Assessment of the Fungicidal and Nematicidal Potential of Reichardia tingitana (L.) Roth on Phytopathogenic Fungi and Plant Nematode

Authors

  • Abeer M. ElSayed Faculty of Pharmacy, Cairo University, Cairo, Egypt.
  • Ghena M. Abdel Razek Plant Pathology unit- Plant Protection Dept., Desert Research Center, El-Matareya, Cairo, Egypt.
  • Abeer E. EL-Hadidy Plant Pathology unit- Plant Protection Dept., Desert Research Center, El-Matareya, Cairo, Egypt.
  • Sabah H. El Gayed Faculty of Pharmacy, Cairo University, Cairo, Egypt.
  • Omer Sabry Faculty of Pharmacy, Cairo University, Cairo, Egypt.

DOI:

https://doi.org/10.35516/jjps.v16i3.529

Keywords:

Aflatoxin, Aspergillus flavus, false sow-thistle, lupeol, plant nematode, triterpenes

Abstract

The primary concern was the removal of numerous soil fumigants and nematicides due to their potential risks to human and environmental safety. Fungal pathogens can cause serious diseases in humans and animals. Among these, root-knot nematodes such as Meloidogyne incognita and Tylenchulus semipenetrans pose a significant threat, leading to substantial damage and yield reduction in various economically important plants. Therefore, this study aimed to assess the fungicidal and nematicidal activities of the ethanol extract (EE) and lupeol (L), the major isolates from the aerial parts of Reichardia tingitana L. Roth (Asteraceae), against Aspergillus flavus and plant-parasitic nematodes. Antifungal actions of EE (10-120 ppm) and L (23.4-281.2 µM) were evaluated through in vitro and in vivo growth assays, spore germination inhibition assays, and the efficacy of inhibiting pod and kernel infection. Nematicidal activity of EE and L was tested by preparing cultures containing egg masses of nematode species M. incognita from infected eggplants and T. semipenetrans from infected citrus roots, using concentrations of 2.5, 5, 10, 20, 40, 80, and 120 ppm. Results showed that R. tingitana (EE) and (L) exhibited nematostatic or nematicidal effects on nematode viability, egg hatch in vitro, and development and reproduction in vivo. Lupeol was particularly effective in inhibiting the colonization of A. flavus in peanuts. EE and L demonstrated high toxicity against nematodes in laboratory exposure and were effective in controlling nematode infestation in eggplant roots for 45 days. Improvement in plant growth parameters, including shoot and root length and weights, varied and was proportional to the doses of EE and L treatments. The antifungal and bio-nematicide effects of the ethanol extract from the aerial parts of R. tingitana were superior to those of lupeol, which could be attributed to the synergistic effect of phytochemicals in the ethanol extract. Both EE and L have potential applications as antifungal and bio-nematicide agents.

Author Biographies

Abeer M. ElSayed, Faculty of Pharmacy, Cairo University, Cairo, Egypt.

Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.

Ghena M. Abdel Razek, Plant Pathology unit- Plant Protection Dept., Desert Research Center, El-Matareya, Cairo, Egypt.

Plant Pathology unit- Plant Protection Dept., Desert Research Center, El-Matareya, Cairo, Egypt.

Abeer E. EL-Hadidy, Plant Pathology unit- Plant Protection Dept., Desert Research Center, El-Matareya, Cairo, Egypt.

Plant Pathology unit- Plant Protection Dept., Desert Research Center, El-Matareya, Cairo, Egypt.

Sabah H. El Gayed, Faculty of Pharmacy, Cairo University, Cairo, Egypt.

Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.

Department of Pharmacognosy, Faculty of Pharmacy,6th October University, Cairo, Egypt.

Omer Sabry, Faculty of Pharmacy, Cairo University, Cairo, Egypt.

Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.

Department of Pharmacognosy, Faculty of Pharmacy, Heliopolis University for Sustainable Development, Egypt.

References

Alfy TE., Tantawy MEE., Motaal A A., Metwally FG. Pharmacological, biological study and GC/MS analysis of the essential oil of the aerial parts and the alcohol soluble fraction of the n. hexane extract of the flowers of Reichardia tingitana L. Can J Pure Appl Sci. 2015; 9: 3167-3175.

Sassi AB., Harzallah-Skhiri F., Bourgougnon N., Aouni M. Antiviral activity of some Tunisian medicinal plants against Herpes simplex virus type 1. Nat Prod Res. 2008; 22: 53-65. DOI: https://doi.org/10.1080/14786410701589790

Boussada O., Kamel MBH., Ammar S., Haouas D., Mighri Z., Helal AN. Insecticidal activity of some Asteraceae plant extracts against Tribolium confusum. B Insectol. 2008; 61: 283-289.

El Sayed A. M., Ezzat S. M., Sabry O. M. A. New anti-bacterial lupane ester from the seeds of Acokanthera oppositifolia Lam., Nat Prod Res.2016; 4: 1-6.

