استكشاف المركبات النشطة بيولوجيًا المحتملة من Fingerroot (Boesenbergia rotunda L.) كمثبط للبروتينات المرتبطة بتصلب الشرايين (CETP، ACAT1، OSC، (sPLA2: دراسة في السيليكون

المؤلفون

  • Muhammad Hermawan Widyananda كلية الرياضيات والعلوم الطبيعية، جامعة براويجايا، مالانج، إندونيسيا.
  • Coni Anggie Kurniasari كلية الرياضيات والعلوم الطبيعية، جامعة براويجايا، مالانج، إندونيسيا.
  • Fajar Mustika Alam كلية الرياضيات والعلوم الطبيعية، جامعة براويجايا، مالانج، إندونيسيا.
  • Wahyu Choirur Rizky كلية الطب، جامعة سليمان الراجحي، البكيرية، القصيم، المملكة العربية السعودية
  • Tim Godefridus Antonius Dings كلية الصحة والطب وعلوم الحياة، جامعة ماستريخت، ماستريخت، هولندا.
  • Arif Nur Muhammad Ansori كلية العلوم والتكنولوجيا، جامعة إيرلانجا، سورابايا، إندونيسيا.
  • Yulanda Antonius كلية التكنولوجيا الحيوية، جامعة سورابايا، سورابايا، إندونيسيا.

DOI:

https://doi.org/10.35516/jjps.v16i3.1609

الكلمات المفتاحية:

ACAT1، تصلب الشرايين، CETP، الالتحام الجزيئي، OSC، sPLA2e

الملخص

يُعرف Boesenbergia rotunda L. (fingerroot) بأنه أحد النباتات الطبية الإندونيسية ذات الفاعلية الكبيرة في علاج الأمراض المختلفة، بما في ذلك تصلب الشرايين. تهدف هذه الدراسة إلى تحليل الفعالية المضادة لتصلب الشرايين للمركبات النشطة بيولوجيًا في جذور الأصابع من خلال تثبيط أربعة بروتينات مرتبطة بتصلب الشرايين (CETP و ACAT1 و OSC و sPLA2). المركبات النشطة بيولوجيًا من B. rotunda المسترجعة من قاعدة بيانات KnapSack، تم التنبؤ بخاصية تشابه الدواء باستخدام خادم الويب SwissADME، وتوقع النشاط الحيوي للمركب باستخدام خادم PASSOnline. تم إجراء تنبؤ الموقع النشط والتحقق من صحة البروتينات باستخدام خادم الويب SCFBio و Autodock Vina. تم إجراء الالتحام المحدد بين مركبات الإصبع والبروتينات بواسطة AutoDock Vina. Fingerroot يحتوي على 20 مركبًا حيويًا مع خصائص دوائية قوية. علاوة على ذلك، dihydrochrysin، sakuranetin، isopimaric acid، 2S-pinocembrin، 5،7-dihydroxy-8-C-geranylflavanone، 7،4'-dihydroxy-5-methoxyflavanone، dan 5،7-dihydroxy-8، و 7-methoxy-  من المتوقع أن يمتلك 5-hydroxy-8-geranylflavanone أنشطة مضادة لتصلب الشرايين. كان للروبرانين و (-) - 4-هيدروكسي باندوراتين A أقل درجة تقارب ملزمة مع CETP. اثنان من المركبات ذات أقل تقارب ارتباط في التفاعل مع ACAT1 و OSC و sPLA2 هما الروبرانين و 5،7-ثنائي هيدروكسي-8-سي-جيرانيل فلافانون. يمكن الاستنتاج أن جذر الإصبع لديه إمكانات عالية كعامل مضاد لتصلب الشرايين من خلال تثبيط 4 بروتينات مرتبطة بتصلب الشرايين على أساس نهج السيليكو

السير الشخصية للمؤلفين

Muhammad Hermawan Widyananda، كلية الرياضيات والعلوم الطبيعية، جامعة براويجايا، مالانج، إندونيسيا.

