نظام التجلئة الموقعي للكيتوزان/الجيلاتين/جيلوسير للتوصيل المُستدام عن طريق الفم للباراسيتامول للمرضى الذين يعانون من صعوبة في البلع

المؤلفون

  • إنعام الناجي كلية الصيدلة، جامعة البترا، عمان، الأردن
  • فيصل العكايلة كلية الصيدلة، جامعة البترا، عمان، الأردن
  • رؤى العجيلي كلية الصيدلة، جامعة البترا، عمان، الأردن
  • نضال القنة كلية الصيدلة، جامعة البترا، عمان، الأردن
  • مياس الريماوي كلية الصيدلة، جامعة البترا، عمان، الأردن
  • مي خنفر كلية الصيدلة، جامعة العلوم والتكنولوجيا الأردنية، اربد، الأردن
  • احمد سعد عبدالباري علي اغا كلية الصيدلة، الجامعة الأردنية، عمان، الأردن
  • السيد سلام شركة التقدم للصناعات الدوائية، الموقر، الأردن

DOI:

https://doi.org/10.35516/jjps.v17i2.1702

الكلمات المفتاحية:

نظام مصفوفة الجل الموضعي، كيتوزان، ألجينات الصوديوم، جيلوسير، باراسيتامول

الملخص

تهدف الدراسة إلى تطوير نظام تركيبة تعطى عن طريق الفم وتكون جل داخل المعدة نتيجة تعرضها لدرجات الحموضة العالية في المعدة ويُحقق توصيل مُستدام للباراسيتامول، مُستهدفًا الفئات العمرية الصغيرة والكبيرة. تم استعمال مزيج من الجينات الصوديوم، الكيتوزان، وجيلوسير. تم التوصيف التركيبة باستخدام تقنيات مثل التفحص الحراري التفاضلي، وطيف الأشعة تحت الحمراء ، واللزوجة. أظهر النظام قدرة على التحكم الفعّال في إطلاق الدواء في مستويات مختلفة من دراجات الحموضة. أفضل التركيبات أظهرت وقت إطلاق يتجاوز الـ8 ساعات. تم اختيار النظام المناسب بناء على دراسات اللزوجة والدراسات البيولوجية.

المراجع

Abdallah Marwa H., Abdelnabi Dina M., and Elghamry Hanaa A. Response Surface Methodology for Optimization of Buspirone Hydrochloride-Loaded In Situ Gel for Pediatric Anxiety. Gels. 2022; 8(7):395. https://doi.org/10.3390/gels8070395 DOI: https://doi.org/10.3390/gels8070395

Abdullah Samaa, El Hadad Sahar, and Aldahlawi Alia. The development of a novel oral 5-Fluorouracil in-situ gelling nanosuspension to potentiate the anticancer activity against colorectal cancer cells. Int J Pharm. 2022; 613:121406. https://doi.org/10.1016/j.ijpharm.2021.121406 DOI: https://doi.org/10.1016/j.ijpharm.2021.121406

Belhadji Linda, HadjSadok Abdelkader, and Moulai-Mostefa Nadji. Design and characterization of calcium-free in-situ gel formulation based on sodium alginate and chitosan. Drug Devel Ind Pharm. 2018; 44(4):662-669. https://doi.org/10.1080/03639045.2017.1408640 DOI: https://doi.org/10.1080/03639045.2017.1408640

Kim Jong Hee, Song Seung Hyun, Joo Sang Hoon, Park Gyu Hwan, Weon Kwon-Yeon. Formulation of a Gastroretentive In Situ Oral Gel Containing Metformin HCl Based on DoE. Pharmaceut. 2022; 14(9):1777. https://doi.org/10.3390/pharmaceutics14091777 DOI: https://doi.org/10.3390/pharmaceutics14091777

Reed Kenneth, Li Amy, Wilson Britney, Assamoi Tetchi. Enhancement of Ocular In Situ Gelling Properties of Low Acyl Gellan Gum by Use of Ion Exchange. J Ocul Pharmacol Ther. 2016; 32(9):574-582.