Aristimuño Ficoseco ME., Vattuone MA., Audenaert K., Catalan CA., Sampietro DA. Antifungal and antimycotoxigenic metabolites in Anacardiaceae species from northwest Argentina: isolation, identification, and potential for control of Fusarium species. J Appl Microbiol. 2014; 116(5): 1262-1273. DOI: https://doi.org/10.1111/jam.12436

Horn BW., Dorner JW. Effect of nontoxigenic Aspergillus flavus and A. parasiticuson aflatoxin contamination of wounded peanut seeds inoculated with agricultural soil containing natural fungal populations. Biocont Sci Techno. 2009; l19: 249–262. DOI: https://doi.org/10.1080/09583150802696541

Perrone G., Gallo AAspergillus Species and Their Associated Mycotoxins. Mycotoxigenic fungi. 2016; 1542: 33-49. DOI: https://doi.org/10.1007/978-1-4939-6707-0_3

Boutrif E. Prevention of aflatoxin in pistachios. Food Nutr Agric. 1998; 21: 32-38.

Romani L. Immunity to fungal infections. Nat. Rev. Immunol. 2004; 4: 1-23. DOI: https://doi.org/10.1038/nri1255

Severns D. E., Clements M. J., Lambert R. J., White D. G. Comparison of Aspergillus ear rot and aflatoxin contamination in grain of high-oil and normal oil corn hybrids. J Food Prot. 2003; 66: 637-643. DOI: https://doi.org/10.4315/0362-028X-66.4.637

Roze L. V., Hong S. Y., Linz J. E. Aflatoxin biosynthesis: current frontiers. Annu Rev Food Sci T. 2013; 4: 293-311. DOI: https://doi.org/10.1146/annurev-food-083012-123702

Williams JH., Phillips TD., Jolly PE., Stiles JK., Jolly CM., Aggarwal D. Human aflatoxicosis in developing countries: a review of toxicology, exposure, potential health consequences, and interventions. Am. J. Clin. Nutr. 2004; 80 (5): 1106-1122. DOI: https://doi.org/10.1093/ajcn/80.5.1106

Abbas HK. Aflatoxin and Food Safety. CRC Press. 2005. ISBN 978-0-8247-2303-3.

Van Burik A. and Magee PT. Aspects of fungal pathogenesis in humans. Annu Rev Microbiol. 2001; 55: 743-772. DOI: https://doi.org/10.1146/annurev.micro.55.1.743

Lall N., Meyer JJM. Antibacterial activity of water and acetone extracts of the roots of Euclea natalensis. J Ethnopharmacol. 2000; 72: 313-316. DOI: https://doi.org/10.1016/S0378-8741(00)00231-2

Magama S., Pretorius JC., Zietsman PC. Antimicrobial properties of extracts from Euclea crispa subsp. crispa (Ebenaceae) towards human, S Afr J Bot. 2002; 69: 199-203. DOI: https://doi.org/10.1016/S0254-6299(15)30345-8

Anonymous, Agriculture Statistics of Pakistan, Govt. of Pakistan, Ministry of Food and Agriculture, Food and Agriculture Division. (Economic wing). Islamabad, Pakistan. 2010.

Khan MW., Khan MR., Khan AA. Identity of root-knot nematodes on certain vegetables of Aligarh district in northern India. International Nematological Network News. 1984; 1: 6-7.

Khan MR. Biological Control of Fusarial Wilt and Root-Knot of Legumes. Government of India Publication, Department of Biotechnology, Ministry of Science and Technology. New Delhi, India. 2005.

ElGayed SH., El Sayed A. M., Al-Ghonaimy AM., Abdel Wahab SM. High performance liquid chromatography-Ultraviolet (HPLC-UV) fingerprint profile and bioactivity of Citrus aurantium var. deliciosa fruits: peel and seeds on certain plant-parasitic nematodes. J Med plants Res. 2017; 11(15): 284-295.

Lee MD In: Nematodes Chapter 5Marek Renčo, Nicola Sasanelli and Lara MaistrelloPlants as Natural Sources of Nematicides ISNB: 978-1-62948-764-9© 2014 NOVA Science publisher, Inc. (2014).

Li G., Lu H., Zhang K. Volatile compound methyl thiobutyrate and application Faming Zhuanli Shenqing Gongkai Shuomingshu, CN103439426A. (in Chinese) 2013.

Nandwana RP, Varma MK, Arjun LAssociation of Tylenchulus semipenetrans with slow decline of citrus in humid South eastern plains of Rajasthan. Ind. J. Nematol. 2005; 35: 222-224.

Raper KB. and Fennell DI. The Genus Aspergillus. Robert EK Publish. Co., Huntington, New York, USA: 1977; 1-68.

Ismail IMK., Salanta A., Ali M., Cuf SA. Bioassay of Eucalyptus rostrata leaf extractives on Sclerotium cepivorum Berk. Egypt J Bot. 1989; 32: 109-26.

Nazli R., Akhter M., Ambreen S., Solangi AH., Sultana N. Insecticidal, nematicidal and antibacterial activities of Gliricidia sepium. Pak J Bot. 2008; 40(6): 2625-2629

Southey JF. Laboratory methods for work with plant and soil nematodes ministry of Agricultural Fish and Food Tech. Bulletin ed.2. Her Majesty`s Stationery Office London. 1970; 148.

