تحقيقات التركيب الكمي للنشاط (QSAR) وتحليل الالتحام الجزيئي لمثبطات بروتين البلازموديوم فرنازيل تراتسفيراز كعوامل قوية مضادة للملاريا

المؤلفون

  • Mebarka Ouassaf جامعة بسكرة، مجموعة الكيمياء الحاسوبية والطبية، مختبرLMCE، الجزائر
  • Salah Belaidi جامعة بسكرة، مجموعة الكيمياء الحاسوبية والطبية، مختبرLMCE، الجزائر
  • Amneh Shtaiwi Faculty of Pharmacy, Middle East University, Jordan.
  • Samir Chtita كلية العلوم بن مسيك، جامعة الحسن الثاني بالدار البيضاء، المغرب

DOI:

https://doi.org/10.35516/jjps.v15i3.407

الكلمات المفتاحية:

الالتحام، بنزوفينون، مثبط PFT، مضاد للملاريا

الملخص

يعتبر تطوير مثبطات farnesyltransferase على أساس سقالة بنزوفينون الموجهة ضدPlasmodium  falciparum استراتيجية في علاج الملاريا. في هذا العمل، تم إجراء علاقة التركيب الكمي بالنشاط (QSAR) للتنبؤ بالأنشطة المثبطة للبروتين  farnesyltransferase (PFT) لسلسلة من 36 مشتقًا من مشتقات بنزوفينون. تم تقسيم مجموعة البيانات إلى مجموعتين فرعيتين من مجموعات التدريب والاختبار، وأفضل نموذج باستخدام الانحدار الخطي المتعدد (MLR)، مع قيم الصلاحية الداخلية والخارجيةR2 = 0.884، R2adj = 0.865، R2pred = 0.821، Q2cv = 0.822 R2p = و  0.811 بالاتفاق مع معايير Tropshaو .Golbraikh تم تحديد مجال التطبيق (AD) باستخدام مخطط ويليامز لوصف الفضاء الكيميائي للنموذج المستخدم في هذه الدراسة. يوضح النموذج أن الأنشطة المضادة للملاريا للبنزوفينون تعتمد على واصفات logP و bpol و  MAXDnو .FMF دفعتنا هذه المؤشرات إلى تصميم مثبطات جديدة للبنزوفينونات PFT والتنبؤ بقيمة أنشطتها المضادة للملاريا بناءً على معادلة .MLR تكشف نتائج الإرساء أن البنزوفينونات المصممة حديثًا ترتبط بالجيب الكارهة للماء والتلامس القطبي مع التقارب العالي. يمكن أن تساعد النتائج المتوقعة من هذه الدراسة في تصميم بنزوفينونات جديدة كمثبطات لـ PFT البشري مع أنشطة مضادة للملاريا عالية. .

السير الشخصية للمؤلفين

Mebarka Ouassaf، جامعة بسكرة، مجموعة الكيمياء الحاسوبية والطبية، مختبرLMCE، الجزائر

جامعة بسكرة، مجموعة الكيمياء الحاسوبية والطبية، مختبرLMCE، الجزائر

Salah Belaidi، جامعة بسكرة، مجموعة الكيمياء الحاسوبية والطبية، مختبرLMCE، الجزائر

جامعة بسكرة، مجموعة الكيمياء الحاسوبية والطبية، مختبرLMCE، الجزائر

Amneh Shtaiwi، Faculty of Pharmacy, Middle East University, Jordan.

كلية الصيدلة، جامعة الشرق الأوسط، الأردن.

Samir Chtita، كلية العلوم بن مسيك، جامعة الحسن الثاني بالدار البيضاء، المغرب

مختبر الكيمياء التحليلية والجزيئية، كلية العلوم بن مسيك، جامعة الحسن الثاني بالدار البيضاء، المغرب.

المراجع

World malaria report 2020, World Health Organization, Geneva, Switzerland, 2020, p 300

Prakash N., Patel S., Faldu N.J., Ranjan R. and Sudheer D.V.N. Molecular Docking Studies of Antimalarial Drugs for Malaria. J. Comput. Sci.Syst. Biol. 2010; 3: 70-73. doi:10.4172/jcsb.1000059

Hameed A., Masood S., Hameed A., Ahmed E., Sharif A. and Abdullah M.I. J. Comput. Aided. Mol. Des. 2019; 33:677-688.

