الجدوى الاقتصادية لانظمة الطاقة المتجددة في الأنشطة الزراعية في الأردن
DOI:
https://doi.org/10.35516/jjas.v20i4.1967الكلمات المفتاحية:
أنظمة الطاقة المتجددة، الجدوى الاقتصادية، العمل الزراعي، حجم المزرعة، النشاطات الزراعيةالملخص
تهدف هذه الدراسة إلى التعرف إلى الجدوى الاقتصادية لاستخدام مصادر الطاقة المتجددة في المزارع. دُرست الجدوى الاقتصادية بناءاً على خصائص حجم المزرعة، والنشاطات الزراعية، ونوع مصدر الطاقة المتجددة المستخدم في هذه المَزارع. استخدمت الدراسة البيانات المقطعية العرضية باستخدام الاستبانات لجمع البيانات. وقد تألفت الاستبيانه من جزئين، الجزء الأول تعلق بجمع بيانات حول خصائص المزرعة، بينما تعلق الجزء الثاني بجمع بيانات حول جدوى أنظمة الطاقة البديلة في المزارع. وزعت الاستبيانه على عينة عشوائية تألفت من 100 مزارعاً في المناطق الزراعية المختلفة. تم عزل البيانات التي جمعت وتحميلها على برمجية (R) لأغراض التحليل. استخدم الإحصاء الوصفي والاستدلالي من أجل الوصول إلى نتائج الدراسة. أظهرت النتائج أن استخدام أنظمة الطاقة المتجددة كان مجدياً في القطاع الزراعي، وحجم المنفعة ازداد بزيادة حجم المزرعة، وأظهرت النتائج أن نسبه التكلفة الى المنفعة و صافي القيمة الحالية ومعول العائد الداخلي كانت الأعلى في المزارع ذات الحجم المتوسط أو أعلى (500 دونم أو أكثر)، وبينت النتائج أن أنظمة الطاقة الشمسية كانت الأكثر جدوى في العمل الزراعي، تلاها نظام طاقة الرياح وجاء في المرتبة الأخيرة استخدام الطاقة الحيوية. كما أظهرت النتائج أن كمية الطاقة المنتجة من مصادر الطاقة المتجددة لا تلبي حاجة المزرعة من الطاقة، وكذلك أن المنفعة الاقتصادية كانت أعلى في المزارع التي تحتوي على نشاطات نباتية وحيوانية معاً، وقد أوصت الدراسة بان تشجع الحكومة المزارعين على استخدام أنظمة الطاقة المتجددة من أجل زيادة الاستقلالية في طاقة المزارع ولحماية البيئة.
التنزيلات
المراجع
Al-Qarallah, B. (2014). Agricultural Utilization of Renewable Domestic Energy in Jordan: Potential and Future Production of Biogas.
Albatayneh, A., Hindiyeh, M., & AlAmawi, R. (2022). Potential of renewable energy in water-energy-food nexus in Jordan. Energy Nexus, 7. https://doi.org/10.1016/j.nexus.2022.100140
Alexy, M., & Haidegger, T. (2022). Precision Solutions in Livestock Farming - Feasibility and applicability of digital data collection. ICCC 2022 - IEEE 10th Jubilee International Conference on Computational Cybernetics and Cyber-Medical Systems, Proceedings, 233–238. https://doi.org/10.1109/ICCC202255925.2022.9922883
Babatunde, D. E., Babatunde, O. M., Emezirinwune, M. U., Denwigwe, I. H., Okharedia, T. E., & Omodara, O. J. (2020). Feasibility analysis of an off-grid photovoltaic-battery energy system for a farm facility. International Journal of Electrical and Computer Engineering, 10(3), 2874–2883. https://doi.org/10.11591/ijece.v10i3.pp2874-2883
Berishvili, V., & Gejadze, E. (2020). Renewable energy utilization feasibility for agricultural company – Georgia case. ECOFORUM, 9(1), 21.
Bhuiyan, M. A., Kahouli, B., Hamaguchi, Y., & Zhang, Q. (2023). The role of green energy deployment and economic growth in carbon dioxide emissions: evidence from the Chinese economy. Environmental Science and Pollution Research, 30(5), 13162–13173. https://doi.org/10.1007/s11356-022-23026-4
Bolyssov, T., Yessengeldin, B., Akybayeva, G., Sultanova, Z., & Zhanseitov, A. (2019). Features of the use of renewable energy sources in agriculture. International Journal of Energy Economics and Policy, 9(4), 363–368. https://doi.org/10.32479/ijeep.7443
Borek, K., & Romaniuk, W. (2020). Possibilities of Obtaining Renewable Energy in Dairy Farming. Agricultural Engineering, 24(2), 9–20. https://doi.org/10.1515/agriceng-2020-0012
Chen, G., Neugebauer, M., Sołowiej, P., & Piechocki, J. (2018). Development in Energy Generation Technologies and Alternative Fuels for Agriculture. Advances in Agricultural Machinery and Technologies, 89–112.
