التطورات الحديثة في تكنولوجيا اسمدة النباتات

المؤلفون

DOI:

https://doi.org/10.35516/jjas.v21i2.3472

الكلمات المفتاحية:

الأسمدة، جزيئات النانو، التركيز، النوع، جزيئات الميكرو، عامل التربة، البيئة

الملخص

يعد موضوع الاسمدة من اهم المواضيع لدوره المؤثر على نمو النباتات بالاضافه لدوره المؤثر على التربة و البيئة المحيطه. يؤدي الترشيح العميق للماء الى وصول الاسمدة الزائدة الى الخزانات الطبيعية للمياه. و بالتالي ايجاد اسمدة قادرة على تزويد النباتات بما تحتاجه من عناصر و تبقي على وضع ممتاز مع التربة والاحياء الدقيقه الموجودة فيها امر واعد في مجال الزراعة. النوع التقليدي من الاسمدة كان يستخدم لعدة عقود. و اصبح التطور في استخدام اسمدة النانو كنزعة هو الاتجاه في مجال الصناعة. يعتمد تفاعل النبات او التربة مع اسمدة النانو بشكل ايجابي او سلبي بشكل اساسي على نوع,  و تركيز و مستوى النانو المستخدم بحيث يجب اضافته بمستوى دقيق حتى يكون له فائدة كبيرة على النبات و البيئه المحيطه به. تعد جزيئات الاسمدة التي بحجم المايكرو من الموضوعات الواعده لكنها تحتاج الى دراسات حديثه اكثر.

التنزيلات

بيانات التنزيل غير متوفرة بعد.

السير الشخصية للمؤلفين

Laila Alkhatib، The University of Jordan, Jordan

Dep.of hort.&Crop sci., School of Agriculture, The University of Jordan

Safwan Al-Shiyab ، The University of Jordan, Jordan

Dep. Hort. and Crop sci. School of Agriculture. The University of Jordan

Jamal Sawan، The University of Jordan, Jordan

Dep. Hort. and Crop sci. School of Agriculture. The University of Jordan

المراجع

Alabdallah, N. M. A., & Hasan, M. M. (2021). Plant-based green synthesis of silver nanoparticles and its effective role in abiotic stress tolerance in crop plants. Saudi Journal of Biological Sciences, 28, 5631–5639. https://doi.org/10.1016/j.sjbs.2021.05.081

Alabdallah, N. M., & Alzahrani, H. S. (2020). The potential mitigation effect of ZnO nanoparticles on [Abelmoschus esculentus L. Moench] metabolism under salt stress conditions. Saudi Journal of Biological Sciences, 27, 3132–3137. https://doi.org/10.1016/j.sjbs.2020.08.005

Abdelaal, K. A. A., El-Maghraby, L. M., Elansary, H., Hafez, Y. M., Ibrahim, E. I., El-Banna, M., El-Esawi, M., & Elkelish, A. (2020). Treatment of sweet pepper with stress tolerance-inducing compounds alleviates salinity stress oxidative damage by mediating the physio-biochemical activities and antioxidant systems. Agronomy, 10(1), 26. https://doi.org/10.3390/agronomy10010026

Abdel-Aziz, H. M. M., Hassaneen, M. N. A., & Omer, A. M. (2016). Nano chitosan-NPK fertilizer enhances the growth and productivity of wheat plants grown in sandy soil. Spanish Journal of Agricultural Research, 14(1), e0902. https://doi.org/10.5424/sjar/2016141-8205

Abdel-Aziz, H. M. M., Hasaneen, M. N. A., & Omer, A. M. (2018). Foliar application of nano chitosan NPK fertilizer improves the yield of wheat plants grown on two different soils. Egyptian Journal of Experimental Biology (Botany), 14, 63–72. https://doi.org/10.5455/egyjebb.20180106032701

Abdel-Aziz, H. M. M., Soliman, M. I., Abo Al-Saoud, A. M., & El-Sherbeny, G. A. (2021). Waste-derived NPK nanofertilizer enhances growth and productivity of Capsicum annuum L. Plants, 10, 1144. https://doi.org/10.3390/plants10061144

Abdel-Moneim, A. M. E., El-Saadony, M. T., Shehata, A. M., Saad, A. M., Aldhumri, S. A., Ouda, S. M., & Mesalam, N. M. (2022). Antioxidant and antimicrobial activities of Spirulina platensis extracts and biogenic selenium nanoparticles against selected pathogenic bacteria and fungi. Saudi Journal of Biological Sciences, 29, 1197–1209. https://doi.org/10.1016/j.sjbs.2021.09.046

Abdelsalam, N. R., Kandil, E. E., Al-Msari, M. A. F., Al-Jaddadi, M. A. M., Ali, H. M., Salem, M. Z. M., & Elshikh, M. S. (2019). Effect of foliar application of NPK nanoparticle fertilization on yield and genotoxicity in wheat (Triticum aestivum L.). Science of the Total Environment, 653, 1128–1139. https://doi.org/10.1016/j.scitotenv.2018.11.023

Abeed, A. H. A., Al-Huqail, A. A., Albalawi, S., Alghamdi, S. A., Ali, B., Alghanem, S. M. S., Al-Haithloul, H. A. S., Amro, A., Tammam, S. A., & El-Mahdy, M. T. (2023). Calcium nanoparticles mitigate severe salt stress in Solanum lycopersicon by instigating the antioxidant defense system and renovating the protein profile. South African Journal of Botany, 161, 36–52. https://doi.org/10.1016/j.sajb.2023.08.005

Abu-Elsaad, N. I., & Abdel Hameed, R. E. (2019). Copper ferrite nanoparticles as nutritive supplement for cucumber plants grown under hydroponic system. Journal of Plant Nutrition, 42, 1645–1659. https://doi.org/10.1080/01904167.2019.1630428

Al-Juthery, H. W. A., Al-Fadhly, J. T. M., Ali, E. A. H. M., & Al-Taee, R. A. H. G. (2019). Role of some nanofertilizers and atonikin in maximizing the production of hydroponically-grown barley fodder. International Journal of Agricultural and Statistical Sciences, 15(2), 565–570.

Alsaeedi, A., El-Ramady, H., Alshaal, T., & Almohsen, M. (2017). Enhancing seed germination and seedlings development of common bean (Phaseolus vulgaris) by SiO₂ nanoparticles. Egyptian Journal of Soil Science, 57(4), 407–415.