قسم الأحياء، كلية الرياضيات والعلوم الطبيعية، جامعة براويجايا، مالانج، إندونيسيا.

قسم البيولوجيا الجزيئية وعلم الوراثة، Generasi Biologi Indonesia Foundation، غريسيك، إندونيسيا.

Coni Anggie Kurniasari، كلية الرياضيات والعلوم الطبيعية، جامعة براويجايا، مالانج، إندونيسيا.

قسم الأحياء، كلية الرياضيات والعلوم الطبيعية، جامعة براويجايا، مالانج، إندونيسيا.

Fajar Mustika Alam، كلية الرياضيات والعلوم الطبيعية، جامعة براويجايا، مالانج، إندونيسيا.

قسم الأحياء، كلية الرياضيات والعلوم الطبيعية، جامعة براويجايا، مالانج، إندونيسيا.

Wahyu Choirur Rizky، كلية الطب، جامعة سليمان الراجحي، البكيرية، القصيم، المملكة العربية السعودية

كلية الطب، جامعة سليمان الراجحي، البكيرية، القصيم، المملكة العربية السعودية

Tim Godefridus Antonius Dings، كلية الصحة والطب وعلوم الحياة، جامعة ماستريخت، ماستريخت، هولندا.

كلية الصحة والطب وعلوم الحياة، جامعة ماستريخت، ماستريخت، هولندا.

Arif Nur Muhammad Ansori، كلية العلوم والتكنولوجيا، جامعة إيرلانجا، سورابايا، إندونيسيا.

كلية العلوم والتكنولوجيا، جامعة إيرلانجا، سورابايا، إندونيسيا.

معهد أوتارانشال للعلوم الصيدلانية، جامعة أوتارانشال، دهرادون، الهند.

Yulanda Antonius، كلية التكنولوجيا الحيوية، جامعة سورابايا، سورابايا، إندونيسيا.

كلية التكنولوجيا الحيوية، جامعة سورابايا، سورابايا، إندونيسيا.

المراجع

Geovanini G. R. and Libby P. Atherosclerosis and inflammation: Overview and updates. Clin. Sci. 2018; 132(12): 1243–1252. DOI: https://doi.org/10.1042/CS20180306

Kim H., Kim, S., Han, S., Rane P. P., Fox, K. M., Qian, Y. and Suh, H. S. Prevalence and incidence of atherosclerotic cardiovascular disease and its risk factors in Korea: A nationwide population-based study. BMC Public Health. 2019; 19(1112): 1–11. DOI: https://doi.org/10.1186/s12889-019-7439-0

Maharani A., Sujarwoto, Praveen D. and Oceandy D. Cardiovascular disease risk factor prevalence and estimated 10-year cardiovascular risk scores in Indonesia: The SMARThealth Extend study. PLoS One. 2019; 14(4): 1–13. DOI: https://doi.org/10.1371/journal.pone.0215219

Jamkhande P. G., Chandak P. G., Dhawale S. C., Barde S. R., Tidke P. S. and Sakhare R. S. Therapeutic approaches to drug targets in atherosclerosis. Saudi Pharm. J. 2014; 22(3): 179–190. DOI: https://doi.org/10.1016/j.jsps.2013.04.005

Barter P. J. and Kastelein J. J. P. Targeting cholesteryl ester transfer protein for the prevention and management of cardiovascular disease. J. Am. Coll. Cardiol. 2006; 47(3): 492–499. DOI: https://doi.org/10.1016/j.jacc.2005.09.042

Yang L., Yang J. B., Chen J., Yu G. Y., Zhou P., Lei L., Wang Z. Z., Chang C. C., Yang X. Y., Chang T. Y. and Li B. L. Enhancement of human ACAT1 gene expression to promote the macrophage-derived foam cell formation by dexamethasone. Cell Res. 2004; 14(4): 315–323. DOI: https://doi.org/10.1038/sj.cr.7290231