Sharma K. A. Review on Plasmodium Falciparum-Protein Farnesyltransferase Inhibitors as Antimalarial Drug Targets. Curr. Drug. Targets. 2017; 18:1676–1686. https://doi.org/10.2174/1389450117666160823165004

Singh J., Mansuri R., Vijay S., Sahoo G.C., Sharma A. and Kumar M. Docking predictions-based Plasmodium falciparum phosphoethanolamine methyl transferase inhibitor identification and in-vitro antimalarial activity analysis. BMC.Chem. 2019; 13:43. https://doi.org/10.1186/s13065-019-0551-5

Subramanian T., Liu S., Troutman J.M., Andres D.A. and Spielmann H.P. Protein Farnesyltransferase-Catalyzed Isoprenoid Transfer to Peptide Depends on Lipid Size and Shape, not Hydrophobicity. Chem.Bio.Chem. 2008; 9:2872-2882. https://doi.org/10.1002/cbic.200800248

Kumar S., Bhardwaj T.R., Prasad D.N. And Singh R.K. Drug targets for resistant malaria: Historic to future perspectives. Biomed. Pharmacother. 2018;104: 8–27. https://doi.org/10.1016/j.biopha.2018.05.009

Wiesner J., Kettler K., Sakowski J., Ortmann R., Jomaa H. and Schlitzer M. Structure–Activity relationships of novel anti-Malarial agents: Part 5. N-(4-acylamino-3-benzoylphenyl)-[5-(4-nitrophenyl)-2-furyl] acrylic acid amides. Bioorg. Med. Chem. Lett. 2003; 13:361–363. https://doi.org/10.1016/S0960-894X(02)01003-X

Choudhari P. B., Bhatia M. S., Bhatia N. M. Application of pocket modeling and k-nearest neighbor molecular field analysis (kNN-MFA) for designing of some anticoagulants: potential factor IXa inhibitors. Med. Chem. Res. 2013; 22:976-985.

Roy K., Kar S., Das R.N. Background of QSAR and Historical Developments. Editors. Understanding the Basics of QSAR for Applications in Pharmaceutical Sciences and Risk Assessment . Boston: Academic Press, 2015; Chapter 1, pp 1–46. https://doi.org/10.1016/B978-0-12-801505-6.00001-6

Neves B.J., Braga R.C., Melo-Filho C.C., Moreira-Filho J.T., Muratov E.N. and Andrade C.H. QSAR-Based Virtual Screening: Advances and Applications in Drug Discovery. Front Pharmacol. 2018; 9:1275.https://doi.org/10.3389/fphar.2018.01275

Moukhliss Y., ElKhatabi K., Koubi Y., Maghat H., Sbai A, Bouachrine. and M.Lakhlifi T. 2D-QSAR modeling of novel pleconaril derivatives (isoxazole-based molecules) as antiviral inhibitors against Coxsackievirus B3 (CVB3). Jordan Journal of Pharmaceutical Sciences. 2021; 14:137- 156

Wiesner J., Kettler K., Sakowski J., Ortmann R., JomaaH.and Schlitzer M. Structure–Activity relationships of novel anti-Malarial agents: Part 5. N-(4-acylamino-3-benzoylphenyl)-[5-(4-nitrophenyl)-2-furyl] acrylic acid amides. Bioorg. Med. Chem. Lett. 2003;13: 361-363. doi:10.1016/S0960-894X(02)01003-X

Wiesner J., Fucik K., Kettler K., Sakowski J., Ortmann R. and Jomaa H. Structure–Activity relationships of novel anti-malarial agents. Part 6: N-(4-Arylpropionylamino-3 benzoylphenyl)-[5-(4-nitrophenyl)-2-furyl]acrylic acid amides; Bioorg. Med. Chem. Lett. 2003; 13:1539-1541. https://doi.org/10.1016/S0960-894X(03)00179-3

Wiesner J., Mitsch A., Wißner P., Krämer O., JomaaH.and Schlitzer M. Structure–Activity relationships of novel anti-Malarial agents. Part 4: N-(3-Benzoyl-4-tolylacetylaminophenyl)-3-(5-aryl-2-furyl)acrylic acid amides. Bioorg. Med. Chem.Lett. 2002;12: 2681-2683. doi:10.1016/S0960-894X(02)00555-3

Wiesner J., Mitsch A., Jomaa H. and Schlitzer M. Structure–activity relationships of novel anti-malarial agents. Part 7: N-(3-Benzoyl-4-tolylacetylaminophenyl)-3-(5-aryl-2-furyl)acrylic acid amides with polar moieties. Bioorg. Med. Chem. Lett. 2003; 13:2159-2161. doi:10.1016/S0960-894X(03)00353-6

Calculator Plugins, Marvin 6.3.0, 2014, ChemAxon (http://www.chemaxon.com).

