Advancements and Challenges in Aptamer-Based Therapeutics and Diagnostics Across Diverse Medical Domains: A Comprehensive Review

Authors

  • Ahmed S.A. Ali Agha Faculty of Pharmacy, Department of Pharmaceutical Sciences. The University of Jordan. Amman, Jordan. https://orcid.org/0009-0000-8516-2313
  • Walhan Alshaer Cell Therapy Center, The University of Jordan, Amman, Jordan.
  • Talal aburjai Faculty of Pharmacy, Department of Pharmaceutical Sciences, The University of Jordan. Amman, Jordan.

DOI:

https://doi.org/10.35516/jjps.v17i2.1895

Keywords:

Aptamer Therapeutics, Diagnostic Aptamers, Immune Modulation, Mind-Gut Axis, Tumor-specific Markers

Abstract

Aptamers, which are single-stranded DNA or RNA molecules, are increasingly recognized as important tools in diagnostics and therapeutics across various medical disciplines such as oncology, respiratory diseases, and neurological disorders. This review provides a comprehensive evaluation of the recent progress and obstacles encountered in the field of aptamer-based applications. Aptamers have shown promise in oncology for early cancer detection and targeted drug delivery, effectively reducing off-target effects. They also hold potential for significantly impacting the management of respiratory conditions such as asthma and Chronic Obstructive Pulmonary Disease (COPD) by selectively targeting cytokines and regulating the inflammatory response. In the realm of neurological disorders, aptamers offer novel methods by influencing the gut-brain axis and proposing potential approaches for early detection and specific therapy. Despite these notable benefits, persistent challenges remain in areas such as molecular stability, delivery mechanisms, and economic viability. This review offers a comprehensive overview of aptamer-based diagnostics and therapeutics while exploring potential avenues for future research.

References

Liu S., Xu Y., Jiang X., Tan H., Ying B. Translation of aptamers toward clinical diagnosis and commercialization. Biosensors and Bioelectronics. 2022; 208: 114168. DOI: https://doi.org/10.1016/j.bios.2022.114168

Sasso J.M., Ambrose B.J., Tenchov R., Datta R.S., Basel M.T., DeLong R.K., Zhou Q.A. The Progress and promise of RNA medicine─ An arsenal of targeted treatments. J Med Chem. 2022; 65 (10): 6975-7015. DOI: https://doi.org/10.1021/acs.jmedchem.2c00024

Pranay K., Gupta M.K., Devi S., Sharma N., Anand A. Challenges of aptamers as targeting ligands for anticancer therapies. Aptamers Engineered Nanocarriers for Cancer Therapy: Elsevier. 2023; 455-480. DOI: https://doi.org/10.1016/B978-0-323-85881-6.00011-7

Das S., Gupta A., Vaishnavi T., Walia S., Bhatia D., Chakraborty B. Aptamers functionalized biomolecular nano-vehicles for applications in cancer diagnostics & therapeutics. Applied NanoMedicine. 2022; 2 (2): 360-360.

Schanzenbacher J., Kähler K.H., Mesler E., Kleingarn M., Karsten C.M., Seiler D.L. The role of C5a receptors in autoimmunity. Immunobiology. 2023: 152413. DOI: https://doi.org/10.1016/j.imbio.2023.152413

Raffaele I., Silvestro S., Mazzon E. MicroRNAs and MAPKs: Evidence of These Molecular Interactions in Alzheimer’s Disease. Int J Mol Sci. 2023; 24 (5): 4736. DOI: https://doi.org/10.3390/ijms24054736

Accortt E., Mirocha J., Zhang D., Kilpatrick S.J., Libermann T., Karumanchi S.A. Perinatal mood and anxiety disorders: biomarker discovery using plasma proteomics. Am J Obstet Gynecol. 2023. DOI: https://doi.org/10.1016/j.ajog.2023.01.012

Ahmad A. Precision Medicine and Pharmacogenetics: Stratification and Improved Outcome in Non-Small Cell Lung Cancer. Jordan Journal of Pharmaceutical Sciences. 2023; 16 (2): 441-441. DOI: https://doi.org/10.35516/jjps.v16i2.1474

Hakooz N. Pharmacogenetics and Personalized Medicines. Jordan Journal of Pharmaceutical Sciences. 2023; 16 (2): 444-444. DOI: https://doi.org/10.35516/jjps.v16i2.1483

Bahti A., Telfah A., Sharar N., Jafar H., Hergenröder R. Nuclear Magnetic Resonance for Targeted Metabolomics and Biochemical Sensor. Jordan Journal of Pharmaceutical Sciences. 2023; 16(2):469-469. DOI: https://doi.org/10.35516/jjps.v16i2.1519

Siwak A.M. Nanostructured immunosensor for low level detection of waterborne cryptosporidium. 2022.