Telford D. E., Lipson S. M., Hugh P., Barret R., Sutherland B. G., Edwards J. Y., Aebi J. D., Dehmlow H., Morand O. H. and Huff M. W. A novel inhibitor of oxidosqualene: Lanosterol cyclase inhibits very low-density lipoprotein apolipoprotein B100 (apoB100) production and enhances low-density lipoprotein apoB100 catabolism through marked reduction in hepatic cholesterol content. Arterioscler. Thromb. Vasc. Biol. 2005; 25(12): 2608–2614. DOI: https://doi.org/10.1161/01.ATV.0000189158.28455.94

Hurt-camejo E., Camejo G., Peilot H., Öörni K. and Kovanen P. Phospholipase A(2) in vascular disease. Circ. Res. 2001; 89(4): 298–304. DOI: https://doi.org/10.1161/hh1601.095598

Ward N. C., Watts G. F. and Eckel R. H. Statin toxicity: Mechanistic insights and clinical implications. Circ. Res. 2019; 124(2): 328–350. DOI: https://doi.org/10.1161/CIRCRESAHA.118.312782

Atun S., Handayani S. and Rakhmawati A. Potential bioactive compounds isolated from Boesenbergia rotunda as antioxidant and antimicrobial agents. Pharmacogn. J. 2018; 10(3): 513–518. DOI: https://doi.org/10.5530/pj.2018.3.84

Rosdianto A. M., Puspitasari I. M., Lesmana R., and Levita J. Bioactive compounds of Boesenbergia sp. and their anti-inflammatory mechanism: A review. J. Appl. Pharm. Sci. 2020; 10(7): 116–126.

Adhikari D., Gong D. S., Oh S. H., Sung E. H., Lee S. O., Kim D. W., Oak M. H. and Kim H. J. Vasorelaxant effect of Boesenbergia rotunda and its active ingredients on an isolated coronary artery. Plants. 2020; 9(1688): 1–13. DOI: https://doi.org/10.3390/plants9121688

Eng-chong T., Yean-Kee L., Chin-Fei C., Choon-Han H., Sher-Ming W., Li-Ping C. T., Gen-Teck F., Khalid N., Rahman N. A., Karsani S. A., Othman S., Othman R. and Yusof R. Boesenbergia rotunda : From ethnomedicine to drug discovery. Evidence-Based Complement. Altern. 2012; 2012: 1–25. DOI: https://doi.org/10.1155/2012/473637

Daina A., Michielin O. and Zoete V. SwissADME : a free web tool to evaluate pharmacokinetics , drug- likeness and medicinal chemistry friendliness of small molecules. Nat. Publ. Gr. 2017; 7(42717): 1–13. DOI: https://doi.org/10.1038/srep42717

Kharisma V. D., Widyananda M. H., Ansori A. N. M., Nege A. S., Naw S. W. and Nugraha A. P. Tea catechin as antiviral agent via apoptosis agonist and triple inhibitor mechanism agains HIV-1 infection: A bioinformatics approach. J. Pharm. Pharmacogn. Res. 2021; 9(4): 435-445. DOI: https://doi.org/10.56499/jppres21.1009_9.4.435

Weingärtner O., Lütjohann D., Böhm M. and Laufs U. Relationship between cholesterol synthesis and intestinal absorption is associated with cardiovascular risk. Atherosclerosis. 2010; 210: 362–365. DOI: https://doi.org/10.1016/j.atherosclerosis.2010.01.003

Babandi A., Anosike C. A., Ezeanyika L. U., Yelekçi K., Uba A. I. Molecular modeling studies of some phytoligands from Ficus sycomorus fraction as potential inhibitors of cytochrome CYP6P3 enzyme of Anopheles coluzzii. Jordan J. Pharm. Sci. 2022; 15(2): 258-275. DOI: https://doi.org/10.35516/jjps.v15i2.324