Alsaeedi, A., El-Ramady, H., Alshaal, T., El-Garawany, M., Elhawat, N., & Al-Otaibi, A. (2019). Silica nanoparticles boost growth and productivity of cucumber under water deficit and salinity stresses by balancing nutrients uptake. Plant Physiology and Biochemistry, 139, 1–10. https://doi.org/10.1016/j.plaphy.2019.03.008

Al-Sid-Cheikh, M., Pédrot, M., Dia, A., Davranche, M., Jeanneau, L., Petitjean, P., Bouhnik-Le Coz, M., Cormier, M. A., & Grasset, F. (2019). Trace element and organic matter mobility impacted by Fe₃O₄-nanoparticle surface coating within wetland soil. Environmental Science: Nano, 6, 3049–3059. https://doi.org/10.1039/C9EN00565J

Ajmal, Z., Muhmood, A., Usman, M., Kizito, S., Lu, J., Dong, R., & Wu, S. (2018). Phosphate removal from aqueous solution using iron oxides: Adsorption, desorption and regeneration characteristics. Journal of Colloid and Interface Science, 528, 145–155. https://doi.org/10.1016/j.jcis.2018.05.084

Aslani, F., Bagheri, S., Muhd Julkapli, N., Juraimi, A. S., Hashemi, F. S. G., & Baghdadi, A. (2014). Effects of engineered nanomaterials on plants growth: An overview. The Scientific World Journal, 2014, 641759. https://doi.org/10.1155/2014/641759

Auffan, M., Rose, J., Bottero, J. Y., Lowry, G. V., Jolivet, J. P., & Wiesner, M. R. (2009). Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nature Nanotechnology, 4, 634–641. https://doi.org/10.1038/nnano.2009.242

Awan, S., Shahzadi, K., Javad, S., Tariq, A., Ahmad, A., & Ilyas, S. (2021). A preliminary study of influence of zinc oxide nanoparticles on growth parameters of Brassica oleracea var. italic. Journal of the Saudi Society of Agricultural Sciences, 20, 18–24. https://doi.org/10.1016/j.jssas.2020.10.003

Bala, S., Garg, D., Thirumalesh, B. V., Sharma, M., Sridhar, K., Inbaraj, B. S., & Tripathi, M. (2022). Recent strategies for bioremediation of emerging pollutants: A review. A green and sustainable environment. Toxics, 10, 484. https://doi.org/10.3390/toxics10080484

Ben-Moshe, T., Dror, I., & Berkowitz, B. (2010). Transport of metal oxide nanoparticles in saturated porous media. Chemosphere, 81, 387–393. https://doi.org/10.1016/j.chemosphere.2010.07.007

Ben-Moshe, T., Frenk, S., Dror, I., Minz, D., & Berkowitz, B. (2013). Effects of metal oxide nanoparticles on soil properties. Chemosphere, 90, 640–646. https://doi.org/10.1016/j.chemosphere.2012.09.018

Bhandari, P., Novikova, G., Goergen, C. J., & Irudayaraj, J. (2018). Ultrasound beam steering of oxygen nanobubbles for enhanced bladder cancer therapy. Scientific Reports, 8, 1–10. https://doi.org/10.1038/s41598-018-20363-8

Boente, C., Sierra, C., Martínez-Blanco, D., Menéndez-Aguado, J. M., & Gallego, J. R. (2018). Nanoscale zero-valent iron-assisted soil washing for the removal of potentially toxic elements. Journal of Hazardous Materials, 350, 55–65. https://doi.org/10.1016/j.jhazmat.2018.02.016

Chagas, J. O., Gomes, J. M., Cunha, I. C., De Melo, N. F. S., Fraceto, L. F., Da Silva, G. A., & Lobo, F. A. (2020). Polymeric microparticles for modified release of NPK in agricultural applications. Arabian Journal of Chemistry, 13(1), 2084–2095. https://doi.org/10.1016/j.arabjc.2018.03.007

Chawla, R., Sivakumar, S., & Kaur, H. (2021). Antimicrobial edible films in food packaging: Current scenario and recent nanotechnological advancements—A review. Carbohydrate Polymers: Technologies and Applications, 2, 100024. https://doi.org/10.1016/j.carpta.2020.100024

Chen, X., Ren, H., Zhang, J., Zhao, B., Ren, B., Wan, Y., & Liu, P. (2024). Deep phosphorus fertilizer placement increases maize productivity by improving root-shoot coordination and photosynthetic performance. Soil & Tillage Research, 235, 105915. https://doi.org/10.1016/j.still.2023.105915

Chiaregato, C. G., & Faez, R. (2021). Micronutrients encapsulation by starch as an enhanced efficiency fertilizer. Carbohydrate Polymers, 271, 118419. https://doi.org/10.1016/j.carbpol.2021.118419

Choi, O., & Hu, Z. (2008). Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environmental Science & Technology, 42, 4583–4588. https://doi.org/10.1021/es703238h

Colipano, J. M., & Cagasan, U. A. (2022). A review on the impact of organic, conventional and nano fertilizer application in crop production. Eurasian Journal of Agricultural Research, 6, 101–109.

Colman, S. L., Salcedo, M. F., Iglesias, M. J., Alvarez, V. A., Fiol, D. F., Casalongu, C. A., & Foresi, N. P. (2024). Chitosan microparticles mitigate nitrogen deficiency in tomato plants. Plant Physiology and Biochemistry, 212, 108728. https://doi.org/10.1016/j.plaphy.2024.108728

Cornelis, G., Hund-Rinke, K., Kuhlbusch, T., Van Den Brink, N., & Nickel, C. (2014). Fate and bioavailability of engineered nanoparticles in soils: A review. Critical Reviews in Environmental Science and Technology, 44, 2720–2764. https://doi.org/10.1080/10643389.2013.829767

Danhier, F., Feron, O., & Préat, V. (2010). To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. Journal of Controlled Release, 148, 135–146. https://doi.org/10.1016/j.jconrel.2010.08.027

Das, K., & Roychoudhury, A. (2014). Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Frontiers in Environmental Science, 2, 53. https://doi.org/10.3389/fenvs.2014.00053

Davies, B., Coulter, J. A., & Pagliari, P. H. (2020). Timing and rate of nitrogen fertilization influence maize yield and nitrogen use efficiency. PLOS ONE, 15(5), e0233674. https://doi.org/10.1371/journal.pone.0233674

Delfani, M., Baradarn Firouzabadi, M., Farrokhi, N., & Makarian, H. (2014). Some physiological responses of black-eyed pea to iron and magnesium nanofertilizers. Communications in Soil Science and Plant Analysis, 45(4), 530–540. https://doi.org/10.1080/00103624.2013.863911

