تطوير وتوصيف السليلوز الميكروستالين القائم على الخلايا الهضمية المعالجة المشتركة في الإكسبت باستخدام تصميم نهج التجربة

المؤلفون

  • Fatima Haruna Faculty of Pharmaceutical Sciences, Ahmadu Bello University, Zaria, Nigeria
  • Yonni Eshovo Apeji قسم الصيدلة والصيدلة الصناعية، كلية العلوم الصيدلانية، جامعة أحمدو بيلو، زاريا، نيجيريا.
  • Avosuahi Rukayat Oyi قسم الصيدلة والصيدلة الصناعية، كلية العلوم الصيدلانية، جامعة أحمدو بيلو، زاريا، نيجيريا.

DOI:

https://doi.org/10.35516/jjps.v15i4.678

الكلمات المفتاحية:

السليلوز الميكروستالين، كروسبوفيدون، المعالجة المشتركة، التحسين، هندسة الجسيمات، الكمبيوتر اللوحي

الملخص

كان الهدف من هذه الدراسة هو تطوير مادة نامية (CPE) تمت معالجتها بشكل مشترك تحتوي على السليلوز المتبلور الدقيق (MCC) والكروسبوفيدون (CPV) باستخدام تقنية التكتلة الرطبة. وأجريت دراسات تمهيدية على CPE لتوصيف خصائصه الفيزيائية الكيميائية.  وقد تم تحسين صياغة CPE باستخدام تصميم تجريبي خليط.  واقترحت دراسة التحسين وجود سرعة مركبة تحتوي على مؤسسة تحدي الألفية (99٪) كشف توصيف الحالة الصلبة ل CPE عن مادة ذات طبيعة بلورية في الغالب. زاد حجم الجسيمات من CPE بالمقارنة مع المواد الأولية. أكدت FT-IR توافق MCC وCPV عند المعالجة المشتركة معا لتحقيق سرعة مركبة واحدة. كان هناك انخفاض في محتوى الرطوبة وقدرة الطورب الرطوبة من CPE بالمقارنة مع مؤسسة تحدي الألفية. وكشف توصيف المسحوق عن تحسن في خصائص التدفق السائب ل CPE بالنسبة إلى مؤسسة تحدي الألفية. باختصار الخصائص الفيزيائية الكيميائية التي تم الحصول عليها تشير إلى أن CPE سوف يكون منتقاة أقراص مناسبة في صياغة الجرعة الصلبة عن طريق الضغط المباشر.

السير الشخصية للمؤلفين

Fatima Haruna، Faculty of Pharmaceutical Sciences, Ahmadu Bello University, Zaria, Nigeria

قسم الصيدلة والصيدلة الصناعية، كلية العلوم الصيدلانية، جامعة أحمدو بيلو، زاريا، نيجيريا.

Yonni Eshovo Apeji، قسم الصيدلة والصيدلة الصناعية، كلية العلوم الصيدلانية، جامعة أحمدو بيلو، زاريا، نيجيريا.

قسم الصيدلة والصيدلة الصناعية، كلية العلوم الصيدلانية، جامعة أحمدو بيلو، زاريا، نيجيريا.

Avosuahi Rukayat Oyi، قسم الصيدلة والصيدلة الصناعية، كلية العلوم الصيدلانية، جامعة أحمدو بيلو، زاريا، نيجيريا.

قسم الصيدلة والصيدلة الصناعية، كلية العلوم الصيدلانية، جامعة أحمدو بيلو، زاريا، نيجيريا.

المراجع

Moreton RC. Excipient Functionality. Pharm Tech. 2004;(May):98-100.

Hamad IM, Arida AI, Al-Tabakha MM. Effect of the Lubricant Magnesium Stearate on Changes of Specific Surface Area of Directly Compressible Powders Under Compression. Jordan Journal of Pharmaceutical Sciences, 2015;8(1):23-35.

Nachaegari SK, Bansal AK. Coprocessed Excipients for Solid Dosage Forms. Pharm Tech. 2004;28(1):52-64.

Chaheen M, Sanchez-ballester NM, Bataille B, Yassine A, Belamie E, Sharkawi T. Development of coprocessed chitin-calcium carbonate as multifunctional tablet excipient for direct compression. J Pharm Sci. 2018;107(8):2152-2159. doi: 10.1016/j.xphs.2018.04.013

Wang S, Li J, Lin X, et al. Novel coprocessed excipients composed of lactose, HPMC, and PVPP for tableting and its application. Int J Pharm. 2015;486(1):370-379. doi: 10.1016/j.ijpharm.2015.03.069

Saha S, Shahiwala AF. Multifunctional coprocessed excipients for improved tabletting performance. Expert Opin Drug Deliv. 2009; 6(2):197-208.

doi:10.1517/17425240802708978

Thoorens G, Krier F, Leclercq B, Carlin B, Evrard B. Microcrystalline cellulose, a direct compression binder in a quality by design environment — A review. Int J Pharm. 2014; 473:64-72.