Stephens M., Keane K., Roizes S., Liao S., Von der Weid P-Y. Mincle-binding DNA aptamer demonstrates therapeutic potential in a model of inflammatory bowel disease. Molecular Therapy-Nucleic Acids. 2022; 28:935-947. DOI: https://doi.org/10.1016/j.omtn.2022.05.026

Vargas E., Nandhakumar P., Ding S., Saha T., Wang J. Insulin detection in diabetes mellitus: challenges and new prospects. Nature Reviews Endocrinology. 2023:1-9. DOI: https://doi.org/10.1038/s41574-023-00842-3

Omidian H., Mfoafo K. Exploring the Potential of Nanotechnology in Pediatric Healthcare: Advances, Challenges, and Future Directions. Pharmaceutics. 2023; 15(6):1583. DOI: https://doi.org/10.3390/pharmaceutics15061583

Stephens M. The emerging potential of Aptamers as therapeutic agents in infection and inflammation. Pharmacol Ther. 2022; 238:108173. DOI: https://doi.org/10.1016/j.pharmthera.2022.108173

Li W., Wang C., Wang Z., Gou L., Zhou Y., Peng G. et al. Physically cross-linked DNA hydrogel-based sustained cytokine delivery for in situ diabetic alveolar bone rebuilding. ACS Applied Materials & Interfaces. 2022; 14(22):25173-25182. DOI: https://doi.org/10.1021/acsami.2c04769

Burchett J.R., Dailey J.M., Kee S.A., Pryor D.T., Kotha A., Kankaria R.A. et al. Targeting mast cells in allergic disease: current therapies and drug repurposing. Cells. 2022; 11(19):3031. DOI: https://doi.org/10.3390/cells11193031

Shraim AaS., Abdel Majeed BA., Al-Binni MA., Hunaiti A. Therapeutic Potential of Aptamer–Protein Interactions. ACS Pharmacology & Translational Science. 2022; 5(12):1211-1227. DOI: https://doi.org/10.1021/acsptsci.2c00156

Nava G., Zanchetta G., Giavazzi F., Buscaglia M. Label-free optical biosensors in the pandemic era. Nanophotonics. 2022; 11(18):4159-4181. DOI: https://doi.org/10.1515/nanoph-2022-0354

Kenguva G., Rout SR., Giri L., Sahebkar A., Kesharwani P., Dandela R. Cell-SELEX technology for aptamer selection. Aptamers Engineered Nanocarriers for Cancer Therapy: Elsevier. 2023; 1-20. DOI: https://doi.org/10.1016/B978-0-323-85881-6.00019-1

Ortega G., Chamorro-Garcia A., Ricci F., Plaxco KW. On the rational design of cooperative receptors. Annual Review of Biophysics. 2023; 52:319-337. DOI: https://doi.org/10.1146/annurev-biophys-091222-082247

Chen Z., Luo H., Gubu A., Yu S., Zhang H., Dai H. et al. Chemically modified aptamers for improving binding affinity to the target proteins via enhanced non-covalent bonding. Frontiers in Cell and Developmental Biology. 2023; 11:1091809. DOI: https://doi.org/10.3389/fcell.2023.1091809

Razlansari M., Jafarinejad S., Rahdar A., Shirvaliloo M., Arshad R., Fathi-Karkan S. et al. Development and classification of RNA aptamers for therapeutic purposes: An updated review with emphasis on cancer. Molecular and Cellular Biochemistry. 2022:1-26. DOI: https://doi.org/10.1007/s11010-022-04614-x

Qi S., Duan N., Khan IM., Dong X., Zhang Y., Wu S., Wang Z. Strategies to manipulate the performance of aptamers in SELEX, post-SELEX and microenvironment. Biotechnol Adv. 2022; 55:107902. DOI: https://doi.org/10.1016/j.biotechadv.2021.107902

Jaisankar A., Krishnan S., Rangasamy L. Recent developments of aptamer-based lateral flow assays for point-of-care (POC) diagnostics. Anal Biochem. 2022: 114874. DOI: https://doi.org/10.1016/j.ab.2022.114874