Dhlamini, B., Paumo, H. K., Kamdem, B. P., Katata-Seru, L., & Bahadur, I. (2022). Nano-engineering metal-based fertilizers using biopolymers: An innovative strategy for a more sustainable agriculture. Journal of Environmental Chemical Engineering, 10(3), 107729. https://doi.org/10.1016/j.jece.2022.107729

Diez-Ortiz, M., Lahive, E., George, S., Ter Schure, A., Van Gestel, C. A. M., Jurkschat, K., Svendsen, C., & Spurgeon, D. J. (2015). Short-term soil bioassays may not reveal the full toxicity potential for nanomaterials; bioavailability and toxicity of silver ions (AgNO₃) and silver nanoparticles to earthworm Eisenia fetida in long-term aged soils. Environmental Pollution, 203, 191–198. https://doi.org/10.1016/j.envpol.2015.03.033

Dikshit, P. K., Kumar, J., Das, A. K., Sadhu, S., Sharma, S., Singh, S., & Kim, B. S. (2021). Green synthesis of metallic nanoparticles: Applications and limitations. Catalysts, 11(8), 902. https://doi.org/10.3390/catal11080902

Dimkpa, C. O., Bindraban, P. S., Fugice, J., Agyin-Birikorang, S., Singh, U., & Hellums, D. (2017). Composite micronutrient nanoparticles and salts decrease drought stress in soybean. Agronomy for Sustainable Development, 37(1), 5. https://doi.org/10.1007/s13593-016-0412-8

Dimkpa, C. O., Latta, D. E., McLean, J. E., Britt, D. W., Boyanov, M. I., & Anderson, A. J. (2013). Fate of CuO and ZnO nano- and microparticles in the plant environment. Environmental Science & Technology, 47, 4734–4742. https://doi.org/10.1021/es304736y

Dimkpa, C. O., McLean, J. E., Britt, D. W., & Anderson, A. J. (2013b). Antifungal activity of ZnO nanoparticles and their interactive effect with a biocontrol bacterium on growth antagonism of the plant pathogen Fusarium graminearum. Biometals, 26, 913–924. https://doi.org/10.1007/s10534-013-9667-6

Djanaguiraman, M., Nair, R., Giraldo, J. P., & Prasad, P. V. V. (2018). Cerium oxide nanoparticles decrease drought-induced oxidative damage in sorghum leading to higher photosynthesis and grain yield. ACS Omega, 3, 14406–14416. https://doi.org/10.1021/acsomega.8b01894

Eichert, T., Kurtz, A., Steiner, U., & Goldbach, H. E. (2008). Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiologia Plantarum, 134, 151–160. https://doi.org/10.1111/j.1399-3054.2008.01135.x

El-Beltagi, H. S., Al-Otaibi, H. H., Parmar, A., Ramadan, K., Lobato, A. K. d. S., & El-Mogy, M. M. (2023). Application of potassium humate and salicylic acid to mitigate salinity stress of common bean. Life, 13, 448.

Elnaggar, M., Abdelsalam, N., Fouda, M., Mackled, M., Al-Jaddadi, M., Ali, H., Siddiqui, M. H., Estefan, G., Sommer, R., & Ryan, J. (2013). Methods of soil, plant and water analysis: A manual for the West Asia and North Africa region (3rd ed.). ICARDA.

Elsheery, N. I., Sunoj, V. S. J., Wen, Y., Zhu, J. J., Muralidharan, G., & Cao, K. F. (2020). Foliar application of nanoparticles mitigates the chilling effect on photosynthesis and photoprotection in sugarcane. Plant Physiology and Biochemistry, 149, 50–60. https://doi.org/10.1016/j.plaphy.2020.01.035

El-Saadony, M. T., Almoshadak, A. S., Shaf, M. E., Albaqami, N. M., Saad, A. M., Eltahan, A. M., Desoky, E. M., Elnahal, A. S. M., Almakas, A., El-Mageed, T. A. A., Taha, A. E., Elrys, A. S., & Aymanhelmy, M. (2021a). Vital roles of sustainable nano-fertilizers in improving plant quality and quantity—An updated review. Saudi Journal of Biological Sciences, 28(12), 7349–7359. https://doi.org/10.1016/j.sjbs.2021.08.032

El-Saadony, M. T., Desoky, E.-S. M., Saad, A. M., Eid, R. S., Selem, E., & Elrys, A. S. (2021b). Biological silicon nanoparticles improve Phaseolus vulgaris L. yield and minimize its contaminant contents on a heavy metals-contaminated saline soil. Journal of Environmental Sciences, 106, 1–14. https://doi.org/10.1016/j.jes.2021.01.012

El-Saadony, M. T., Saad, A. M., Najjar, A. A., Alzahrani, S. O., Alkhatib, F. M., Shaf, M. E., Selem, E., Desoky, E. S. M., Fouda, S. E. S., & El-Tahan, A. M. (2021c). The use of biological selenium nanoparticles in controlling Triticum aestivum L. crown root and rot diseases induced by Fusarium species and improve yield under drought and heat stress. Saudi Journal of Biological Sciences, 28, 4461–4471. https://doi.org/10.1016/j.sjbs.2021.04.043

El-Saadony, M. T., El-Hack, A., Mohamed, E., Taha, A. E., Fouda, M. M., Ajarem, J. S., Maodaa, N. S., Allam, A. A., & Elshaer, N. (2020). Ecofriendly synthesis and insecticidal application of copper nanoparticles against the storage pest Tribolium castaneum. Nanomaterials, 10, 587. https://doi.org/10.3390/nano10030587

El-Saadony, M. T., Saad, A. M., Soliman, S. M., Salem, H. M., Desoky, E.-S. M., Babalghith, A. O., El-Tahan, A. M., Ibrahim, O. M., Ebrahim, A. A. M., Abd El-Mageed, T. A., Elrys, A. S., Elbadawi, A. A., El-Tarabily, K. A., & Abuqamar, S. F. (2022). Role of nanoparticles in enhancing crop tolerance to abiotic stress: A comprehensive review. Frontiers in Plant Science, 13, 946717. https://doi.org/10.3389/fpls.2022.946717

Elsheery, N. I., Sunoj, V. S. J., Wen, Y., Zhu, J. J., Muralidharan, G., & Cao, K. F. (2020). Foliar application of nanoparticles mitigates the chilling effect on photosynthesis and photoprotection in sugarcane. Plant Physiology and Biochemistry, 149, 50–60. https://doi.org/10.1016/j.plaphy.2020.01.035

Fageria, N. K., & Baligar, V. C. (2005). Enhancing nitrogen use efficiency in crop plants. In D. L. Sparks (Ed.), Advances in agronomy (Vol. 88, pp. 97–185). Academic Press.

