Evaluation of Essential Oils for the in Vivo Management of Fusarium Tuber Rot Disease of White Yam (Dioscorea rotundata Poir)

Authors

DOI:

https://doi.org/10.35516/JJAS.3795

Keywords:

Cymbopogon nardus, Fusarium, Geraniol, In vivo, Soft rot disease

Abstract

Yam is an important economic crop that is widely cultivated in Africa and other sub-tropical continents. Its cultivation is, however, constrained by huge postharvest yield losses in tubers and setts meant for next season planting due to microbial-induced rot. The essential oils (EOs) of three botanicals, Cymbopogon nardus, Ocimum gratissimum and Citrus sinensis were evaluated for their phytochemical composition and efficacy in the management of Fusarium soft rot disease in white yam (Dioscorea rotundata Poir). Chemical constituents were analyzed and quantified using gas chromatography-mass spectrometry (GC-MS) and gas chromatography-flame ionization detectors (GC-FID). The experimental design for the in vivo trial was a 15×3×3 factorial in completely randomized design with three replications, which comprised fifteen isolates of Fusarium oxysporum, three EOs and three concentrations. Geraniol (51.73%), thymol (50.52%) and limonene (45.84%) were the major compounds found in C. nardus, O. gratissimum and C. sinensis EOs, respectively. Rot development in inoculated but treated tubers was significantly (p<0.05) reduced by 9.3 -16.4%, 10.1-17.6% and 10.2-18.3%, respectively at 0.8 ml/ml EO concentration. The efficacy of the EOs in this study indicates their potential as biofungicides in the management of Fusarium soft rot disease in white yam.

Downloads

Download data is not yet available.

Author Biographies

Obiora Albert Onwuta, University of Ibadan, Ibadan, Nigeria

Department of Crop Protection and Environmental Biology, University of Ibadan, Ibadan, Nigeria

Department of Agricultural Education, Federal College of Education 9Technical), Akoka, Lagos State, Nigeria

 

Victor Ohileobo Dania, University of Ibadan, Ibadan, Nigeria

Department of Crop Protection and Environmental Biology, University of Ibadan, Ibadan, Nigeria

References

Adams, R. P. (2007). Identification of essential oil components by gas chromatography/mass spectrometry (4th ed.). Allured Pub Corp; Carol Stream, USA.

Antonioli, G., Fontanella, G., Echeverrigaray, S., Delamare, A. P. L., Pauletti, G. F., & Barcellos, T. (2020). Poly (lactic acid) nanocapsules containing lemongrass essential oil for postharvest decay control: In vitro and in vivo evaluation against phytopathogenic fungi. Food Chemistry, 326, 126997.

Anuagasi, C. L., Okigbo, R. N., & Anukwuorji, C. A. (2024). Biological control of post-harvest rot-inducing fungi of white yam tubers (Dioscorea rotundata Poir.) in storage with antagonistic biofungicides. Acta Botanica Plantae, 3(1), 1–7. https://doi.org/10.51470/ABP.2024.03.02.01

Bellik, F.-Z., Benkaci-Ali, F., Alsafra, Z., Eppe, G., Tata, S., Sabaou, N., & Zidani, R. (2019). Chemical composition, kinetic study and antimicrobial activity of essential oils from Cymbopogon schoenanthus L. Spreng extracted by conventional and microwave-assisted techniques using cryogenic grinding. Industrial Crops and Products, 139, 111505.

Anwar, T., Qureshi, H., Fatima, A., Sattar, K., Albasher, G., Kamal, A., Ayaz, A., & Zaman, W. (2023). Citrus sinensis peel oil extraction and evaluation as an antibacterial and antifungal agent. Microorganisms, 11, 1662. https://doi.org/10.3390/microorganisms11071662

Chandra, H. (2016). Effect of essential oil of Cymbopogon caseius and Cymbopogon nardus against aflatoxin-producing Aspergillus flavus. Environmental Conservation Journal, 17, 109–114.