HyperChem (Molecular Modeling System) (2007) Hypercube, Inc., 1115 NW, 4th Street, Gainesville, FL 32601, USA

Ruiz I.L. and Gómez-Nieto M.Á. Study of the Applicability Domain of the QSAR Classification Models by Means of the Rivality and Modelability Indexes. Molecules. 2018; 23:2756.

https://doi.org/10.3390/molecules23112756

Saxena A.K. and Prathipati P. Comparison of MLR, PLS and GA-MLR in QSAR analysis. SAR. QSAR. Environ. Res. 2003; 14:433–45.

https://doi.org/10.1080/10629360310001624015

Tropsha A. Best Practices for QSAR Model Development, Validation, and Exploitation. Mol. Info.2010; 29: 476–88.

https://doi.org/10.1002/minf.201000061

TROPSHA, A. Best Practices for QSAR Model Development, Validation, and Exploitation. Mol. Info. 2010; 29: 476 – 488.

Gramatica P. Principles of QSAR models validation: internal and external. QSAR. Comb. Sci. 2007;26 :694–701. https://doi.org/10.1002/qsar.200610151

Golbraikh A. and Tropsha A. Predictive QSAR modeling based on diversity sampling of experimental datasets for the training and test set selection. J. Comput. Aided. Mol. Des. 2002 ;16: 357–369.

https://doi.org/10.1023/A:1020869118689

Roy K., Kar S. and Ambure P. On a simple approach for determining applicability domain of QSAR models. Chemom. Intell. Lab. Syst. 2015; 145:22–29.

https://doi.org/10.1016/j.chemolab.2015.04.013

Lin L.I. A concordance correlation coefficient to evaluate reproducibility. Biometrics. 1989; 45:255–68.

Golbraikh A., Wang X.S., Zhu H., Tropsha A., Predictive QSAR Modeling: Methods and Applications in Drug Discovery and Chemical Risk Assessment: J. Leszczynski (Ed.), Handbook of Computational Chemistry, Springer Netherlands, Dordrecht, 2016

Rücker C., Rücker G.and Meringer M. y-Randomization and its variants in QSPR/QSAR. J. Chem. Inf. Model. 2007; 47:2345–2357. https://doi.org/10.1021/ci700157b

Ouassaf M., Belaidi S., Benbrahi̇m İ., Belai̇di̇ H. and Chti̇ta S. Quantitative Structure-Activity Relationships of 1.2.3 Triazole Derivatives as Aromatase Inhibition Activity. Turkish Comp. Theo. Chem. 2020; 4:1–11. https://doi.org/10.33435/tcandtc.545369

Ouassaf M., Belaidi S., Lotfy K., Daoud I. and Belaidi H. Molecular Docking Studies and ADMET Properties of New 1.2.3 Triazole Derivatives for Anti-Breast Cancer Activity. J. Bionanosci. 2018; 12: 26-36. DOI: https://doi.org/10.1166/jbns.2018.1505

Dermeche K., Tchouar N., Belaidi S., Salah T. Qualitative Structure-Activity Relationships and 2D-QSAR Modeling of TNF-α Inhibition by Thalidomide Derivatives. J. Bionanosci. 2015; 9: 395-400. DOI: https://doi.org/10.1166/jbns.2015.1320

Almi Z., Belaidi S., Segueni L., Structural Exploration and Quantitative Structure-Activity Relationships Properties for 1.2. 5-Oxadiazole Derivatives, Rev. Theo. Sci. 2015; 3: 264-272

Weaver S. and Gleeson M.P. The importance of the domain of applicability in QSAR modeling. J.Mol. Graph. Model. 2008; 26:1315–1326. https://doi.org/10.1016/j.jmgm.2008.01.002

Chtita S., Belhassan A., Bakhouch M., Taourati A.I., Aouidate A., Belaidi S., Moutaabbid M., Belaaouad S., Bouachrine M. and Lakhlifi T. QSAR study of unsymmetrical aromatic Disulfides as potent avian SARS-CoV main protease inhibitors using quantum chemical descriptors and statistical methods. Chemometr. Intell. Lab. Syst. 2021; 210:104266. https://doi.org/10.1016/j.chemolab.2021.104266

Chtita S., Ghamali M., Ousaa A., Aouidate A., Belhassan A., Taourati A. I., Masand V. H., Bouachrine M. and Lakhlifi T. QSAR study of anti-Human African Trypanosomiasis activity for 2-phenylimidazopyridines derivatives using DFT and Lipinski’s descriptors. Heliyon, 2019; 5:01304.