FAO. (2002). World agriculture: Towards 2015/2030. Food and Agriculture Organization of the United Nations.

Feizi, H., Amirmoradi, S., Abdollahi, F., & Jahedi Pour, S. (2013). Comparative effects of nanosized and bulk titanium dioxide concentrations on medicinal plant Salvia officinalis L. Annual Review and Research in Biology, 3(4), 814–824.

Feizi, H., Rezvani Moghaddam, P., Shahtahmassebi, N., & Fotovat, A. (2012). Impact of bulk and nanosized titanium dioxide (TiO₂) on wheat seed germination and seedling growth. Biological Trace Element Research, 146, 101–106. https://doi.org/10.1007/s12011-011-9222-7

Fertilizer Europe. (2022). Fertilizer industry facts & figures. https://www.fertilizerseurope.com/wp-content/uploads/2022/09/Industry-Facts-and-Figures-2022.pdf

Fu, J., Wang, C., Chen, X., Huang, Z., & Chen, D. (2018). Classification research and types of slow controlled release fertilizers (SRFs) used – A review. Communications in Soil Science and Plant Analysis, 49(17), 2219–2230. https://doi.org/10.1080/00103624.2018.1499757

Fu, Y., de Jonge, L. W., Moldrup, P., Paradelo, M., & Arthur, E. (2022). Improvements in soil physical properties after long-term manure addition depend on soil and crop type. Geoderma, 425, 116062. https://doi.org/10.1016/j.geoderma.2022.116062

Fond, A. M., & Meyer, G. J. (2006). Nanomaterials, toxicity, health and environmental issues (Nanotechnologies for the life sciences) (Vol. 5). Wiley-VCH Verlag GmbH & Co. KGaA.

Gamal, Z. M. M. (2018). Nano-particles: A recent approach for controlling stored grain insect pests. Academic Journal of Agricultural Research, 6, 88–94. https://doi.org/10.3389/fsufs.2022.993341

Gao, X., Rodrigues, S. M., Spielman-Sun, E., Lopes, S., Rodrigues, S., Zhang, Y., Avellan, A., Duarte, R. M. B. O., Duarte, A., Casman, E. A., & Lowry, G. V. (2019). Effect of soil organic matter, soil pH, and moisture content on solubility and dissolution rate of CuO NPs in soil. Environmental Science & Technology, 53, 4959–4967. https://doi.org/10.1021/acs.est.8b07243

Ghorbanpour, M., Mohammadi, H., & Kariman, K. (2020). Nanosilicon-based recovery of barley (Hordeum vulgare) plants subjected to drought stress. Environmental Science: Nano, 7, 443–461. https://doi.org/10.1039/C9EN00973F

Ghosh, M., Bandyopadhyay, M., & Mukherjee, A. (2010). Genotoxicity of titanium dioxide (TiO₂) nanoparticles at two trophic levels: Plant and human lymphocytes. Chemosphere, 81, 1253–1262. https://doi.org/10.1016/j.chemosphere.2010.09.022

Gil-Díaz, M., García-Gonzalo, P., Mancho, C., Hernández, L. E., Alonso, J., & Lobo, M. C. (2022). Response of spinach plants to different doses of two commercial nanofertilizers. Scientia Horticulturae, 301, 111143. https://doi.org/10.1016/j.scienta.2022.111143

Giroto, A. S., Fidélis, S. C., & Ribeiro, C. (2015). Controlled release from hydroxyapatite nanoparticles incorporated into biodegradable, soluble host matrixes. RSC Advances, 5, 104179–104186. https://doi.org/10.1039/C5RA17669G

Giroto, A. S., Guimarães, G. G. F., Foschini, M., & Ribeiro, C. (2017). Role of slow-release nanocomposite fertilizers on nitrogen and phosphate availability in soil. Scientific Reports, 7, 46032. https://doi.org/10.1038/srep46032

Grillo, R., Rosa, A. H., & Fraceto, L. F. (2015). Engineered nanoparticles and organic matter: A review of the state-of-the-art. Chemosphere, 119, 608–619.

Gong, X., Huang, D., Liu, Y., Peng, Z., Zeng, G., Xu, P., Cheng, M., Wang, R., & Wan, J. (2018). Remediation of contaminated soils by biotechnology with nanomaterials: Biobehavior, applications, and perspectives. Critical Reviews in Biotechnology, 38, 455–468. https://doi.org/10.1080/07388551.2017.1368446

Gowariker, V., Krishnamurthy, V. N., Gowariker, S., Dhanorkar, M., & Paranjape, K. (2009). The fertilizer encyclopedia. John Wiley & Sons.

Gubbins, E. J., Batty, L. C., & Lead, J. R. (2011). Phytotoxicity of silver nanoparticles to Lemna minor L. Environmental Pollution, 159, 1551–1559. https://doi.org/10.1016/j.envpol.2011.03.002

Hakeem, K. R., Dar, G. H., Mehmood, M. A., & Bhat, R. A. (2021). Microbiota and biofertilizers: A sustainable continuum for plant and soil health. Springer International Publishing.

Haghighi, M., & Pessarakli, M. (2013). Influence of silicon and nano-silicon on salinity tolerance of cherry tomatoes (Solanum lycopersicum L.) at early growth stage. Scientia Horticulturae, 161, 111–117. https://doi.org/10.1016/j.scienta.2013.06.034

Hashemi, A., Abdolzadeh, A., & Sadeghipour, H.R. (2010). Beneficial Effects of Silicon Nutrition in Alleviating Salinity Stress in Hydroponically Grown Canola, Brassica napus L., Plants. Soil Sci. Plant Nutr, 56: 244–253. https://doi.org/10.1111/j.1747-0765.2009.00443.x

Havlin, J. L., Beaton, J. D., Tisdale, S. L., & Nelson, W. L. (2014). Soil Fertility and Fertilizers: 8th Ed. An Introduction To Nutrient Management. Upper Saddle River, New Jersey. Indian Reprint.