Cofelice, M., Cinelli, G., Lopez, F., Di Renzo, T., Coppola, R., & Reale, A. (2021). Alginate-assisted lemongrass (Cymbopogon nardus) essential oil dispersions for antifungal activity. Foods, 10, 1528. https://doi.org/10.3390/foods10071528

Dangol, S., Poudel, D. K., Ojha, P. K., Maharjan, S., Poudel, A., Satyal, R., Rokaya, A., Timsina, S., Dosoky, N. S., Satyal, P., & Setzer, W. N. (2023). Essential oil composition analysis of Cymbopogon species from Eastern Nepal by GC-MS and Chiral GC-MS, and antimicrobial activity of some major compounds. Molecules, 28(2), 543. https://doi.org/10.3390/molecules28020543

Dambolena, J. S., Zunino, M. P., Lopez, A. G., Rubinstein, H. R., Zygadlo, J. A., Mwangi, J. W., ... Kariuki, S. T. (2010). Essential oils composition of Ocimum basilicum L. and Ocimum gratissimum L. from Kenya and their inhibitory effects on growth and fumonisin production by Fusarium verticillioides. Innovative Food Science and Emerging Technologies, 11, 410–414.

Dania, V. O., Fadina, O. O., Ayodele, M., & Kumar, P. L. (2016). Evaluation of isolates of Trichoderma, Pseudomonas, and Bacillus species as treatment for the control of post-harvest fungal rot disease of yam (Dioscorea spp.). Archives of Phytopathology and Plant Protection, 49(17–18), 456–470. http://dx.doi.org/10.1080/03235408.2016.1231496

Dania, V. O., & Olaleye, E. A. (2022). Chemical characterization of essential oil constituents of three selected botanicals and their antimicrobial activity against postharvest rot pathogens of tomato (Solanum lycopersicum L.). Archives of Phytopathology and Plant Protection, 55(5), 564–582. https://doi.org/10.1080/03235408.2022.2035550

De Toledo, L. G., Ramos, M. A. D. S., Spósito, L., Castilho, E. M., Pavan, F. R., Lopes, É. D. O., Zocolo, G. J., Silva, F. A. N., Soares, T. H., & Dos Santos, A. G. (2016). Essential oil of Cymbopogon nardus (L.) Rendle: A strategy to combat fungal infections caused by Candida species. International Journal of Molecular Sciences, 17, 1252. https://doi.org/10.3390/ijms17081252

Farouk, A., Hathout, A. S., Amer, M. M., Hussain, O. A., & Fouzy, A. S. M. (2022). The impact of nanoencapsulation on volatile constituents of Citrus sinensis L. essential oil and their antifungal activity. Egyptian Journal of Chemistry, 65(3), 527–538.

Hiwandika, N., Sudrajat, S. E., & Rahayu, I. (2021). Antibacterial and antifungal activity of clove extract (Syzygium aromaticum): Review. Eureka Herba, 2(2), 86–94.

Hu, Z., Yuan, K., Zhou, Q., Lu, C., Du, L., & Liu, F. (2021). Mechanism of antifungal activity of Perilla frutescens essential oil against Aspergillus flavus by transcriptomic analysis. Food Control, 123, 107703.

Huong, N. C., Ngan, T. T. K., Anh, T. T. X., Le, T., Lam, T. D., Cang, T. T. T., & Huong, N. D. (2010). Physical and chemical profile of essential oil of Vietnamese Ocimum gratissimum L. Conference Series: Materials Science and Engineering, 736(6), 062010. https://doi.org/10.1088/1757-899X/736/6/062010

Kamel, F., Sabir, S., Mahal, A., & Wei, X. (2022). In vitro antibacterial activity of orange peel oil extract from Citrus sinensis fruit in Erbil. Egyptian Journal of Chemistry, 65, 157–160.

