Pulkkinen P. Seasonal Variation in the Content of Hydrolyzable Tannins, Flavonoid Glycosides, and Proanthocyanidins in Oak Leaves. J Chem Ecol. 2004; 30(9):1693-711.

Doi: https://doi.org/10.1023/b:joec.0000042396.40756.b7 DOI: https://doi.org/10.1023/B:JOEC.0000042396.40756.b7

Lopes AJ., Vasconcelos CC., Garcia JB., Pinheiro MS., Pereira FA., Camelo DD., Morais SV., Freitas JR., Rocha CQ., Ribeiro MN., Cartágenes MD. Anti-Inflammatory and Antioxidant Activity of Pollen Extract Collected by Scaptotrigona affinis postica: in silico, in vitro, and in vivo Studies. Antioxidants. 2020; 9(2):103. Doi: https://doi.org/10.3390/antiox9020103 DOI: https://doi.org/10.3390/antiox9020103

Maslov OY., Kolisnyk SV., Komisarenko MA., Kostina TA., Dynnyk KV. Development the composition and technology for obtaining a dietary supplement “Cachinol” with the antioxidant activity in the form of granules used in the polycystic ovary syndrome. News Pharm. 2022; 103(1):42-7.

Doi: https://doi.org/10.24959/nphj.22.77 DOI: https://doi.org/10.24959/nphj.22.77

Drummond GR., Selemidis S., Griendling KK., Sobey CG. Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nat Rev Drug Discov. 2011; 10(6):453-71.

Doi: https://doi.org/10.1038/nrd3403 DOI: https://doi.org/10.1038/nrd3403

Chikhale R., Sinha SK., Wanjari M., Gurav NS., Ayyanar M., Prasad S., Khanal P., Dey YN., Patil RB., Gurav SS. Computational assessment of saikosaponins as adjuvant treatment for COVID-19: molecular docking, dynamics, and network pharmacology analysis. Mol Divers. 2021; 25(3):1889-904.

Doi: https://doi.org/10.1007/s11030-021-10183-w DOI: https://doi.org/10.1007/s11030-021-10183-w

Maslov O., Kolesnik S., Komisarenko M., Altukhov A., Dynnyk K., Kostina T. Development and Validation of a Titrimetric Method for Quantitative Determination of Free Organic Acids in Green Tea Leaves. Pharmakeftiki. 2021; 33(4):304–11. Doi:

https://doi.org/10.5281/zenodo.7813135

Srivastava A., Greenspan P., Hartle DK., Hargrove JL., Amarowicz R., Pegg RB. Antioxidant and Anti-inflammatory Activities of Polyphenolics from Southeastern U.S. Range Blackberry Cultivars. J Agric Food Chem. 2010; 58(10):6102-9.

Doi: https://doi.org/10.1021/jf1004836 DOI: https://doi.org/10.1021/jf1004836

Velu V., Banerjee S., Rajendran V., Gupta G., Chellappan DK., Kumar N., Fuloria S., Mehta M., Dua K., Malipeddi H. Identification of phytoconstituents of Tragia involucrata leaf extracts and evaluate their correlation with anti-inflammatory & antioxidant properties. AntiInflammatory Amp AntiAllergy Agents Med Chem. 2021; 20(3):308-315.

Doi: https://doi.org/10.2174/1871523020666210126144506 DOI: https://doi.org/10.2174/1871523020666210126144506

Downloads

Published

2024-03-19

How to Cite

Maslov, O., Komisarenko, M., Kolisnyk, S., & Derymedvid, L. (2024). Evaluation of Anti-Inflammatory, Antioxidant Activities and Molecular Docking Analysis of Rubus idaeus Leaf Extract. Jordan Journal of Pharmaceutical Sciences, 17(1), 105–122. https://doi.org/10.35516/jjps.v17i1.1808

Issue

Section

Articles