He, J., Li, J., Gao, Y., He, X., & Hao, G. (2023). Nano Based Smart Formulations: A Potential Solution to The Hazardous Effects of Pesticide on The Environment. J. Hazard. Mater, 456: 131599. https://doi.org/10.1016/j.jhazmat.2023.131599

He, S., Feng, Y., Ni, J., Sun, Y., Xue, L., Feng, Y., Yu, Y., Lin, X., & Yang, L. (2016). Different Responses of Soil Microbial Metabolic Activity to Silver and Iron Oxide Nanoparticles. Chemosphere, 147: 195–202. https://doi.org/10.1016/j.chemosphere.2015.12.055

He, X., & Hwang, H. M. (2016). Nanotechnology in Food Science: Functionality, Applicability, and Safety Assessment. J. Food Drug Anal, 24(4): 671–681. https://doi.org/10.1016/j.jfda.2016.06.001

He, Z., Dang, X., Lin, X., Gao, G., Liu, Y., Ma, F. (2024). Combining Base to Topdressing Ratio and Layered Application of Phosphorus Fertilizer Enhanced Cotton Yield by Regulating Root Distribution And Activity. Soil. Res., 241: 106111. https://doi.org/10.1016/j.still.2024.106111

Hong, F., Yang, F., Liu, C., Gao, Q., Wan, Z., Gu, F., Wu, C., Ma, Z., Zhou, J., & Yang, P. (2005). Influences of Nano-TiO2 on The Chloroplast Aging of Spinah Under Light. Biol. Trace Elem. Res, 104: 249–260. https://doi.org/10.1385/BTER:104:3:249

Hossain, Z., Mustafa, G., Sakata, K., & Komatsu, S. (2016). Insights Into The Proteomic Response of Soybean Towards Al2O3 , Zno, and Ag Nanoparticles Stress. J. Hazard. Mater, 304: 291–305. https://doi.org/10.1016/j.jhazmat.2015.10.071

Hu, J., Guo, H., Li, J., Wang, Y., Xiao, L., & Xing, B. (2017). Interaction Of γ-Fe2O3 Nanoparticles with Citrus maxima Leaves and The Corresponding Physiological Effects Via Foliar Application. J. Nanobiotechnology, 15: 51. https://doi.org/10.1186/s12951-017-0286-1

Hu, X., Saravanakumar, K., Sathiyaseelan, A., & Wang, M.H. (2020). Chitosan Nanoparticles as Edible Surface Coating Agent To Preserve The Fresh-Cut Bell Pepper (Capsicum annuum L. var. Grossum (L.) Sendt). Int. J. Biol. Macromol, 165: 948–957. https://doi.org/10.1016/j.ijbiomac.2020.09.176

Hussain, S. M., Javorina, A. K., Schrand, A. M., Duhart, H. M., Ali, S. F., & Schlager, J. J. (2006). The Interaction of Manganese Nanoparticles With PC-12 Cells Induces Dopamine Depletion. Toxicol. Sci, 92: 456–463. https://doi.org/10.1093/toxsci/kfl020

Jaynes, D.B., Colvin, T.S., Karlen, D.L., Cambardella, C.A., & Meek, D.W. (2001). Nitrate Loss in Subsurface Drainage as Affected by Nitrogen Fertilizer Rate. J Environ Qual., 30: 1305–1314. https://doi.org/10.2134/jeq2001.3041305x

Kalimuthu, K., Babu, R. S., Venkataraman, D., Bilal, M., & Gurunathan, S. (2008). Biosynthesis of Silver Nanocrystals By Bacillus licheniformis. Colloids Surf. B. Biointerfaces, 65: 150–153. https://doi.org/10.1016/j.colsurfb.2008.02.018

Kalishwaralal, K., Deepak, V., Ramkumarpandian, S., Nellaiah, H., & Sangiliyandi, G. (2008). Extracellular Biosynthesis of Silver Nanoparticles by The Culture Supernatant of Bacillus licheniformis. Mater. Lett., 62: 4411–4413. https://doi.org/10.1016/j.matlet.2008.06.051

Kasivelu, G., Selvaraj, T., Malaichamy, K., Kathickeyan, D., Shkolnik, D., & Chaturvedi, S. (2020). Nano-Micronutrients γ-Fe2O3 (Iron) And Zno (Zinc)]: Green Preparation, Characterization, Agro-Morphological Characteristics and Crop Productivity Studies in Two Crops (Rice And Maize). N. J. Chem, 44: 11373–11383. https://doi.org/10.1039/D0NJ02634D

Kaur, J., & Singh, J. (2014). Long-Term Effects of Continuous Cropping and Different Nutrient Management Practices on The Distribution of Organic Nitrogen in Soil under Rice-Wheat System. Plant Soil Environ., 60: 63–68.

Kaur, P., Duhan, J. S., & Thakur, R. (2018). Comparative Pot Studies of Chitosan and Chitosan-Metal Nanocomposites as Nano-Agrochemicals Against Fusarium Wilt of Chickpea (Cicer Arietinum L.). Biocatal. Agric. Biotechnol., 14: 466–471. https://doi.org/10.1016/j.bcab.2018.04.014

Khan, I., Raza, M.A., Awan, S.A., Shah, G.A., Rizwan, M., Ali, B., Tariq, R., Hassan, M.J., Alyemeni, M.N., Brestic, M., Zhang, X., Ali, S., & Huang, L. (2020). Amelioration of Salt Induced Toxicity in Pearl Millet by Seed Priming with Silver Nanoparticles (AGNPs): The Oxidative Damage, Antioxidant Enzymes and Ions Uptake are Major Determinants of Salt Tolerant Capacity. Plant Physiol. Biochem., 156: 221–232. https://doi.org/10.1016/J.PLAPHY.2020.09.018

Kolahalam, L. A., Viswanath, I. V. K., Diwakar, B. S., Govindh, B., Reddy, V., & Murthy, Y. L. N. (2019). Review On Nanomaterials: Synthesis And Applications. Mater. Today Proc., 18: 2182–2190. https://doi.org/10.1016/j.matpr.2019.07.371

Kottegoda, N., Munaweera, I., Madusanka, N., & Karunaratne, V. (2011). A Green Slow-Release Fertilizer Composition Based on Urea-Modified Hydroxyapatite Nanoparticles Encapsulated Wood. Curr. Sci., 101: 73–78.

Kumar Bhatt, M., Labanya, R., & Joshi, H.C. (2019). Influence of Long-Term Chemical Fertilizers and Organic Manures on Soil Fertility—A Review. Univers. J. Agric. Res., 7: 177–188. https://doi.org/10.13189/ujar.2019.070502

Kumaraswamy, R.V., Saharan, V., Kumari, S., Chandra Choudhary, R., Pal, A., Sharma, S. S., Rakshit, S., Raliya, R., & Biswas, P. (2021). Chitosan-Silicon Nanofertilizer to Enhance Plant Growth and Yield in Maize (Zea mays L.). Plant Physiol. Biochem., 159: 53–66. https://doi.org/10.1016/j.plaphy.2020.11.054

Lee, C.W., Mahendra, S., Zodrow, K., Li, D., Tsai, Y.C., Braam, J., & Alvarez, P.J. (2010). Developmental Phytotoxicity of Metal Oxide Nanoparticles to Arabidopsis thaliana. Environ. Toxicol. Chem., 29: 669–675. https://doi.org/10.1002/etc.58

Lei, C., Sun, Y., Tsang, D. C. W., & Lin, D. (2018). Environmental Transformations and Ecological Effects of Iron-Based Nanoparticles. Environ. Pollut., 232: 10–30. https://doi.org/10.1016/j.envpol.2017.09.052

Lewu, F.B., Volova, T., Thomas, S., & Rakhimol, K.R. (2021). Controlled Release Fertilizers for Sustainable Agriculture. Elsevier. Amsterdam, The Netherlands.