https://doi.org/10.1089/jop.2016.0084 DOI: https://doi.org/10.1089/jop.2016.0084

Sharma Suraj, Sarkar Gunjan, Srestha Bhupendra, Chattopadhyay Dipankar, Bhowmik Manas. In-situ fast gelling formulation for oral sustained drug delivery of paracetamol to dysphagic patients. Int J Biol Macromol. 2019; 134:864-868.

https://doi.org/10.1016/j.ijbiomac.2019.05.092 DOI: https://doi.org/10.1016/j.ijbiomac.2019.05.092

Khalil, E. A., Majid, S. A., Suaifan, G. A., Al-Akayleh, F. T., & Sallam, A. S. A. Physicochemical characterization of emulgel formulated with SepineoP 600, SepineoSE 68 and cosolvent mixtures. Pharm. dev. technol. 2016; 21(5):519-527.‏ DOI: https://doi.org/10.3109/10837450.2015.1022789

Srichan, T. and Phaechamud, T. Designing Solvent Exchange-Induced In Situ Forming Gel from Aqueous Insoluble Polymers as Matrix Base for Periodontitis Treatment. AAPS PharmSciTech. 2017; 18(1):194-201. https://doi.org/10.1208/s12249-016-0507-1 DOI: https://doi.org/10.1208/s12249-016-0507-1

Itoh Kunihiko, Yahaba Masayuki, Takahashi Akie, Tsuruya Reina, Miyazaki Shozo, Dairaku Masatake, Togashi Mitsuo, Mikami Ryozo, and Attwood David. In situ gelling xyloglucan/pectin formulations for oral sustained drug delivery. Int J Pharm. 2008; 356(1):95-101. https://doi.org/10.1016/j.ijpharm.2007.12.049 DOI: https://doi.org/10.1016/j.ijpharm.2007.12.049

Phan V. H. Giang, Thambi Thavasyappan, Gil Moon Soo, and Lee Doo Sung. Temperature and pH-sensitive injectable hydrogels based on poly(sulfamethazine carbonate urethane) for sustained delivery of cationic proteins. Polym. 2017; 109:38-48.

https://doi.org/10.1016/j.polymer.2016.12.039 DOI: https://doi.org/10.1016/j.polymer.2016.12.039

Kubo Wataru, Itoh Kunihiko, Miyazaki Shozo, and Attwood David. Oral Sustained Delivery of Theophylline and Cimetidine from In Situ Gelling Pectin Formulations in Rabbits. Drug Devel Ind Pharm. 2005; 31(8):819-825. https://doi.org/10.1080/03639040500271902 DOI: https://doi.org/10.1080/03639040500271902

Kubo Wataru, Miyazaki Shozo, Dairaku Masatake, Togashi Mitsuo, Mikami Ryozo, and Attwood David. Oral sustained delivery of ambroxol from in situ-gelling pectin formulations. Int J Pharm. 2004; 271(1):233-240. https://doi.org/10.1016/j.ijpharm.2003.11.027 DOI: https://doi.org/10.1016/j.ijpharm.2003.11.027

Twal, S., Jaber, N., Al-Remawi, M., Hamad, I., Al-Akayleh, F., and Alshaer, W. Dual stimuli-responsive polymeric nanoparticles combining soluplus and chitosan for enhanced breast cancer targeting. RSC advances, 2024; 14(5):3070-3084.‏ DOI: 10.1039/D3RA08074A DOI: https://doi.org/10.1039/D3RA08074A

Cao Dinglingge, Chen Xi, Cao Feng, Guo Wen, Tang Jingyu, Cai Caiyun, Cui Shuquan, Yang Xiaowei, Yu Lin, and Su Yong. An intelligent transdermal formulation of ALA‐loaded copolymer thermogel with spontaneous asymmetry by using temperature‐induced sol–gel transition and gel–sol (suspension) transition on different sides. Adv Funct Mater. 2021; 31(22):2100349. DOI: https://doi.org/10.1002/adfm.202100349