Tiwari R., Gulbake A., Kumar P., Gulbake AS., Gupta R., Bisht D., Sethiya NK. Aptamer-Based Targeted Drug Delivery Systems. Pharmaceutical Nanobiotechnology for Targeted Therapy: Springer. 2022; 93-122. DOI: https://doi.org/10.1007/978-3-031-12658-1_4

Gan Z., Roslan MAM., Abd Shukor MY., Halim M., Yasid NA., Abdullah J. et al. Advances in Aptamer-Based Biosensors and Cell-Internalizing SELEX Technology for Diagnostic and Therapeutic Application. Biosensors. 2022; 12(11):922. DOI: https://doi.org/10.3390/bios12110922

Lim M-C., Lim ES., Lim J-A., Choi S-W., Chang H-J. Efficient Screening of Pesticide Diazinon-Binding Aptamers Using the Sol–Gel-Coated Nanoporous Membrane-Assisted SELEX Process and Next-Generation Sequencing. Applied Biochemistry and Biotechnology. 2022; 194(9):3901-3913. DOI: https://doi.org/10.1007/s12010-022-03947-z

Halloy F., Biscans A., Bujold KE., Debacker A., Hill AC., Lacroix A. et al. Innovative developments and emerging technologies in RNA therapeutics. RNA Biol. 2022; 19(1):313-332. DOI: https://doi.org/10.1080/15476286.2022.2027150

Mashayekhi K., Ganji A., Sankian M. Designing a new dimerized anti human TNF‐α aptamer with blocking activity. Biotechnology Progress. 2020; 36(4):e2969. DOI: https://doi.org/10.1002/btpr.2969

Castro J., Barros MM., Araújo D., Campos AM., Oliveira R., Silva S., Almeida C. Swine enteric colibacillosis: Current treatment avenues and future directions. Frontiers in Veterinary Science. 2022; 9:981207. DOI: https://doi.org/10.3389/fvets.2022.981207

Xing H., Zhang Y., Krämer M., Kissmann A-K., Amann V., Raber HF. et al. A polyclonal Aptamer library for the specific binding of the gut bacterium Roseburia intestinalis in mixtures with other gut microbiome Bacteria and human stool samples. Int J Mol Sci. 2022; 23(14):7744. DOI: https://doi.org/10.3390/ijms23147744

Doherty MK., Shaw C., Woods L., Weimer BC. Alpha-Gal Bound Aptamer and Vancomycin Synergistically Reduce Staphylococcus aureus Infection In Vivo. Microorganisms. 2023; 11(7):1776. DOI: https://doi.org/10.3390/microorganisms11071776

Bhakta S., Mishra P. Molecularly imprinted polymer-based sensors for cancer biomarker detection. Sensors and Actuators Reports. 2021; 3:100061. DOI: https://doi.org/10.1016/j.snr.2021.100061

Zhang Z., Kurashima Y. Two sides of the coin: Mast cells as a key regulator of allergy and acute/chronic inflammation. Cells. 2021; 10(7): 1615. DOI: https://doi.org/10.3390/cells10071615

Wu J., Zhu X., Guo X., Yang Z., Cai Q., Gu D. et al. Helicobacter urease suppresses cytotoxic CD8+ T-cell responses through activating Myh9-dependent induction of PD-L1. Int Immunol. 2021; 33(9):491-504. DOI: https://doi.org/10.1093/intimm/dxab044

Siddique R., Khan S., Bai Q., Li H., Ullah MW., Xue M. Arsenic Trioxide-based nanomedicines as a therapeutic combination approach for treating gliomas: a review. Current Nanoscience. 2021; 17(3): 406-417. DOI: https://doi.org/10.2174/1573413716999201207142810

Ando T., Yamamoto M., Takamori Y., Tsukamoto K., Fuji D., Kawakami T. In vitro selection of an RNA aptamer yields an interleukin-6/interleukin-6 receptor interaction inhibitor. Bioscience, Biotechnology, and Biochemistry. 2021; 85(5):1170-1174. DOI: https://doi.org/10.1093/bbb/zbaa124

Zogg H. miR-10b Rescues Diabetes and GI Dysmotility Associated with a Leaky Gut. University of Nevada, Reno. 2022.