Abu Khalaf R., NasrAllah A., AlBadawi G. Cholesteryl ester transfer protein inhibitory activity of new 4-bromophenethyl benzamides. Jordan J. Pharm. Sci. 2023; 16(2): 381-390. DOI: https://doi.org/10.35516/jjps.v16i2.1465

Malekmohammad K. and Sewell R. D. E. Antioxidants and atherosclerosis: Mechanistic aspects. Biomolecules. 2019; 9(301): 1–19. DOI: https://doi.org/10.3390/biom9080301

Hussain S. M., Hussain M. S., Ahmed A. and Arif N. Characterization of isolated bioactive phytoconstituents from Flacourtia indica as potential phytopharmaceuticals - An in silico perspective. J. Pharmacogn and Phytochem. 2016; 5(6): 323–331.

Trott O. and Olson A. J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput Chem. 2009; 31(2): 455-461. DOI: https://doi.org/10.1002/jcc.21334

Widyananda M. H., Pratama S. K., Samoedra R. S., Sari F. N., Kharisma V. D., Ansori, A. N. M. and Antonius Y. Molecular docking study of sea urchin (Arbacia lixula) peptides as multi-target inhibitor for non-small cell lung cancer (NSCLC) associated proteins. J. Pharm Pharmacogn. Res. 2021; 9(4): 484–496. DOI: https://doi.org/10.56499/jppres21.1047_9.4.484

Lipinski C. A., Lombardo F., Dominy B. W. and Feeney P. J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev. 2001; 46: 3–26.

Veber D. F., Johnson S. R., Cheng H., Smith B. R., Ward K. W. and Kopple K. D. Molecular properties that influence the oral bioavailability of drug candidates. J. Med. Chem. 2002; 45: 2615–2623. DOI: https://doi.org/10.1021/jm020017n

Egan W. J., Merz K. M. and Baldwin J. J. Prediction of drug absorption using multivariate statistics. J. Med. Chem. 2000; 43: 3867–3877. DOI: https://doi.org/10.1021/jm000292e

Benet L. Z., Hosey, C. M., Ursu, O., Oprea, T. I., Sciences, T. and Division, I. BDDCS, the rule of 5 and drugability. Adv Drug Deliv Rev. 2017; 101: 89–98. DOI: https://doi.org/10.1016/j.addr.2016.05.007

Arnott J. A. and Planey, S. L. The influence of lipophilicity in drug discovery and design. Expert Opin Drug Discov. 2012; 7(10): 909–921. DOI: https://doi.org/10.1517/17460441.2012.714363

Stompor M. A. Review on Sources and Pharmacological Aspects of Sakuranetin. Nutrients. 2020; 12: 1–13. DOI: https://doi.org/10.3390/nu12020513

Horiba H., Nakagawa T., Zhu Q., Ashour A., Watanabe A. and Shimizu K. Biological activities of extracts from different parts of Cryptomeria japonica. Nat. Prod. Comun. 2016; 11(9): 7–12. DOI: https://doi.org/10.1177/1934578X1601100939

Kokkinidis M., Glykos N. M. and Fadouloglou V. E. Protein flexibility and enzymatic catalysis. Advances in Protein Chemistry and Structural Biology. 2012; 87: 181-218. DOI: https://doi.org/10.1016/B978-0-12-398312-1.00007-X

Sol A. D., Fujihashi H., Amoros D. and Nussinov R. Residue centrality, functionally important residues, and active site shape: Analysis of enzyme and non-enzyme families. Protein Sci. 2006; 15(9): 2120–2128. DOI: https://doi.org/10.1110/ps.062249106

Tan L., Su J., Wu D., Yu D., Su Z., He J., Wu X., Su Z., He J., Wu X., Kong S., Lai X., Lin J. and Su Z. Kinetics and mechanism study of competitive inhibition of jack-bean urease by baicalin. Sci. World J. 2013: 1-9. DOI: https://doi.org/10.1155/2013/879501