Kurniawansyah Insan Sunan, Rusdiana Taofik, Sopyan Iyan, Desy Arya Insi Farisa, Wahab Habibah A, and Nurzanah Dela. Comparative Study of In Situ Gel Formulation Based on the Physico-Chemical Aspect: Systematic Review. Gels. 2023; 9(8):645. DOI: https://doi.org/10.3390/gels9080645

Cheng Cheng, Sun Qingyun, Wang Xiuping, He Bingfang, and Jiang Tianyue. Enzyme-manipulated hydrogelation of small molecules for biomedical applications. Acta Biomater. 2022; 151:88-105. DOI: https://doi.org/10.1016/j.actbio.2022.08.016

Hu Chuhuan, Lu Wei, Mata Analucia, Nishinari Katsuyoshi, and Fang Yapeng. Ions-induced gelation of alginate: Mechanisms and applications. Int J Biol Macromol. 2021; 177:578-588. DOI: https://doi.org/10.1016/j.ijbiomac.2021.02.086

Raffa Robert B., Pergolizzi Jr Joseph V., Taylor Jr Robert, Decker John F., and Patrick Jeffrey T. Acetaminophen (Paracetamol) Oral Absorption and Clinical Influences. Pain Pract. 2014; 14(7):668-677.

https://doi.org/10.1111/papr.12130 DOI: https://doi.org/10.1111/papr.12130

Endo Hisashi, Watanabe Yoshiteru, Matsumoto Mitsuo, and Shirotake Shoichi. Preparation and Evaluation of Heat-sensitive Melting Gel Acetaminophen Gel. JJ Hosp Pharm. 2000; 26(3):250-258.

https://doi.org/10.5649/jjphcs1975.26.250 DOI: https://doi.org/10.5649/jjphcs1975.26.250

Kubo Wataru, Miyazaki Shozo, and Attwood David. Oral sustained delivery of paracetamol from in situ-gelling gellan and sodium alginate formulations. Int J Pharm. 2003; 258(1):55-64. https://doi.org/10.1016/S0378-5173(03)00163-7 DOI: https://doi.org/10.1016/S0378-5173(03)00163-7

Miyazaki Shozo, Endo Kumiko, Kawasaki Naoko, Kubo Wataru, Watanabe Hideki, and Attwood David. Oral Sustained Delivery of Paracetamol from In Situ Gelling Xyloglucan Formulations. Drug Devel Ind Pharm. 2003; 29(2):113-119.

https://doi.org/10.1081/DDC-120016718 DOI: https://doi.org/10.1081/DDC-120016718

Itoh Kunihiko, Tsuruya Reina, Shimoyama Tetsuya, Watanabe Hideki, Miyazaki Shozo, D'Emanuele Antony, and Attwood David. In situ gelling xyloglucan/alginate liquid formulation for oral sustained drug delivery to dysphagic patients. Drug Devel Ind Pharm. 2010; 36(4):449-455. https://doi.org/10.3109/03639040903244480 DOI: https://doi.org/10.3109/03639040903244480

Kubo Wataru, Konno Yasuhiro, Miyazaki Shozo, and Attwood David. In Situ Gelling Pectin Formulations for Oral Sustained Delivery of Paracetamol. Drug Devel Ind Pharm. 2004; 30(6):593-599. https://doi.org/10.1081/DDC-120037490 DOI: https://doi.org/10.1081/DDC-120037490

Alwahsh Wasan, Jaber Mai, Al Muhaissen Suha, Al-Khalidi Bashar A, Sahudin Shariza, and AlKhatib Hatim S. Effect of Surface Modification with Na Lauryl Sulfate on The Water-Uptake and Release Properties of Na Tripolyphosphate-Cross Linked Chitosan Beads. Jordan Journal of Pharmaceutical Sciences. 2023; 16(2):484-484. https://doi.org/10.35516/jjps.v16i2.1543 DOI: https://doi.org/10.35516/jjps.v16i2.1543