Choobchian, S., Ghorbannezhad, M., & Farhadian, H. (2018). Analysis of Barriers to the Development of Renewable Energy Technologies at the Farm Level: A Farmer’s Perspective. Journal of Rural Research, 9(2), 308–323. https://doi.org/10.22059/jrur.2018.247759.1194
Dash, S., & Choudhury, S. (2021). Adopting sustainable farming: Implications of renewable energy and ICT. IOP Conference Series: Materials Science and Engineering, 1020(1). https://doi.org/10.1088/1757-899X/1020/1/012018
Dinakar, J., & Deepika, T. (2019). Preface: Renewable Energy Sources and Technologies. AIP Conference Proceedings, 2161. https://doi.org/10.1063/1.5127590
Diogo, V., Reidsma, P., Schaap, B., Andree, B. P. J., & Koomen, E. (2017). Assessing local and regional economic impacts of climatic extremes and feasibility of adaptation measures in Dutch arable farming systems. Agricultural Systems, 157, 216–229. https://doi.org/10.1016/j.agsy.2017.06.013
Dupas, M.-C., Parison, S., Noel, V., Chatzimpiros, P., & Herbert, E. (2022). Variable renewable energy penetration impact on productivity: a case study of poultry farming. AgriRxiv, 2022. https://doi.org/10.31220/agrirxiv.2022.00157
El-Karmi, F. Z., & Abu-Shikhah, N. M. (2013). The role of financial incentives in promoting renewable energy in Jordan. Renewable Energy, 57, 620–625. https://doi.org/10.1016/j.renene.2013.02.034
Fallahinejad, S., Armin, M., & Asgharipour, M. R. (2022). The effect of farm size on the sustainability of wheat production using emergy approach. Current Research in Environmental Sustainability, 4. https://doi.org/10.1016/j.crsust.2022.100161
Ge, J., Sutherland, L. A., Polhill, J. G., Matthews, K., Miller, D., & Wardell-Johnson, D. (2017). Exploring factors affecting on-farm renewable energy adoption in Scotland using large-scale microdata. Energy Policy, 107, 548–560. https://doi.org/10.1016/j.enpol.2017.05.025
Gholami, A., Tajik, A., Eslami, S., & Zandi, M. (2019). Feasibility Study of Renewable Energy Generation Opportunities for a Dairy Farm. Journal of Renewable Energy and Environment, 6(2), 8–14. https://doi.org/10.30501/jree.2019.95943
Gorjian, S., Singh, R., Shukla, A., & Mazhar, A. R. (2020). On-farm applications of solar PV systems. Photovoltaic Solar Energy Conversion: Technologies, Applications and Environmental Impacts, 147–190. https://doi.org/10.1016/B978-0-12-819610-6.00006-5
He, P. (2014). The determinants of renewable energy technology adoption: empirical evidence from China.
Ibeawuchi, I. I., Iwuanyanwu, U. P., Nze, E. O., Olejeme, O. C., & Ihejirika, G. O. (2015). Mulches and Organic Manures as Renewable Energy Sources for Sustainable Farming. Journal of Natural Sciences Research, 5(2), 139–148.
Ifeoma, A. A., Enete, A. A., & Bridget, E. A. (2022). Determinant and Impact of Renewable Energy Utilization on Farm Productivity in South-South Nigeria. Journal of Agriculture and Crops, 91, 105–113. https://doi.org/10.32861/jac.91.105.113
Jaber, J. O., Elkarmi, F., Alasis, E., & Kostas, A. (2015). Employment of renewable energy in Jordan: Current status, SWOT and problem analysis. Renewable and Sustainable Energy Reviews, 49, 490–499. https://doi.org/10.1016/j.rser.2015.04.050
Jalil, R. R., & Mohammed, H. J. (2022). The Economic Feasibility of Using Renewable Energy in Iraqi Oil Fields. Journal of Petroleum Research and Studies, 12(4), 137–156. https://doi.org/10.52716/jprs.v12i4.727
Kaushik, G., & Chel, A. (2011). Renewable energy for sustainable agriculture. Agronomy for Sustainable Development, 31(1), 91–118. http://openurl.ingenta.com/content/xref?genre=article&issn=1465-5187&volume=10&issue=2&spage=119
Kilani, H., Bataineh, M., Al-Nawayseh, A., Atyat, K., Obeid, O., Abu-Hilal, M., Mansi, T., Al-Kilani, M., Al-Kitani, M., El-Saleh, M., Jaber, R., Sweidan, A., Himsi, M., Yousef, I., Alzeer, F., Nasrallah, M., Dhaheri, A., Al-Za’abi, A., Allala, O., … Kilani, A. (2020). Healthy Lifestyle Behaviors Are Major Predictors of Mental Wellbeing During COVID-19 Pandemic Confinement: A Study on Adult Arabs in Higher Educational Institutions. https://doi.org/10.21203/rs.3.rs-37899/v1
Le, A. H., Giourdjian, A., Frankyan, A., Mandany, V., & Le, H. T. (2016). Design, sizing, and operation of a hybrid renewable energy system for farming. 2016 IEEE Power and Energy Society Innovative Smart Grid Technologies Conference, ISGT 2016. https://doi.org/10.1109/ISGT.2016.7781209
Lotfi, R., Ghaboulian Zare, S., Gharehbaghi, A., Nazari, S., & Weber, G.-W. (2023). Robust optimization for energy-aware cryptocurrency farm location with renewable energy. Computers & Industrial Engineering, 177, 109009. https://doi.org/10.1016/j.cie.2023.109009
Mascarello, L. N., Quagliotti, F., & Ristorto, G. (2017). A feasibility study of a harmless tiltrotor for smart farming applications. 2017 International Conference on Unmanned Aircraft Systems, ICUAS 2017, 1631–1639. https://doi.org/10.1109/ICUAS.2017.7991374
Mbzibain, A., Tate, G., & Shaukat, A. (2015). The adoption of renewable energy (RE) enterprises in the UK. Journal of Small Business and Enterprise Development, 22(2), 249–272. https://doi.org/10.1108/JSBED-09-2012-0105
Morris, W., & Bowen, R. (2020). Renewable energy diversification: Considerations for farm business resilience. January.