Hu X-M., Li Z-X., Zhang D-Y., Yang Y-C., Zheng S-Y., Zhang Q. et al. Current research and clinical trends in rosacea pathogenesis. Heliyon. 2022. DOI: https://doi.org/10.1016/j.heliyon.2022.e10874

Mazumder K., Aktar A., Roy P., Biswas B., Hossain ME., Sarkar KK. et al. A review on mechanistic insight of plant derived anticancer bioactive Phytocompounds and their structure activity relationship. Molecules. 2022; 27(9):3036. DOI: https://doi.org/10.3390/molecules27093036

Wang L., Feng J., Deng Y., Yang Q., Wei Q., Ye D. et al. Ccaat/enhancer-binding proteins in fibrosis: complex roles beyond conventional understanding. Research. 2022; 2022. DOI: https://doi.org/10.34133/2022/9891689

Bayarsaikhan G., Bayarsaikhan D., Lee J., Lee B. Targeting scavenger receptors in inflammatory disorders and oxidative stress. Antioxidants. 2022; 11(5):936. DOI: https://doi.org/10.3390/antiox11050936

Reed CR., Bonadonna D., Otto JC., McDaniel CG., Chabata CV., Kuchibhatla M. et al. Aptamer-based factor IXa inhibition preserves hemostasis and prevents thrombosis in a piglet model of ECMO. Molecular Therapy-Nucleic Acids. 2022; 27:524-534. DOI: https://doi.org/10.1016/j.omtn.2021.12.011

Pierzynowska K., Morcinek-Orłowska J., Gaffke L., Jaroszewicz W., Skowron PM., Węgrzyn G. Applications of the phage display technology in molecular biology, biotechnology and medicine. Crit Rev Microbiol. 2023:1-41. DOI: https://doi.org/10.1080/1040841X.2023.2219741

Foret F., Chung DS., Lavická J., Přikryl J., Lee H., Drobníková I. Proceedings of APCE-CECE-ITP-IUPAC 2022. MDPI. 2023. DOI: https://doi.org/10.3390/separations10020109

Li X., Mo K., Tian G., Zhou J., Gong J., Li L., Huang X. Shikimic Acid Regulates the NF-κB/MAPK Signaling Pathway and Gut Microbiota to Ameliorate DSS-Induced Ulcerative Colitis. J Agric Food Chem. 2023. DOI: https://doi.org/10.1021/acs.jafc.3c00283

Yu J., Boland L., Catt M., Puk L., Wong N., Krockenberger M. et al. Serum proteome profiles in cats with chronic enteropathies. J Vet Intern Med. 2023. DOI: https://doi.org/10.1111/jvim.16743

Belkadi A., Thareja G., Abbaszadeh F., Badii R., Fauman E., Albagha OM., Suhre K. Identification of PCSK9-like human gene knockouts using metabolomics, proteomics, and whole-genome sequencing in a consanguineous population. Cell Genomics. 2023; 3(1). DOI: https://doi.org/10.1016/j.xgen.2022.100218

Xu S-M., Xu Y., Cheng X-G., Yang L-Q. Tilianin Protects against Nonalcoholic Fatty Liver Disease in Early Obesity Mice. Biol Pharm Bull. 2023; 46(3): 419-426. DOI: https://doi.org/10.1248/bpb.b22-00700

Papale F., Santonocito S., Polizzi A., Giudice AL., Capodiferro S., Favia G., Isola G. The new era of salivaomics in dentistry: frontiers and facts in the early diagnosis and prevention of oral diseases and cancer. Metabolites. 2022; 12(7): 638. DOI: https://doi.org/10.3390/metabo12070638

Buchan E., Hardy M., Gomes PdC., Kelleher L., Chu HOM., Oppenheimer PG. Emerging Raman spectroscopy and saliva-based diagnostics: from challenges to applications. Appl Spectrosc Rev. 2022:1-38. DOI: https://doi.org/10.1080/05704928.2022.2130351

Rouco Taboada H., García García P., Briffault del Castillo EB., Díaz Rodríguez P. Modulating osteoclasts with nanoparticles: A path for osteoporosis management? 2023. DOI: https://doi.org/10.1002/wnan.1885

Yáñez-Sedeño P., Campuzano S., Pingarrón J. Pushing the limits of electrochemistry toward challenging applications in clinical diagnosis, prognosis, and therapeutic action. Chem Commun. 2019; 55(18):2563-2592. DOI: https://doi.org/10.1039/C8CC08815B

Rahm CE. Carbon nanotube sensor design and fabrication for determining lead in drinking water and ammonia gas in the air. University of Cincinnati. 2022.