Ali J, Saigal N, Baboota S, Ahuja A. Microcrystalline cellulose as a versatile excipient in drug research. J Young Pharm. 2009;1(1):6-12.

Gohel MC, Patel TM, Parikh RK, Parejiya PB, Barot BS, Ramkishan A. Exploration of Novel Co-processed Multifunctional Diluent for the Development of Tablet Dosage Form. Indian J Pharm Sci. 2012;74(5):381-386. doi:10.4103/0250-474X.108412

Apeji Y, Oyi AR, Hassan M. Formulation and Evaluation of Ascorbic acid tablets by direct compression using microcrystalline starch as a direct compression excipient. Int J Health Res. 2011;4(3):113-118.

Goyanes A, Martínez-Pacheco R. New co-processed MCC-based excipient for fast release of low solubility drugs from pellets prepared by extrusion-spheronisation. Drug Dev Ind Pharm. 2015;41(3):362-368. doi:10.3109/03639045.2013.861479

Arida AI, Al-Tabakha MM. Compaction Mechanism and Tablet Strength of Cellactose®. Jordan Journal of Pharmaceutical Sciences, 2008;1(1):71-82.

Khomane KS, Bansal AK. Yield strength of microcrystalline cellulose: Experimental evidence by dielectric spectroscopy. Int J Pharm. 2013;455(1-2):1-4. doi: 10.1016/j.ijpharm.2013.08.003

Haruna F, Apeji YE, Oparaeche C, Oyi AR, Gamlen M. Compaction and tableting properties of composite particles of microcrystalline cellulose and crospovidone engineered for direct compression. Futur J Pharm Sci. 2020; 6:35: doi.org/10.1186/s43094-020-00055-9.

Goyanes A, Souto C, Martínez-Pacheco R. Co-processed MCC-Eudragit®E Excipients for Extrusion-Spheronisation. Eur J Pharm Biopharm. 2011; 79:658-663. doi: 10.1016/j.ejpb.2011.07.013

Pilpel N. Flow properties of non-cohesive powders. Chem Proc Eng. 1965; 46:167.

United States Pharmacopoeial Convention. USP Protocol for bulk and tapped densities. In: USP/NF.; 2012.

Ohwoavworhua F, Adelakun T. Some physical characteristics of microcrystalline cellulose obtained from raw cotton of Cochlospermum planchonii. Trop J Pharm Res. 2005; 4:501-507.

Edge S, Steele DF, Chen A, Tobyn MJ, Staniforth JN. The mechanical properties of compacts of microcrystalline cellulose and silicified microcrystalline cellulose. Int J Pharm. 2000; 200:67-72. doi:10.1016/S0378-5173(00)00343-4

Apeji YE, Olayemi OJ, Anyebe SN, et al. Impact of binder as a formulation variable on the material and tableting properties of developed co-processed excipients. SN Appl Sci. 2019; 1:561: doi.org/10.1007/s42452-019-0585-2. doi:10.1007/s42452-019-0585-2

Desai PM, Liew CV, Heng PWS. Review of Disintegrants and the Disintegration Phenomena. J Pharm Sci. 2016;105(9):2545-2555. doi: 10.1016/j.xphs.2015.12.019

Chaudhari PD, Phatak AA, Desai U. A Review: Coprocessed Excipients-An Alternative to Novel Chemical Entities. Int J Pharm Chem Sci. 2012;1(4):1480-1498.

Kaur T, Gill B, Kumar S, Gupta G. Mouth Dissolving Tablets: A Novel Approach to Drug Delivery. Int J Curr Pharm Res. 2011;3(1):1-7.

Egart M, Ilic I, Jankovic B, Lah N, Srcic S. Compaction properties of crystalline pharmaceutical ingredients according to the Walker model and nanomechanical attributes. Int J Pharm. 2014; 472: 347-355. doi:10.1016/j.ijpharm.2014.06.047

Rojas J, Lopez A, Gamboa Y, Gonzalez C, Montoya F. Assessment of Processing and Polymorphic Form Effect on the Powder and Tableting Properties of Microcrystalline Celluloses I and II. Chem Pharm Bull (Tokyo). 2011;59(5):603-607. doi:10.1248/cpb.59.603

Rojas J, Kumar V. Comparative evaluation of silicified microcrystalline cellulose II as a direct compression vehicle. Int J Pharm. 2011;416(1):120-128. doi: 10.1016gkyjhn/j.ijpharm.2011.06.017

Apeji Y, Haruna F, Oyi A, Isah A, Allagh T. Design and Characterization of the Material Attributes of a Co-processed Excipient Developed for Direct Compression Tableting. Acta Pharm Sci. 2019;57(4):39-56. doi: 10.23893/1307-2080.APS.05723

Chauhan A, Chauhan P. Analytical & Bioanalytical Techniques Powder XRD Technique and its Applications in Science and Technology. J Anal Bioanal Tech. 2014;5(5):1-5. doi:10.4172/2155-9872.1000212

Sharma P, Modi SR, Bansal AK. Co-processing of hydroxypropyl methylcellulose (HPMC) for improved aqueous dispersibility. Int J Pharm. 2015;485(1-2):348-356.