Kothiya Daxaben and Vaghani Subhash. Fabrication of Interpenetrating Polymer Network-Based Hydrogel for Colon-Targeted Release of Nateglinide. Jordan Journal of Pharmaceutical Sciences. 2023; 16(4):753-769. https://doi.org/10.35516/jjps.v16i4.775 DOI: https://doi.org/10.35516/jjps.v16i4.775

Almasri Rasha, Swed Amin, and Alali Haifaa. Preparation and Characterization of Hydrogel Beads for Controlled Release of Amoxicillin. Jordan Journal of Pharmaceutical Sciences. 2022; 15(4):523-535.

https://doi.org/10.35516/jjps.v15i4.675 DOI: https://doi.org/10.35516/jjps.v15i4.675

Al-Akayleh Faisal, Al Remawi Mayyas, Rashid Iyad, and Badwan Adnan. Formulation and In vitro assessment of sustained release terbutaline sulfate tablet made from binary hydrophilic polymer mixtures. Pharm Dev Technol. 2013; 18(5):1204-1212.

https://doi.org/10.3109/10837450.2011.620968 DOI: https://doi.org/10.3109/10837450.2011.620968

Jadach Barbara, Świetlik Weronika, and Froelich Anna. Sodium Alginate as a Pharmaceutical Excipient: Novel Applications of a Well-known Polymer. J Pharm Sci. 2022; 111(5):1250-1261.

https://doi.org/10.1016/j.xphs.2021.12.024 DOI: https://doi.org/10.1016/j.xphs.2021.12.024

Stephen Alistair M., and Phillips Glyn O. Food polysaccharides and their applications: CRC press2016. DOI: https://doi.org/10.1201/9781420015164

Tønnesen H. H., and Karlsen J. Alginate in drug delivery systems. Drug Dev Ind Pharm. 2002; 28(6):621-630. https://doi.org/10.1081/ddc-120003853 DOI: https://doi.org/10.1081/DDC-120003853

Rinaudo Marguerite. Characterization and Properties of Some Polysaccharides Used as Biomaterials. Macromol Symp. 2006; 245-246(1):549-557.

https://doi.org/10.1002/masy.200651379 DOI: https://doi.org/10.1002/masy.200651379

Dash M., Chiellini F., Ottenbrite R. M., and Chiellini E. Chitosan—A versatile semi-synthetic polymer in biomedical applications. Prog. 2011; 36(8):981-1014. https://doi.org/10.1016/j.progpolymsci.2011.02.001 DOI: https://doi.org/10.1016/j.progpolymsci.2011.02.001

Jaber Nisrein, Al‐Remawi Mayyas, Al‐Akayleh Faisal, Al‐Muhtaseb Najah, Al‐Adham Ibrahim S. I., and Collier Phillip J. A review of the antiviral activity of Chitosan, including patented applications and its potential use against COVID‐19. J Appl Microbiol. 2022; 132(1):41-58. https://doi.org/10.1111/jam.15202 DOI: https://doi.org/10.1111/jam.15202

Jaber Nisrein, Al-Akayleh Faisal, Abdel-Rahem Rami A., and Al-Remawi Mayyas. Characterization ex vivo skin permeation and pharmacological studies of ibuprofen lysinate-chitosan-gold nanoparticles. J Drug Deliv Sci Technol. 2021; 62:102399.

https://doi.org/10.1016/j.jddst.2021.102399 DOI: https://doi.org/10.1016/j.jddst.2021.102399

Al Remawia Mayyas, Al-Akayleh Faisal, Salem Mutaz, Al Shami Munther, and Badwan Adnan. Application of Excipient Made from Chitosan - Xanthan as a Single Component for the Controlled Release of Ambroxol Tablet. J Excip Food Chem. 2013; 2: 48-57%V 44.