Norton DC. Ecollogy of plant parasitic nematode.JonWilleg and Soms, New York. 1978; 238.

Sendecor GW., Cochran WG. Statistical methods. Oxford & J.BH Publishing com.7th edition; 1980.

Duncan D B. Multiple range and multiple F tests. Biometrics. 1955; 11: 1-42. DOI: https://doi.org/10.2307/3001478

Chung PY., Navaratnam P., Chung LY. Synergistic antimicrobial activity between pentacyclic triterpenoids and antibiotics against Staphylococcus aureus strains. Ann Clin Microbiol Antimicrob. 2011; 9:10-25. DOI: https://doi.org/10.1186/1476-0711-10-25

Torres AM., Barros GG., Palacios SA., Chulze SN., Battilani P. Review on pre- and post-harvest management of peanuts to minimize aflatoxin contamination. Food Res Int. 2014; 62: 11-19. DOI: https://doi.org/10.1016/j.foodres.2014.02.023

Raji R., Raveendran K. Antifungal activity of selected plant extracts against phytopathogenic fungi Aspergillus niger. Asian J Plant Sci Res. 2013; 3(1): 13-15.

Hu Y., Zhang J., Weijun K., Gang Z., Meihua Y. Mechanisms of antifungal and anti-aflatoxigenic properties of essential oil derived from turmeric (Curcuma longa L.) on Aspergillus flavus. Food Chem. 2017; 220: 1- 8. DOI: https://doi.org/10.1016/j.foodchem.2016.09.179

Tarazona A., Gómez JV., Gavara R., Mateo-Castro R., Gimeno-Adelantado JV., Jiménez M., Mateo E. M. Risk management of ochratoxigenic fungi and ochratoxinA in maize grains by bioactive EVOH films containing individual components of some essential oils. Int J Food Microbiol. 2018; 269: 107-119. DOI: https://doi.org/10.1016/j.ijfoodmicro.2018.02.002

Vaitheeswaran M., Ibrahim SM., Selvapriya P., Kumar JV. Chemotherapeutic action of alanine as soil drench against root –knot nematode, Meloidogyne incognita on Vignaunguiculata. Indian J. Nematol. 2003; 33(2): 136-142.

Kaplan DT., Keen NT., Thomason IJ. Studies on the mode of action of glyceollin in soybean incompatibility to the root knot nematode, Meloidogyne incognita. Physiol. Plant Pathol. 1980; 16: 319-325. DOI: https://doi.org/10.1016/S0048-4059(80)80003-8

Sultana N., Akhte M., Saify ZS., Khatoon Z., Ul-Hasan M., Qazi M. S., Ali Y. Isolation and structure determination of nematicidal iridoid sweroside from Alstonia scholaris. J. Entomol. Nematol. 2013; 5(2): 19-23. DOI: https://doi.org/10.5897/JEN12.003

Atolani O., Fabiyi OA. Plant Parasitic Nematodes Management Through Natural Products: Current Progress and Challenges. In: Ansari R., Rizvi R., Mahmood I. (eds) Management of Phytonematodes: Recent Advances and Future Challenges. 2020 Springer, Singapore. https://doi.org/10.1007/978-981-15-4087-5_13 DOI: https://doi.org/10.1007/978-981-15-4087-5_13

Konstantopoulou I., Vassilopoulou L., Mawogantisi PP., Scouras G. Insecticidal effect of essential oils: a study of essential oils extracted from eleven Greek aromatic plants on Drosophila auroria. Experientia 1994; 48: 616-619. DOI: https://doi.org/10.1007/BF01920251

Napolitano G., Fasciolo G., Venditti P., Mitochondrial Management of Reactive Oxygen Species Antioxidants (Basel, Switzerland). 2021; 10(11): 1824. https://doi.org/10.3390/antiox10111824. DOI: https://doi.org/10.3390/antiox10111824

ElSayed A.M., El ghwaji W., Youseif Z. M., El-Deeb K.S., ElSayed A.M. Fertility control impact of the aerial parts Ferula tingitana L. via alteration of hypothalamic-pituitary-gonadal axis responses of female Wistar rats. Jordan J. Pharm. Sci. 2022; 15(1). DOI: https://doi.org/10.35516/jjps.v15i1.285

Nour S., Salama M., Mahrous E, El-Askary H., Hifnawy M., Abdel Kawy M.A. Severinia buxifolia Leaves: Isolation, Characterization of Major Metabolites from the Bioactive Fractions and their Antiprotozoal Activity. Jordan J. Pharm. Sci. 2023; 16(1): 18-29. DOI: https://doi.org/10.35516/jjps.v16i1.1033

Downloads

Published

2023-09-23

How to Cite

ElSayed, A. M., Abdel Razek, G. M., EL-Hadidy, A. E., El Gayed, S. H., & Sabry, O. (2023). Assessment of the Fungicidal and Nematicidal Potential of Reichardia tingitana (L.) Roth on Phytopathogenic Fungi and Plant Nematode. Jordan Journal of Pharmaceutical Sciences, 16(3), 578–594. https://doi.org/10.35516/jjps.v16i3.529

Issue

Section

Articles