Bryn SR, Zografi G, Chen X (Sean). Amorphous Solids. In: Bryn SR, Zografi G, Chen X (Sean), eds. Solid-State Properties of Pharmaceutical Materials. 1st Edition. John Wiley & Sons, Inc.; 2017:69-88.

Bozdaǧ-Pehlivan S, Subaşi B, Vural I, Ünlü N, Çapan Y. Evaluation of drug-excipient interaction in the formulation of celecoxib tablets. Acta Poloniae Pharm - Drug Res. 2011;68(3):423-433.

Ciolacu D, Ciolacu F, Popa VI. Amorphous cellulose-structure and characterization. Cellulose Chem Tech. 2011;45(1-2):13-21.

Choudhari PK, Jain HK, Sharma P, Srivastava B. A novel co-processed directly compressible release-retarding polymer: In vitro, solid state and in vivo evaluation. Futur J Pharm Sci. 2018;4(1):29-40.

doi: 10.1016/J.FJPS.2017.07.004

Kittipongpatana OS, Kittipongpatana N. Preparation and physicomechanical properties of co-precipitated rice starch-colloidal silicon dioxide. Powder Technol. 2011; 217:377-382. doi: 10.1016/j.powtec.2011.10.051.

Adeoye O, Alebiowu G. Flow, packing and compaction properties of novel coprocessed multifunctional directly compressible excipients prepared from tapioca starch and mannitol. Pharm Dev Technol. 2014;7450(8):901-910. doi:10.3109/10837450.2013.840843

Rosenbaum T, Erdemir D, Chang SY, et al. A novel co-processing method to manufacture an API for extended-release formulation via formation of agglomerates of active ingredient and hydroxypropyl methylcellulose during crystallization. Drug Dev Ind Pharm. 2018;44((10)):1606-1612.

Zhou Q, Armstrong B, Larson I, Stewart PJ, Morton DA V, Terada K. Improving powder flow properties of a cohesive lactose monohydrate powder by intensive mechanical dry coating. J Pharm Sci. 2010;99(2):969-981. doi:10.1002/jps.21885

Staniforth J, Aulton M. Powder Flow. In: Aulton M, ed. Aulton’s Pharmaceutics: The Design and Manufacture of Medicines. 3rd ed. Churchill Livingstone Elsevier; 2007:168-180.

Sun CC. Setting the bar for powder flow properties in successful high speed tableting. Powder Technol. 2010; 201:106-108. doi: 10.1016/j.powtec.2010.03.011

El-Barghouthi M, Eftaiha A, Rashid I, Al-Remawi M, Badwan A. A novel superdisintegrating agent made from physically modified chitosan with silicon dioxide. Drug Dev Ind Pharm. 2008; 34(4): 373-383. doi:10.1080/03639040701657792

Yassin S, Goodwin DJ, Anderson A, et al. The Disintegration Process in Microcrystalline Cellulose Based Tablets, Part 1: Influence of Temperature, Porosity and Superdisintegrants. J Pharm Sci. 2015;104(10):3440-3450. doi:10.1002/jps.24544

Sun CC. Quantifying effects of moisture content on flow properties of microcrystalline cellulose using a ring shear tester. Powder Technol. 2016; 289:104-108. doi: 10.1016/j.powtec.2015.11.044

Thapa P, Lee AR, Choi DH, Jeong SH. Effects of moisture content and compression pressure of various deforming granules on the physical properties of tablets. Powder Technol. 2017; 310: 92-102. doi:10.1016/j.powtec.2017.01.021

Katsuno E, Tahara K, Takeuchi Y, Takeuchi H. Orally disintegrating tablets prepared by a co-processed mixture of micronized crospovidone and mannitol using a ball mill to impr;kikkkkove compatibility and tablet stability. Powder Technol. 2013; 241:60-66.

doi: 10.1016/j.powtec.2013.03.008

Gohel MC, Parikh RK, Brahmbhatt BK, Shah AR. Preparation and assessment of novel coprocessed superdisintegrant consisting of crospovidone and sodium starch glycolate: a technical note. AAPS Pharm Sci Tech. 2007;8(1): E1-E7. doi:10.1208/pt0801009

التنزيلات

منشور

2022-12-25

كيفية الاقتباس

Haruna, F. ., Apeji, Y. E. ., & Oyi, A. R. . (2022). تطوير وتوصيف السليلوز الميكروستالين القائم على الخلايا الهضمية المعالجة المشتركة في الإكسبت باستخدام تصميم نهج التجربة. Jordan Journal of Pharmaceutical Sciences, 15(4), 553–568. https://doi.org/10.35516/jjps.v15i4.678

إصدار

القسم

Articles