Büyükköroğlu G., Şenel B., Şalva E., Çalışkan B. Biotechnology applications in clinical trials. In: Biotechnology in Healthcare: Elsevier 2022; 163-195. DOI: https://doi.org/10.1016/B978-0-323-90042-3.00003-7

Kneißle K., Krämer M., Kissmann A-K., Xing H., Müller F., Amann V. et al. A Polyclonal SELEX Aptamer Library Allows Differentiation of Candida albicans, C. auris and C. parapsilosis Cells from Human Dermal Fibroblasts. J Fungi. 2022; 8(8):856. DOI: https://doi.org/10.3390/jof8080856

Shi S., Yu Z-L., Jia J. The Roles of Exosomes in the Diagnose, Development and Therapeutic Resistance of Oral Squamous Cell Carcinoma. Int J Mol Sci. 2023; 24(3):1968. DOI: https://doi.org/10.3390/ijms24031968

Lyu S., Dong Z., Xu X., Bei H-P., Yuen H-Y., Cheung C-WJ. et al. Going below and beyond the surface: Microneedle structure, materials, drugs, fabrication, and applications for wound healing and tissue regeneration. Bioactive Materials. 2023; 27:303-326. DOI: https://doi.org/10.1016/j.bioactmat.2023.04.003

Irimeș MB., Tertiș M., Oprean R., Cristea C. Unrevealing the connection between real sample analysis and analytical method. The case of cytokines. Med Res Rev. 2023. DOI: https://doi.org/10.1002/med.21978

Ming J., Zeng X., Zhou R. Portable biosensor-based oral pathogenic bacteria detection for community and family applications. Anal Bioanal Chem. 2023:1-13. DOI: https://doi.org/10.1007/s00216-023-04809-1

Mohammed RK., Ibrahim AA. The anti-adherence activity and bactericidal effect of GO against Streptococcus mutans from Iraqi dental patients. Odontology. 2023:1-7. DOI: https://doi.org/10.1007/s10266-023-00791-3

Yang C., Jiang Y., Hao SH., Yan XY., Naranmandura H. Aptamers: an emerging navigation tool of therapeutic agents for targeted cancer therapy. J Mater Chem B. 2022; 10(1):20-33. DOI: https://doi.org/10.1039/D1TB02098F

Hosseini NF., Amini R., Ramezani M., Saidijam M., Hashemi SM., Najafi R. AS1411 aptamer-functionalized exosomes in the targeted delivery of doxorubicin in fighting colorectal cancer. Biomed Pharmacother. 2022; 155:113690. DOI: https://doi.org/10.1016/j.biopha.2022.113690

Zhao J., Tan W., Zheng J., Su Y., Cui M. Aptamer nanomaterials for ovarian cancer target theranostics. Front Bioeng Biotechnol. 2022; 10:884405. DOI: https://doi.org/10.3389/fbioe.2022.884405

Qing L., Li Q., Dong Z. MUC1: An emerging target in cancer treatment and diagnosis. Bull Cancer. 2022. DOI: https://doi.org/10.1016/j.bulcan.2022.08.001

Cruz-Hernández CD., Rodríguez-Martínez G., Cortés-Ramírez SA., Morales-Pacheco M., Cruz-Burgos M., Losada-García A. et al. Aptamers as theragnostic tools in prostate cancer. Biomolecules. 2022; 12(8):1056. DOI: https://doi.org/10.3390/biom12081056

Zhou Y., Yu Y., Lv H., Zhang H., Liang T., Zhou G. et al. Apigenin in cancer therapy: From mechanism of action to nano-therapeutic agent. Food Chem Toxicol. 2022; 113385. DOI: https://doi.org/10.1016/j.fct.2022.113385

Sheikh A., Md S., Kesharwani P. Aptamer grafted nanoparticle as targeted therapeutic tool for the treatment of breast cancer. Biomed Pharmacother. 2022; 146:112530. DOI: https://doi.org/10.1016/j.biopha.2021.112530

Li W., Han Y., Sun C., Li X., Zheng J., Che J. et al. Novel insights into the roles and therapeutic implications of MUC1 oncoprotein via regulating proteins and non-coding RNAs in cancer. Theranostics. 2022; 12(3):999. DOI: https://doi.org/10.7150/thno.63654

Liu X., Zhang N., Chen Q., Feng Q., Zhang Y., Wang Z. et al. SNAI2 Attenuated the Stem-like Phenotype by Reducing the Expansion of EPCAMhigh Cells in Cervical Cancer Cells. Int J Mol Sci. 2023; 24(2):1062. DOI: https://doi.org/10.3390/ijms24021062