Li, J., Hu, J., Xiao, L., Wang, Y., & Wang, X. (2018). Interaction Mechanisms Between αFe2O3, γFe2O3 and Fe3O4 Nanoparticles and Citrus maxima Seedlings. Sci. Total Environ., 625: 677–685. https://doi.org/10.1016/j.scitotenv.2017.12.276

Li, Q., Dunn, E. T., Grandmaison, E. W., & Goosen, M. F. A. (2020). Applications and Properties of Chitosan. In Applications of Chitin And Chitosan. CRC Press: Boca Raton, FL, USA.

Liang, B. C., & MacKenzie, A. F. (2011). Corn yield, nitrogen uptake and nitrogen use efficiency as influenced by nitrogen fertilization. Can. J. Soil Sci., 74(2), 235–240. https://doi.org/10.4141/cjss94-032

Liang, Y., Chen, Q., Liu, Q., Zhang, W., & Ding, R. (2003). Exogenous Silicon (Si) Increases Antioxidant Enzyme Activity and Reduces Lipid Peroxidation In Roots of Salt-Stressed Barley (Hordeum vulgare L.). J. Plant Physiol., 160: 1157–1164. https://doi.org/10.1078/0176-1617-01065

Liu, J., Hu, T., Feng, P., Yao, D., Gao, F., & Hong, X. (2021). Effect of Potassium Fertilization During Fruit Development on Tomato Quality, Potassium Uptake, Water and Potassium Use Efficiency Under Deficit Irrigation Regime. Agric. Water Manag., 250: 106831. https://doi.org/10.1016/j.agwat.2021.106831

Liu, R., Zhang, H., & Lal, R. (2016). Effects Of Stabilized Nanoparticles of Copper, Zinc, Manganese, and Iron Oxides in Low Concentrations on Lettuce (Lactuca sativa) Seed Germination: Nanotoxicants Or Nanonutrients? Water. Air. Soil. Poll., 227: 42. https://doi.org/10.1007/s11270-015-2738-2

López-Moreno, M. L., De La Rosa, G., Hernández-Viezcas, J. A., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2010). X-Ray Absorption Spectroscopy (XAS) Corroboration of The Uptake and Storage of CeO₂ Nanoparticles and Assessment of Their Differential Toxicity in Four Edible Plant Species. J. Agric. Food Chem., 58: 3689–3693. https://doi.org/10.1021/jf904472e

Lv, W., Geng, H., Zhou, B., Chen, H., Yuan, R., Ma, C., Liu, R., Xing, B., & Wang, F. (2022). The Behavior, Transport, And Positive Regulation Mechanism of ZnO Nanoparticles in a Plant-Soil-Microbe Environment. Environ. Pollut., 315: 120368. https://doi.org/10.1016/j.envpol.2022.120368

Lv, J., Zhang, S., Luo, L., Han, W., Zhang, J., Yang, K., & Christie, P. (2012). Dissolution and Microstructural Transformation of ZnO Nanoparticles Under The Influence of Phosphate. Environ. Sci. Technol., 46: 7215–7221. https://doi.org/10.1021/es301027a

Mahajan, P., Dhoke, S., & Khanna, A. (2011). Effect Of Nano-ZnO Particle Suspension on Growth of Mung (Vigna radiata) And Gram (Cicer arietinum) Seedlings Using Plant Agar Method. J. Nanotechnol., 2011: 696535. https://doi.org/10.1155/2011/696535

Mazaheri-Tirani, M., & Dayani, S. (2020). In Vitro Effect of Zinc Oxide Nanoparticles on Nicotiana tabacum Callus Compared To ZnO Micro Particles and Zinc Sulfate (ZnSO₄). Plant Cell Tissue Organ Cult., 140: 279–289. https://doi.org/10.1007/s11240-019-01725-0

Mahajan, P., Dhoke, S., & Khanna, A. (2011). Effect Of Nano-ZnO Particle Suspension on Growth of Mung (Vigna radiata) And Gram (Cicer arietinum) Seedlings Using Plant Agar Method. J. Nanotechnol. https://doi.org/10.1155/2011/696535

Mathur, S., Pareek, S., & Shrivastava, D. (2022). Nanofertilizers for Development of Sustainable Agriculture. Commun. Soil Sci. Plant Anal., 53(16): 1999–2016. https://doi.org/10.1080/00103624.2022.2070191

Messa, L. L., Souza, C. F., & Faez, R. (2020). Spray-Dried Potassium Nitrate-Containing Chitosan/Montmorillonite Microparticles as Potential Enhanced Efficiency Fertilizer. Polym. Test., 81: 106196. https://doi.org/10.1016/j.polymertesting.2019.106196

Messaoudi, A., Labdelli, F., Rebouh, N. Y., Djerbaoui, M., Kucher, D. E., Hadjout, S., Ouaret, W., Zakharova, O. A., & Latati, M. (2023). Investigating the Potassium Fertilization Effect on Morphological and Agrophysiological Indicators of Durum Wheat under Mediterranean Rain-Fed Conditions. Agriculture, 13: 1142. https://doi.org/10.3390/agriculture13061142

Ministry Project. (n.d.). Retrieved from https://moenv.gov.jo/EN/ListDetails/Ministry_Projects/163/1

Mostaghaci, B., Fathi, M. H., Sheikh-Zeinoddin, M., & Soleimanian-Zad, S. (2009). Bacterial Synthesis of Nanostructured Hydroxyapatite Using Serratia marcescens PTCC 1187. International Journal of Nanotechnology, 6: 1015–1030. https://doi.org/10.1504/IJNT.2009.027564

Nair, P. M. G., & Chung, I. M. (2014). Cell Cycle And Mismatch Repair Genes as Potential Biomarkers in Arabidopsis thaliana Seedlings Exposed to Silver Nanoparticles. Bull. Environ. Contam. Toxicol., 92: 719–725. https://doi.org/10.1007/s00128-014-1254-1