Kouakou, A. M., Chair, H., Dibi, K. E. B., Dossa, K., Arnau, G., & Ehounou, A. E. (2023). Advancing breeding for climate-resilient yam production in Côte d’Ivoire. Plants, People, Planet, 5, 1–12. https://doi.org/10.1002/ppp3.10459

Kumar, A., & Kudachikar, V. B. (2017). Antifungal properties of essential oils against anthracnose disease: A critical appraisal. Journal of Plant Diseases and Protection. https://doi.org/10.1007/s41348-017-0128-2

Lee, J.-E., Seo, S.-M., Huh, M.-J., Lee, S. C., & Park, I. K. (2020). Reactive oxygen species mediated-antifungal activity of cinnamon bark (Cinnamomum verum) and lemongrass (Cymbopogon citratus) essential oils and their constituents against two phytopathogenic fungi. Pesticide Biochemistry and Physiology, 168, 104644.

Li, S., Yang, J., Gao, S., Li, X., Wen, Y., Liu, Y., Qin, Y., Wu, X., Lu, C., & Wang, F. (2024). First report of basal stem rot caused by Fusarium species on Chinese yam in China. Plant Disease, 108, 2561. https://doi.org/10.1094/PDIS-10-23-2042-PDN

Luro, F., Neves, C. G., Costantino, G., Silva Gesteira, A., Paoli, M., Ollitrault, P., Tomi, F., Micheli, F., & Gibernau, M. (2020). Effect of environmental conditions on the yield of peel and composition of essential oils from citrus cultivated in Bahia (Brazil) and Corsica (France). Agronomy, 10, 1256.

Madjouko, M. A., Tchameni, S. N., Tchinda, E. S., Jazet, P. M. D., Kamsu, P. N., Kamga, V. A. M. S., Sameza, M. L., Tchoumbougnang, F., & Menut, C. (2019). Inhibitory effects of essential oils from Ocimum basilicum and Ocimum gratissimum on Colletotrichum musae: The causal agent of banana anthracnose. Journal of Phytopathology, 172(2), 1–8. https://doi.org/10.1111/jph.12793

Martinazzo, A. P., de Oliveira, F. D. S., & de Souza Teodoro, C. E. (2019). Antifungal activity of Cymbopogon citratus essential oil against Aspergillus flavus. Ciência e Natura, 41, 20.

Magalhães, M. L., Ionta, M., Ferreira, G. Á., Campidelli, M. L. L., Nelson, D. L., Ferreira, V. R. F., Rezende, D. A. D. C. S., & Cardoso, M. D. G. (2018). Biological activities of the essential oil from the Moro orange peel (Citrus sinensis (L.) Osbeck). Flavour and Fragrance Journal, 35(3), 294–301. https://doi.org/10.1002/ffj.3561

Muala, W. C. B., Desobgo, Z. S. C., & Jong, N. E. (2021). Optimization of extraction conditions of phenolic compounds from Cymbopogon citratus and evaluation of phenolics and aroma profiles of the extract. Heliyon, 7, e06744. https://doi.org/10.1016/j.heliyon.2021.e06744

Mutlu-Ingok, A., Devecioglu, D., Dikmetas, D. N., Karbancioglu-Guler, F., & Capanoglu, E. (2020). Antibacterial, antifungal, antimycotoxigenic, and antioxidant activities of essential oils: An updated review. Molecules, 25, 4711.

Nakasugi, L. P., Bomfim, N. S., Romoli, J. C. Z., Nerilo, S. B., Silva, M. V., Oliveira, G. H. R., & Machinski, M. J. (2020). Antifungal and antiaflatoxigenic activities of thymol and carvacrol against Aspergillus flavus. Saúde e Pesquisa, 14, e7727.

Obeidat, M. (2018). Antimicrobial activity from the extract of seven medicinal plant species against multi-drug resistant bacteria and fungi. Journal of Pharmacognosy and Phytotherapy, 10, 45–55.

Pandey, A. K., Singh, P., & Tripathi, N. N. (2014). Chemistry and bioactivities of essential oils of some Ocimum species: An overview. Asian Pacific Journal of Tropical Biomedicine, 4(9), 682–694.