Liu B., Wang J., Peng Y., Zeng H., Zhang Q., Deng M. et al. CD71/CD44 dual-aptamer-gemcitabine conjugate for tumor co-targeting treatment of bladder cancer. Chem Eng J. 2023; 464:142597. DOI: https://doi.org/10.1016/j.cej.2023.142597

Tang Y., Zang H., Wen Q., Fan S. AXL in cancer: a modulator of drug resistance and therapeutic target. J Exp Clin Cancer Res. 2023; 42(1):148. DOI: https://doi.org/10.1186/s13046-023-02726-w

Kim M., Kim S-B., Kim J., Kim K-S., Kim D-E. Co-delivery of curcumin and PTTG1 siRNA by galactose receptor-targeted liposomes for enhanced anti-tumor effects in hepatocellular carcinoma. J Drug Deliv Sci Technol. 2023:104692. DOI: https://doi.org/10.1016/j.jddst.2023.104692

Chen Y., Tandon I., Heelan W., Wang Y., Tang W., Hu Q. Proteolysis-targeting chimera (PROTAC) delivery system: Advancing protein degraders towards clinical translation. Chem Soc Rev. 2022; 51(13):5330-5350. DOI: https://doi.org/10.1039/D1CS00762A

Maher TM., Nambiar AM., Wells AU. The role of precision medicine in interstitial lung disease. Eur Respir J. 2022; 60(3). DOI: https://doi.org/10.1183/13993003.02146-2021

Clower L., Fleshman T., Geldenhuys WJ., Santanam N. Targeting oxidative stress involved in endometriosis and its pain. Biomolecules. 2022; 12(8):1055. DOI: https://doi.org/10.3390/biom12081055

Patil AA., Kaushik P., Jain RD., Dandekar PP. Assessment of Urinary Biomarkers for Infectious Diseases Using Lateral Flow Assays: A Comprehensive Overview. ACS Infect Dis. 2022; 9(1):9-22. DOI: https://doi.org/10.1021/acsinfecdis.2c00449

Chen X., Zhou S., Wang Y., Zheng L., Guan S., Wang D. et al. Nanopore single-molecule analysis of biomarkers: Providing possible clues to disease diagnosis. TrAC, Trends Anal Chem. 2023:117060. DOI: https://doi.org/10.1016/j.trac.2023.117060

Walss-Bass C., Lokesh GLR., Dyukova E., Gorenstein DG., Roberts DL., Velligan D., Volk DE. X-Aptamer Technology Identifies C4A and ApoB in Blood as Potential Markers for Schizophrenia. Mol Neuropsychiatry. 2019; 5(1):52-59. 10.1159/000492331 DOI: https://doi.org/10.1159/000492331

Cutshaw G., Uthaman S., Hassan N., Kothadiya S., Wen X., Bardhan R. The Emerging Role of Raman Spectroscopy as an Omics Approach for Metabolic Profiling and Biomarker Detection toward Precision Medicine. Chem Rev. 2023. DOI: https://doi.org/10.1021/acs.chemrev.2c00897

Shahdost-Fard F., Roushani M. Designing of an ultrasensitive BCM-7 aptasensor based on an SPCE modified with AuNR for promising distinguishing of autism disorder. Talanta. 2020; 209: 120506. 10.1016/j.talanta.2019.120506 DOI: https://doi.org/10.1016/j.talanta.2019.120506

Song D., Liu P., Shang K., Ma Y. Application and mechanism of anti-VEGF drugs in age-related macular degeneration. Frontiers in bioengineering and biotechnology. 2022; 10: 943915. DOI: https://doi.org/10.3389/fbioe.2022.943915

Chen X., Ma Y., Xie Y., Pu J. Aptamer-based applications for cardiovascular disease. Frontiers in Bioengineering and Biotechnology. 2022; 10: 1002285. DOI: https://doi.org/10.3389/fbioe.2022.1002285

Hoshino Y., Okuno T., Saigusa D., Kano K., Yamamoto S., Shindou H. et al. Lysophosphatidic acid receptor1/3 antagonist inhibits the activation of satellite glial cells and reduces acute nociceptive responses. The FASEB Journal. 2022; 36(4): e22236. DOI: https://doi.org/10.1096/fj.202101678R