Nnadi, J., & Nwakwasi, A. (2010). Solar Energy Applications for Agriculture. Journal of Agricultural and Veterinary Sciences, 2(September), 58–62.
Ogunwole, E. I., & Krishnamurthy, S. (2023). An Economic Feasibility Study for Off-Grid Hybrid Renewable Energy Resources. Proceedings of the 31st Southern African Universities Power Engineering Conference, SAUPEC 2023. https://doi.org/10.1109/SAUPEC57889.2023.10057767
Pestisha, A., Gabnai, Z., Chalgynbayeva, A., Lengyel, P., & Bai, A. (2023). On-Farm Renewable Energy Systems: A Systematic Review. Energies, 16(2). https://doi.org/10.3390/en16020862
Rashid, M. M., Sall, A., & Hasan, T. F. (2021). Automated Farming System Using Distributed Controller: A Feasibility Study. Asian Journal of Electrical …, 1(1), 21–29. https://journals.alambiblio.com/ojs/index.php/ajoeee/article/view/11%0Ahttps://journals.alambiblio.com/ojs/index.php/ajoeee/article/download/11/4
Schaffer, A., & Düvelmeyer, C. (2016). Regional drivers of on-farm energy production in Bavaria. Energy Policy, 95, 361–369. https://doi.org/10.1016/j.enpol.2016.04.047
Sutisna, F., Apriliasari, D., Soleman, M. D., Faizal Fazri, M., Andayani, D., & Aini, Q. (2022). Integrating Blockchain for Renewable Energy in Digital Business Era. 2022 IEEE Creative Communication and Innovative Technology, ICCIT 2022. https://doi.org/10.1109/ICCIT55355.2022.10119025
Tymińska, M., Skibko, Z., & Borusiewicz, A. (2023). The Effect of Agricultural Biogas Plants on the Quality of Farm Energy Supply. Energies, 16(12). https://doi.org/10.3390/en16124600
Vogt, H. H., Albiero, D., & Schmuelling, B. (2018). Electric tractor propelled by renewable energy for small-scale family farming. 2018 13th International Conference on Ecological Vehicles and Renewable Energies, EVER 2018, 1–4. https://doi.org/10.1109/EVER.2018.8362344
Weingart, J., & Giovannucci, D. (2004). Rural Energy: A Practical Primer for Productive Applications. March, 1–14. http://www.dgiovannucci.net/docs/rural_energy-a_practical_primer_for_productive_applications_weingart-giovannucci.pdf
Wu, J., Atchike, D. W., & Ahmad, M. (2023). Crucial Adoption Factors of Renewable Energy Technology: Seeking Green Future by Promoting Biomethane. Processes, 11(7). https://doi.org/10.3390/pr11072005
Yang, X., Liu, Y., Thrän, D., Bezama, A., & Wang, M. (2021). Effects of the German Renewable Energy Sources Act and environmental, social and economic factors on biogas plant adoption and agricultural land use change. Energy, Sustainability and Society, 11(1). https://doi.org/10.1186/s13705-021-00282-9
Zeyad, M., Masum Ahmed, S. M., Hasan, S., Hossain, E., & Anubhove, M. S. T. (2022). Economic Feasibility Analysis of a Designed Poultry Farming Zone with Renewable Energy Resources in Bangladesh. IEEE Global Energy Conference, GEC 2022, 75–79. https://doi.org/10.1109/GEC55014.2022.9986830
التنزيلات
منشور
كيفية الاقتباس
إصدار
القسم
الرخصة
الحقوق الفكرية (c) 2024 المجلة الأردنية في العلوم الزراعية

هذا العمل مرخص بموجب Creative Commons Attribution-NonCommercial 4.0 International License.
##plugins.generic.dates.accepted## 2024-06-11
##plugins.generic.dates.published## 2024-12-14