Pontes, E. K. U., Melo, H. M., Nogueira, J. W. A., Firmino, N. C. S., de Carvalho, M. G., Catunda-Júnior, F. E. A., & Cavalcante, T. T. A. (2019). Antibiofilm activity of the essential oil of citronella (Cymbopogon nardus) and its major component, geraniol, on the bacterial biofilms of Staphylococcus aureus. Food Science and Biotechnology, 28, 633–639. https://doi.org/10.1007/s10068-018

Poudel, D. K., Rokaya, A., Ojha, P. K., Timsina, S., Satyal, R., Dosoky, N. S., Satyal, P., & Setzer, W. N. (2021). The chemical profiling of essential oils from different tissues of Cinnamomum camphora L. and their antimicrobial activities. Molecules, 26, 5132. https://doi.org/10.3390/molecules26175132

Prakash, B., Kedia, A., Mishra, P. K., & Dubey, N. K. (2015). Plant essential oils as food preservatives to control moulds, mycotoxin contamination and oxidative deterioration of agri-food commodities: Potentials and challenges. Food Control, 41, 381–391. https://doi.org/10.1016/j.foodcont.2014.07.023

SAS Institute. (2002). SAS/STAT: Guide for personal computers (Version 9.1). SAS Institute, Cary, NC.

Sawadogo, I., Paré, A., Kaboré, D., Montet, D., Durand, N., Bouajila, J., Zida, E. P., Sawadogo-Lingani, H., Nikiéma, P. A., & Nebié, R. H. C. (2022). Antifungal and antiaflatoxinogenic effects of Cymbopogon citratus, Cymbopogon nardus, and Cymbopogon schoenanthus essential oils alone and in combination. Journal of Fungi, 8, 117. https://doi.org/10.3390/jof8020117

Sharma, K., Mahato, N., & Lee, Y. R. (2018). Extraction, characterization and biological activity of citrus flavonoids. Reviews in Chemical Engineering, 35, 265–284.

Tang, X., Shao, Y. L., Tang, Y. J., & Zhou, W. W. (2018). Antifungal activity of essential oil compounds (geraniol and citral) and inhibitory mechanisms on grain pathogens (Aspergillus flavus and Aspergillus ochraceus). Molecules, 23, 2108.

Valková, V., Ďúranová, H., Galovičová, L., Borotová, P., Vukovic, N. L., Vukic, M., & Kačániová, M. (2022). Cymbopogon citratus essential oil: Its application as an antimicrobial agent in food preservation. Agronomy, 12, 155. https://doi.org/10.3390/agronomy12010155

Wang, L., Jiang, N., Wang, D., & Wang, M. (2019). Effects of essential oil citral on the growth, mycotoxin biosynthesis, and transcriptomic profile of Alternaria alternata. Toxins, 11, 553.

Widelska, G., Stelmasiewicz, M., Skalicka-Woźniak, K., Oniszczuk, A., & Ludwiczuk, A. (2018). Antioxidant activity of lemongrass essential oil and its constituents. Facta Universitatis: Physics, Chemistry and Technology, 16, 132.

Yang, J., Lee, S. Y., Jang, S. K., Kim, K. J., & Park, M. J. (2023). Anti-inflammatory effects of essential oils from the peels of citrus cultivars. Pharmaceutics, 15, 1595. https://doi.org/10.3390/pharmaceutics15061595

Zhang, L. L., Yang, Z. Y., Fan, G., Ren, J. N., Yin, K. J., & Pan, S. Y. (2019). Antidepressant-like effect of Citrus sinensis (L.) Osbeck essential oil and its main component limonene on mice. Journal of Agricultural and Food Chemistry, 67, 13817–13828.

Downloads

Published

01-09-2025

How to Cite

Onwuta, O. A., & Dania, V. O. (2025). Evaluation of Essential Oils for the in Vivo Management of Fusarium Tuber Rot Disease of White Yam (Dioscorea rotundata Poir). Jordan Journal of Agricultural Sciences, 21(3), 218–232. https://doi.org/10.35516/JJAS.3795

Issue

Section

Articles
Received 2024-12-22
Accepted 2025-08-14
Published 2025-09-01