Ugbaja S.C., Lawal M.M., Kumalo H.M. An Overview of β-Amyloid Cleaving Enzyme 1 (BACE1) in Alzheimer's Disease Therapy: Elucidating its Exosite-Binding Antibody and Allosteric Inhibitor. Curr Med Chem. 2022; 29(1):114-135. DOI: https://doi.org/10.2174/0929867328666210608145357

Rock M., Zouganelis G.D., de Andrade A.F.B., Drake S.J., Alexiou A., Albrakati A. et al. Development and validation of anti-human Alpha synuclein DNA aptamer using computer modelling techniques—an in silico study. Journal of Integrative Neuroscience. 2022; 21(1):5. DOI: https://doi.org/10.31083/j.jin2101005

Gomes M.P., de Lima E.V., Barros-Aragão F.G., Passos Y.M., Lemos F.S., Zamberlan D.C. et al. Prion protein complexed to a DNA aptamer induce behavioral and synapse dysfunction in mice. Behav Brain Res. 2022; 419: 113680. DOI: https://doi.org/10.1016/j.bbr.2021.113680

Rahiman N., Mohammadi M., Alavizadeh S.H., Arabi L., Badiee A., Jaafari M.R. Recent advancements in nanoparticle-mediated approaches for restoration of multiple sclerosis. Journal of Controlled Release. 2022; 343:620-644. DOI: https://doi.org/10.1016/j.jconrel.2022.02.009

Riccardi C., D'Aria F., Digilio F., Carillo M., Amato J., Fasano D. et al. Fighting the Huntington's Disease with a G-Quadruplex-Forming Aptamer Specifically Binding to Mutant Huntingtin Protein: Biophysical Characterization, In Vitro and In Vivo Studies. Int J Mol Sci. 2022; 23. 10.3390/ijms23094804 DOI: https://doi.org/10.3390/ijms23094804

Majdinasab M., Marty J.L. Recent advances in electrochemical aptasensors for detection of biomarkers. Pharmaceuticals. 2022; 15(8):995. DOI: https://doi.org/10.3390/ph15080995

Zhao X., Yang J., Wang X., Chen L., Zhang C., Shen Z. Inhibitory effect of aptamer-carbon dot nanomaterial-siRNA complex on the metastasis of hepatocellular carcinoma cells by interfering with FMRP. Eur J Pharm Biopharm. 2022; 174:47-55. DOI: https://doi.org/10.1016/j.ejpb.2022.03.013

Graßhoff H., Fourlakis K., Comdühr S., Riemekasten G. Autoantibodies as biomarker and therapeutic target in systemic sclerosis. Biomedicines. 2022; 10(9):2150. DOI: https://doi.org/10.3390/biomedicines10092150

Wang Y., Zhu J., Jia W., Xiong H., Qiu W., Xu R., Lin Y. BACE1 Aptamer-Modified Tetrahedral Framework Nucleic Acid to Treat Alzheimer’s Disease in an APP-PS1 Animal Model. ACS Applied Materials & Interfaces. 2022; 14(39):44228-44238. DOI: https://doi.org/10.1021/acsami.2c14626

Berrone E., Chiorino G., Guana F., Benedetti V., Palmitessa C., Gallo M. et al. SOMAscan Proteomics Identifies Novel Plasma Proteins in Amyotrophic Lateral Sclerosis Patients. Int J Mol Sci. 2023; 24(3):1899. DOI: https://doi.org/10.3390/ijms24031899

Baracaldo-Santamaría D., Avendaño-Lopez S.S., Ariza-Salamanca D.F., Rodriguez-Giraldo M., Calderon-Ospina C.A., González-Reyes R.E., Nava-Mesa M.O. Role of Calcium Modulation in the Pathophysiology and Treatment of Alzheimer’s Disease. Int J Mol Sci. 2023; 24(10):9067. DOI: https://doi.org/10.3390/ijms24109067

Lucignani G., Salvatore M. Biotechnology in molecular and cellular imaging (344 visite). International Journal Of Environmental Research And Public Health. 2023; 20:793-805.

Blasiak J., Sobczuk P., Pawlowska E., Kaarniranta K. Interplay between aging and other factors of the pathogenesis of age-related macular degeneration. Ageing Research Reviews. 2022:101735. DOI: https://doi.org/10.1016/j.arr.2022.101735

Fang Y. Enabling Oligonucleotide-Based Therapeutics for Non-Liver Disease Targets. Northeastern University. 2023.