Al-Akayleh Faisal, Jaber Nisrein, Al-Remawi Mayyas, Al Odwan Ghazi, and Qinna Nidal. Chitosan-biotin topical film: preparation and evaluation of burn wound healing activity. Pharm Dev Technol. 2022; 27(4):479-489. https://doi.org/10.1080/10837450.2022.2079132 DOI: https://doi.org/10.1080/10837450.2022.2079132

Al-Akayleh Faisal, Jaber Nisrein, and Al-Remawi Mayyas. Designing, Preparation, and Evaluation of Orodispersible Chitosan Anionic Salt Tablets. J Pharm Innov. 2022; 17(1):129-141. https://doi.org/10.1007/s12247-020-09497-3 DOI: https://doi.org/10.1007/s12247-020-09497-3

Panigrahi Kahnu Charan, Patra Ch Niranjan, Jena Goutam Kumar, Ghose Debashish, Jena Jayashree, Panda Santosh Kumar, and Sahu Manoranjan. Gelucire: A versatile polymer for modified release drug delivery system. Future J Pharm Sci. 2018; 4(1):102-108.

https://doi.org/10.1016/j.fjps.2017.11.001 DOI: https://doi.org/10.1016/j.fjps.2017.11.001

Siepmann Juergen and Peppas Nicholas A. Higuchi equation: Derivation, applications, use and misuse. Int J Pharm. 2011; 418(1):6-12.

https://doi.org/10.1016/j.ijpharm.2011.03.051 DOI: https://doi.org/10.1016/j.ijpharm.2011.03.051

Hixson A. W., and Crowell J. H. Dependence of Reaction Velocity upon surface and Agitation. Ind Eng Chem. 1931; 23(8):923-931. https://doi.org/10.1021/ie50260a018 DOI: https://doi.org/10.1021/ie50260a018

Peppas NA. Analysis of Fickian and non-Fickian drug release from polymers. Pharm Acta Helv. 1985; 60(4):110-111.

Jensen L. S., Valentine J., Milne R. W., and Evans A. M. The quantification of paracetamol, paracetamol glucuronide and paracetamol sulphate in plasma and urine using a single high-performance liquid chromatography assay. J Pharm Biomed Anal. 2004; 34(3):585-593. https://doi.org/10.1016/S0731-7085(03)00573-9 DOI: https://doi.org/10.1016/S0731-7085(03)00573-9

Dentini Mariella, Rinaldi Gianluca, Barbetta Andrea, Risica Daniela, and Skjåk-Bræk Gudmund. Acid gel formation in (pseudo) alginates with and without G blocks produced by epimerising mannuronan with C5 epimerases. Carbohydr Polym. 2006; 63(4):519-526. https://doi.org/10.1016/j.carbpol.2005.10.017 DOI: https://doi.org/10.1016/j.carbpol.2005.10.017

George Meera, Abraham T. Emilia. Polyionic hydrocolloids for the intestinal delivery of protein drugs: Alginate and chitosan — a review. J Control Release. 2006; 114(1):1-14.

https://doi.org/10.1016/j.jconrel.2006.04.017 DOI: https://doi.org/10.1016/j.jconrel.2006.04.017

Tapia Cristián, Escobar Zunilda, Costa Edda, Sapag-Hagar Jaime, Valenzuela Fernando, Basualto Carlos, Nella Gai Marı́a, and Yazdani-Pedram Mehrdad. Comparative studies on polyelectrolyte complexes and mixtures of chitosan–alginate and chitosan–carrageenan as prolonged diltiazem clorhydrate release systems. Eur J Pharm Biopharm. 2004; 57(1):65-75.

https://doi.org/10.1016/S0939-6411(03)00153-X DOI: https://doi.org/10.1016/S0939-6411(03)00153-X

التنزيلات

منشور

2024-06-25

كيفية الاقتباس

الناجي I. ., العكايلة F., العجيلي R., القنة N. A., الريماوي M., خنفر M., علي اغا A. S., & سلام A.-S. (2024). نظام التجلئة الموقعي للكيتوزان/الجيلاتين/جيلوسير للتوصيل المُستدام عن طريق الفم للباراسيتامول للمرضى الذين يعانون من صعوبة في البلع. Jordan Journal of Pharmaceutical Sciences, 17(2), 292–306. https://doi.org/10.35516/jjps.v17i2.1702

إصدار

القسم

Articles