Nasrallah, A. K., Kheder, A. A., Kord, M. A., Fouad, A. S., El-Mogy, M. M., & Atia, M. A. M. (2022). Mitigation of Salinity Stress Effects on Broad Bean Productivity Using Calcium Phosphate Nanoparticles Application. Horticulturae, 8: 75–84. https://doi.org/10.3390/horticulturae8010075h

Navarro, E., Piccapietra, F., Wagner, B., Marconi, F., Kaegi, R., Odzak, N., Sigg, L., & Behra, R. (2008). Toxicity of Silver Nanoparticles to Chlamydomonas reinhardtii. Environ. Sci. Technol., 42(23): 8959–8964. https://doi.org/10.1021/es801785m

Nazari, N., & Feizi, H. (2021). Magnetic Fields and Titanium Dioxide Nanoparticles Promote Saffron Performance: A Greenhouse Experiment. Journal of Horticulture And Postharvest Research, 4: 33–42. https://doi.org/10.22077/jhpr.2021.3886.1182

Nel, A., Xia, T., Mädler, L., & Li, N. (2006). Toxic Potential of Materials at The Nanolevel. Science, 311: 622–627. https://doi.org/10.1126/science.1114397

Nielsson, F. T. (1986). Manual of Fertilizer Processing (1st ed.). New York: CRC Press. ISBN 9780824775223

Nisar, S., Sadique, S., Kazerooni, E. G., Majeed, U., & Shehzad, M. R. (2019). Physical and Chemical Techniques to Produce Nano Fertilizers. Int. J. Chem. Biochem. Sci., 15: 50–57.

Noor, R., Yasmin, H., Ilyas, N., Nosheen, A., Hassan, M. N., Mumtaz, S., Khan, N., Ahmad, A., & Ahmad, P. (2022). Comparative Analysis of Iron Oxide Nanoparticles Synthesized From Ginger (Zingiber officinale) And Cumin Seeds (Cuminum cyminum) To Induce Resistance in Wheat Against Drought Stress. Chemosphere, 292: 133201. https://doi.org/10.1016/j.chemosphere.2021.133201

Noori, A., Donnelly, T., Colbert, J., Cai, W., Newman, L. A., & White, J. C. (2020). Exposure Of Tomato (Lycopersicon esculentum) To Silver Nanoparticles and Silver Nitrate: Physiological and Molecular Response. Int. J. Phytoremediation, 22: 40–51. https://doi.org/10.1080/15226514.2019.1634000

Pérez-Labrada, F., López-Vargas, E. R., Ortega-Ortiz, H., Cadenas-Pliego, G., Benavides-Mendoza, A., & Juárez-Maldonado, A. (2019). Responses of Tomato Plants under Saline Stress to Foliar Application of Copper Nanoparticles. Plants, 8: 151. https://doi.org/10.3390/plants8060151

Prazak, R., Swieciło, A., Krzepiłko, A., Michałek, S., & Arczewska, M. (2020). Impact of Ag Nanoparticles on Seed Germination and Seedling Growth of Green Beans in Normal and Chill Temperatures. Agric., 10: 312. https://doi.org/10.3390/agriculture10080312

Priya, E., Sarkar, S., & Maji, P. K. (2024). A Review on Slow-Release Fertilizer: Nutrient Release Mechanism and Agricultural Sustainability. J. Environ. Chem. Eng., 12: 113211. https://doi.org/10.1016/j.jece.2024.113211

Pugazhendhi, A., Prabakar, D., Jacob, J. M., Karuppusamy, I., & Saratale, R. G. (2018). Synthesis and Characterization of Silver Nanoparticles Using Gelidium amansii and Its Antimicrobial Property Against Various Pathogenic Bacteria. Microb. Pathog., 114: 41–45. https://doi.org/10.1016/j.micpath.2017.11.013

Qiu, S., Xie, J., Zhao, S., Xu, X., Hou, Y., Wang, X., Zhou, W., He, P., Johnston, A. M., Christie, P., & Jin, J. (2014). Long-Term Effects of Potassium Fertilization on Yield, Efficiency, And Soil Fertility Status in A Rain-Fed Maize System in Northeast China. Field Crops Res., 163: 1–9. https://doi.org/10.1016/j.fcr.2014.04.016

Racuciu, M., & Creanga, D. E. (2007). TMA-OH Coated Magnetic Nanoparticles Internalized in Vegetal Tissue. Rom. J. Phys., 52: 395–402.

Răcuciu, M., Tecucianu, A., & Oancea, S. (2022). Impact Of Magnetite Nanoparticles Coated with Aspartic Acid on The Growth, Antioxidant Enzymes Activity and Chlorophyll Content of Maize. Antioxidants, 11: 1193. https://doi.org/10.3390/antiox11061193

Raliya, R., Tarafdar, J. C., & Biswas, P. (2016). Enhancing The Mobilization of Native Phosphorus in The Mung Bean Rhizosphere Using ZnO Nanoparticles Synthesized by Soil Fungi. J. Agric. Food Chem., 64: 3111–3118. https://doi.org/10.1021/acs.jafc.5b05224

Raskar, S., & Laware, S. (2014). Effect of Zinc Oxide Nanoparticles on Cytology and Seed Germination in Onion. Int. J. Curr. Microbiol. App. Sci., 3: 467–473.

Region, And Segment Forecasts. (2022). Nano Fertilizer Market Size, Share & Trends Analysis Report By Raw Material (Carbon, Silver), By Method Of Application (Spray, Soil), 2022 – 2030.

Roosta, H. R., Jalali, M., & Ali Vakili Shahrbabaki, S. M. (2015). Effect Of Nano Fe-Chelate, Fe-EDDHA and FeSO₄ On Vegetative Growth, Physiological Parameters and Some Nutrient Elements Concentrations of Four Varieties of Lettuce (Lactuca sativa L.) In NFT System. J. Plant Nutr., 38: 2176–2184. https://doi.org/10.1080/01904167.2015.1043378

Santo Pereira, A. E., Silva, P. M., Oliveira, J. L., Oliveira, H. C., & Fraceto, L. F. (2017). Chitosan Nanoparticles as Carrier Systems for The Plant Growth Hormone Gibberellic Acid. Colloid Surface B, 150: 141–152. https://doi.org/10.1016/j.colsurfb.2016.11.027

Sayed, E. G., Mahmoud, A. W. M., El-Mogy, M. M., Ali, M. A., Fahmy, M. A., & Tawfic, G. A. (2022). The Effective Role of Nano-Silicon Application in Improving The Productivity And Quality of Grafted Tomato Grown under Salinity Stress. Horticulturae, 8: 293. https://doi.org/10.3390/horticulturae8040293

Shaikhaldein, H. O., Al-Qurainy, F., Nadeem, M., Khan, S., Tarroum, M., Salih, A. M., Alansi, S., Al-Hashimi, A., Alfagham, A., & Alkahtani, J. (2022). Assessment of the Impacts of Green Synthesized Silver Nanoparticles on Maerua oblongifolia Shoots Under in Vitro Salt Stress. J. Mater., 15: 4784. https://doi.org/10.3390/ma15144784

Sharma, M., Sharma, R. P., & Swapna, S. (2018). Effect Of A Decade-Long Chemical Fertilizers and Amendments Application on Potassium Fractions and Yield of Maize–Wheat in An Acid Alfisol. Communications in Soil Science and Plant Analysis, 1–11.