Futane A., Narayanamurthy V., Jadhav P., Srinivasan A. Aptamer-based rapid diagnosis for point-of-care application. Microfluid Nanofluid. 2023; 27(2):15. DOI: https://doi.org/10.1007/s10404-022-02622-3

Dong Y. Introduction of food integrity and aptamer-based analytical methods. Aptamers for Food Applications: Elsevier. 2023; 1-28. DOI: https://doi.org/10.1016/B978-0-323-91903-6.00005-6

Gu Z., Da Silva C.G., Hao Y., Schomann T., Camps M.G., van der Maaden K. et al. Effective combination of liposome-targeted chemotherapy and PD-L1 blockade of murine colon cancer. Journal of Controlled Release. 2023; 353:490-506. DOI: https://doi.org/10.1016/j.jconrel.2022.11.049

Li H., Li Y., Li W., Cui L., Huang G., Huang J. A carbon nanoparticle and DNase I-Assisted amplified fluorescent biosensor for miRNA analysis. Talanta. 2020; 213: 120816. DOI: https://doi.org/10.1016/j.talanta.2020.120816

Panigaj M., Johnson MB., Ke W., McMillan J., Goncharova EA., Chandler M., Afonin KA. Aptamers as modular components of therapeutic nucleic acid nanotechnology. In: Afonin KA (Ed.). Therapeutic RNA Nanotechnology. 2021:825-882.

Chan KY., Kinghorn AB., Hollenstein M., Tanner JA. Chemical modifications for a next generation of nucleic acid aptamers. ChemBioChem. 2022; 23(15):e202200006. DOI: https://doi.org/10.1002/cbic.202200006

Kelly L., Maier KE., Yan A., Levy M. A comparative analysis of cell surface targeting aptamers. Nature Communications. 2021; 12(1):6275. DOI: https://doi.org/10.1038/s41467-021-26463-w

Di Mauro V., Lauta FC., Modica J., Appleton SL., De Franciscis V., Catalucci D. Diagnostic and Therapeutic Aptamers: A Promising Pathway to Improved Cardiovascular Disease Management. JACC: Basic to Translational Science. 2023. DOI: https://doi.org/10.1016/j.jacbts.2023.06.013

Abdollahzade A., Rahimi H., Yaghoobi E., Ramezani M., Alibolandi M., Abnous K., Taghdisi SM. Targeted delivery of doxorubicin and therapeutic FOXM1 aptamer to tumor cells using gold nanoparticles modified with AS1411 and ATP aptamers. Iranian Journal of Basic Medical Sciences. 2023; 26(10):1177.

Odeh F., Nsairat H., Alshaer W., Ismail MA., Esawi E., Qaqish B. et al. Aptamers chemistry: Chemical modifications and conjugation strategies. Molecules. 2019; 25(1):3. DOI: https://doi.org/10.3390/molecules25010003

Chehelgerdi M., Chehelgerdi M., Allela OQB., Pecho RDC., Jayasankar N., Rao DP. et al. Progressing nanotechnology to improve targeted cancer treatment: overcoming hurdles in its clinical implementation. Molecular Cancer. 2023; 22(1):169. DOI: https://doi.org/10.1186/s12943-023-01865-0

Pishavar E., Yazdian-Robati R., Abnous K., Hashemi M., Ebrahimian M., Feizpour R. et al. Aptamer-functionalized mesenchymal stem cells-derived exosomes for targeted delivery of SN38 to colon cancer cells. Iranian Journal of Basic Medical Sciences. 2023; 26(4):388.

Yi K., Rong Y., Huang L., Tang X., Zhang Q., Wang W. et al. Aptamer–exosomes for tumor theranostics. ACS Sensors. 2021; 6(4):1418-1429. DOI: https://doi.org/10.1021/acssensors.0c02237

Mehtani D., Seth A., Sharma P., Maheshwari N., Kapoor D., Shrivastava SK., Tekade RK. Biomaterials for sustained and controlled delivery of small drug molecules. In: Shukla A, Tripathi T (Eds.). Biomaterials and Bionanotechnology. Elsevier; 2019:89-152. DOI: https://doi.org/10.1016/B978-0-12-814427-5.00004-4

Downloads

Published

2024-06-25

How to Cite

Ali Agha, A. S., Alshaer, W., & Aburjai, T. . (2024). Advancements and Challenges in Aptamer-Based Therapeutics and Diagnostics Across Diverse Medical Domains: A Comprehensive Review. Jordan Journal of Pharmaceutical Sciences, 17(2), 344–361. https://doi.org/10.35516/jjps.v17i2.1895

Issue

Section

Articles