Chapman M. J., Redfern J. S., McGovern M. E. and Giral P. Niacin and fibrates in atherogenic dyslipidemia: Pharmacotherapy to reduce cardiovascular risk. Pharmacol. Ther. 2010; 126: 314–345. DOI: https://doi.org/10.1016/j.pharmthera.2010.01.008

Rogers M. A., Liu J., Song B. L., Li B. L., Chang C. C. Y. and Chang T-Y. Acyl-CoA:cholesterol acyltransferases (ACATs/SOATs): Enzymes with multiple sterols as substrates and as activators. J. Steroid Biochem. Mol. Biol. 2015; 151: 102–107. DOI: https://doi.org/10.1016/j.jsbmb.2014.09.008

Yu X. H., Fu Y. C., Zhang D. W., Yin K. and Tang C. K. Foam cells in atherosclerosis. Clin. Chim. Acta. 2013; 424: 245–252. DOI: https://doi.org/10.1016/j.cca.2013.06.006

Mahamuni S. P., Khose R. D., Menaa F. and Badole S. L. Therapeutic approaches to drug targets in hyperlipidemia. Biomed. Neth. 2012; 2: 137–146. DOI: https://doi.org/10.1016/j.biomed.2012.08.002

Trapani L. Segatto M., Ascenzi P., and Pallottini V. Potential role of nonstatin cholesterol lowering agents. IUBMB Life. 2011; 63: 964–971. DOI: https://doi.org/10.1002/iub.522

Six D. A. and Dennis E. A. The expanding superfamily of phospholipase A2 enzymes: Classification and characterization. Biochim. Biophys. Acta - Mol. Cell Biol. Lipids. 2000; 1488: 1–19. DOI: https://doi.org/10.1016/S1388-1981(00)00105-0

Sun C. Q., Zhong C. Y., Sun W. W., Xiao H., Zhu P., Lin Y. Z., Zhang C. L., Gao H. and Song, Z. Y. Elevated Type II Secretory Phospholipase A2 Increases the Risk of Early Atherosclerosis in Patients with Newly Diagnosed Metabolic Syndrome. Sci. Rep. 2016; 6: 1–8. DOI: https://doi.org/10.1038/srep34929

Rosenson R. S. Phospholipase A2 inhibition and atherosclerotic vascular disease: Prospects for targeting secretory and lipoprotein-associated phospholipase A2 enzymes. Curr. Opin. Lipidol. 2010; 21: 473–480. DOI: https://doi.org/10.1097/MOL.0b013e32833eb581

Irianti I., Pratiwi, S. U. T., Yasmin, I. F. Antituberculosis activity of active compound of ethyl acetate extract for patikan kebo (Euphorbia hirta L). JJPS. 2022; 15: 461–473. DOI: https://doi.org/10.35516/jjps.v15i4.671

Hossain, E., Aziz, A., Vabna, J. N., Akter, I., Hossain, S., Sarker, S., Mazumder, K. Phytochemical screening and pharmacological evaluation of the methanolic extract of Cissus elongata Roxb. leaves. JJPS. 2022; 15: 449–460. DOI: https://doi.org/10.35516/jjps.v15i4.670

التنزيلات

منشور

2023-09-23

كيفية الاقتباس

Widyananda, M. H., Kurniasari, C. A., Alam, F. M., Rizky, W. C., Dings, T. G. A., Ansori, A. N. M., & Antonius, Y. (2023). استكشاف المركبات النشطة بيولوجيًا المحتملة من Fingerroot (Boesenbergia rotunda L.) كمثبط للبروتينات المرتبطة بتصلب الشرايين (CETP، ACAT1، OSC، (sPLA2: دراسة في السيليكون. Jordan Journal of Pharmaceutical Sciences, 16(3), 550–564. https://doi.org/10.35516/jjps.v16i3.1609

إصدار

القسم

Articles