Al-Shar’i N.A., Hassan M.A., Al-Barqi H.M., Al-Balas Q.A. and El-Elimat T. Discovery of Novel Glyoxalase-I Inhibitors Using Computational Fragment-Based Drug Design Approach. Jordan Journal of Pharmaceutical Sciences. 2020; 13:225-245

Ouassaf M., Belaidi S., AlMogren M.M., Chtita S., UllahKhan S. and ThetHtar T. Combined docking methods and molecular dynamics to identify effective antiviral 2, 5-diaminobenzophenonederivatives against SARS-CoV-2. J. King Saud Univ. Sci. 2021; 33:101352. https://doi.org/10.1016/j.jksus.2021.101352

Hast M.A., Fletcher S., Cummings C.G., Pusateri E. E., Blaskovich., M. A, Rivas K., Gelb M H., Van Voorhis W. C., Sebti S. M., Hamilton A D. and Beese L. S. Chem. Biol. 2009;16:181-192

Ouassaf M., Belaidi S., Khamouli S., Belaidi H. and Chtita S. Combined 3D-QSAR and Molecular Docking Analysis of Thienopyrimidine Derivatives as Staphylococcus aureus Inhibitors. Acta Chim. Slov. 2021; 68:289–303. https://doi.org/10.17344/acsi.2020.5985

Cherkasov A., Muratov E.N., Fourches D., Varnek A., Baskin I.I. and Cronin M. QSAR modeling: where have you been? Where are you going to? J. Med. Chem. 2014; 57:4977–5010. https://doi.org/10.1021/jm4004285

Timmerman H., Mannhold R., Krogsgaard LP, Chemometric methods in molecular design, John Wiley & Sons, Hoboken, 2008

Bakdash J.Z. and Marusich L.R. Repeated Measures Correlation. Front Psychol. 2017; 8:456.https://doi.org/10.3389/fpsyg.2017.00456

Akinwande M.O., Dikko H.G. and Samson A. Variance Inflation Factor: As a Condition for the Inclusion of Suppressor Variable(s) in Regression Analysis. Open J. Stat. 2015; 5:754–67.

https://doi.org/10.4236/ojs.2015.57075

Kier L.B.and Hall L.H. An Electrotopological-State Index for Atoms in Molecules. Pharm. Res. 1990; 7:801–807. https://doi.org/10.1023/A:1015952613760

Galvez J., Garcia-Domenech R., De Julian-Ortiz J.V. and Soler R. Topological Approach to Drug Design. J. Chem. Inf. Comput. Sci. 1995; 35:272-284 https://doi.org/10.1021/ci00024a017

Yang Y., Engkvist O., Llinàs A. and Chen H. Beyond Size, Ionization State, and Lipophilicity: Influence of Molecular Topology on Absorption, Distribution, Metabolism, Excretion, and Toxicity for Druglike Compounds. J. Med. Chem. 2012; 26; 55:3667–77. https://doi.org/10.1021/jm201548z

Mitroy J., Safronova M.S. and Clark C.W. Theory and applications of atomic and ionic polarizabilities. J. Phys; B: At. Mol. Opt. Phys. 2010; 43: 202001. https://doi.org/10.1088/0953-4075/43/20/202001

Martin Y.C., Quantitative Drug Design: A Critical Introduction, Second Edition, CRC Press, 2010, Boca Raton, Floride, USA

Arnott J.A.and Planey S.L. The influence of lipophilicity in drug discovery and design. Expert. Opin. Drug Discov. 2012;7: 863–75.

https://doi.org/10.1517/17460441.2012.714363

Jalali-Heravi M. and Konuze E. Use of quantitative structure property relationships in predicting the Kraft point of anionic surfactants, Elec. J. Mol. Des. 2002; 1:410–417.

Roy K., MitraI., Kar S., Ojha P. K., Das R. N., and Kabir H. J. Chem. Info. and Mod. 2012 ;52: 396-408. DOI: 10.1021/ci200520g

Tropsha A. Best Practices for QSAR Model Development, Validation, and Exploitation. Mol. Info. 2010; 29:476–88.

https://doi.org/10.1002/minf.201000061

Roy K., Kar S. and Ambure P. On a simple approach for determining applicability domain of QSAR models. Chemom. Intell. Lab. Syst. 2015; 145:22–9. https://doi.org/10.1016/J.CHEMOLAB.2015.04.013

Kalirajan R., Gowramma B., Gomathi S. and Vadivelan R. Activity of Isoxazole substituted 9-aminoacridines against SARS CoV-2 main protease for COVID19: A computational approach. Jordan Journal of Pharmaceutical Sciences. 2021; 14:403-416.

التنزيلات

منشور

2022-09-01

كيفية الاقتباس

Ouassaf, M. . ., Belaidi, S. . ., Shtaiwi, A. . ., & Chtita, S. . (2022). تحقيقات التركيب الكمي للنشاط (QSAR) وتحليل الالتحام الجزيئي لمثبطات بروتين البلازموديوم فرنازيل تراتسفيراز كعوامل قوية مضادة للملاريا. Jordan Journal of Pharmaceutical Sciences, 15(3), 315–340. https://doi.org/10.35516/jjps.v15i3.407

إصدار

القسم

Articles