Sharma, U., Paliyal, S. S., Sharma, S. P., & Sharma, G. D. (2014). Effects of Continuous Use of Chemical Fertilizers And Manure on Soil Fertility and Productivity of Maize-Wheat Under Rainfed Conditions of The Western Himalayas. Communications in Soil Science and Plant Analysis, 45(20): 2647–2659. https://doi.org/10.1080/00103624.2014.941854

Shebl, A., Hassan, A. A., Salama, D. M., Abd El-Aziz, M. E., & Abd Elwahed, M. S. A. (2019). Green Synthesis of Nanofertilizers and Their Application as A Foliar for Cucurbita pepo L. J. Nanomater., 11. https://doi.org/10.1155/2019/3476347

Schwab, F., Zhai, G., Kern, M., Turner, A., Schnoor, J. L., & Wiesner, M. R. (2015). Barriers, Pathways and Processes for Uptake, Translocation and Accumulation of Nanomaterials in Plants—Critical Review. Nanotoxicology, 10: 257–278. https://doi.org/10.3109/17435390.2015.1048326

Siddiqui, M. H., & Al-Whaibi, M. H. (2014). Role Of Nano-SiO₂ in Germination Of Tomato (Lycopersicum esculentum Seeds Mill.). Saudi J. Biol. Sci., 21: 13–17. https://doi.org/10.1016/j.sjbs.2013.04.005

Simonin, M., & Richaume, A. (2015). Impact Of Engineered Nanoparticles on The Activity, Abundance, And Diversity of Soil Microbial Communities: A Review. Environ. Sci. Pollut. Res., 22: 13710–13723. https://doi.org/10.1007/s11356-015-4171-x

Sheoran, P., Goel, S., Boora, R., Kumari, S., Yashveer, S., & Grewal, S. (2021). Biogenic Synthesis of Potassium Nanoparticles and Their Evaluation as A Growth Promoter in Wheat. Plant Gene, 27: 100310. https://doi.org/10.1016/j.plgene.2021.100310

Simonin, M., & Richaume, A. (2015). Impact of Engineered Nanoparticles on The Activity, Abundance, And Diversity of Soil Microbial Communities: A Review. Environ. Sci. Pollut. Res., 22: 13710–723. https://doi.org/10.1007/s11356-015-4171-x

Song, L., Vijver, M. G., & Peijnenburg, W. J. (2015). Comparative Toxicity of Copper Nanoparticles Across Three Lemnaceae Species. Sci. Total Environ., 15: 518–519. https://doi.org/10.1016/j.scitotenv.2015.02.079

Statista. (2022). https://www.statista.com/statistics/438967/fertilizer-consumption-globally-by-nutrient/

Su, Y., Ashworth, V., Kim, C., Adeleye, A. S., Rolshausen, P., Roper, C., & Jassby, D. (2019). Delivery, Uptake, Fate, And Transport of Engineered Nanoparticles in Plants: A Critical Review and Data Analysis. Env Sci Nano, 19-6(8): 2311–2331.

Suresh, A. K., Pelletier, D. A., & Doktycz, M. J. J. N. (2013). Relating Nanomaterial Properties and Microbial Toxicity. Nanoscale, 5: 463–474. https://doi.org/10.1007/978-1-4020-9674-7_12

Suriyaprabha, R., Karunakaran, G., Yuvakkumar, R., Rajendran, V., & Kannan, N. (2012). Silica Nanoparticles for Increased Silica Availability in Maize (Zea mays L.) Seeds Under Hydroponic Conditions. Curr. Nanosci., 8: 902–908. https://doi.org/10.2174/157341312803989033

Syu, Y. Y., Hung, J. H., Chen, J. C., & Chuang, H. W. (2014). Impacts of Size and Shape of Silver Nanoparticles on Arabidopsis Plant Growth and Gene Expression. Plant Physiol. Biochem., 83: 57–64. https://doi.org/10.1016/j.plaphy.2014.07.010

Tabak, M., Lepiarczyk, A., Filipek-Mazur, B., & Lisowska, A. (2020). Efficiency of Nitrogen Fertilization of Winter Wheat Depending on Sulfur Fertilization. Agronomy, 10: 1304. https://doi.org/10.3390/agronomy10091304

Tahir, M. A., Aziz, T., Ashraf, M., Rahmatullah, Aziz, T., & Ashraf, M. (2010). Wheat Genotypes Differed Significantly in Their Response to Silicon Nutrition Under Salinity Stress. Journal of Plant Nutrition, 33: 1658–1671. https://doi.org/10.1080/01904167.2010.496889

Tan, Z., Lal, R., & Wiebe, K. (2005). Global Soil Nutrient Depletion and Yield Reduction. J. Sustain. Agric., 26: 123–146. https://doi.org/10.1300/J064v26n01_10

Tarafder, C., Daizy, M., Alam, M. M., Ali, M. R., Islam, M. J., Islam, R., Ahommed, M. S., Aly Saad Aly, M., & Khan, M. Z. H. (2020). Formulation of A Hybrid Nanofertilizer for Slow and Sustainable Release of Micronutrients. ACS Omega, 5: 23960–23966. https://doi.org/10.1021/acsomega.0c03233

Tombuloglu, H., Slimani, Y., Tombuloglu, G., Almessiere, M., & Baykal, A. (2019). Uptake and Translocation of Magnetite (Fe₃O₄) Nanoparticles and Its Impact on Photosynthetic Genes In Barley (Hordeum vulgare L.). Chemosphere, 226: 110−122. https://doi.org/10.1016/j.chemosphere.2019.03.075

Tripathi, D. K., Singh, V. P., Prasad, S. M., Chauhan, D. K., & Dubey, N. K. (2015). Silicon Nanoparticles (SiNp) Alleviate Chromium (VI) Phytotoxicity in Pisum sativum (L.) Seedlings. Plant Physiol. Biochem., 96: 189–198. https://doi.org/10.1016/j.plaphy.2015.07.026

Trujillo-Reyes, J., Majumdar, S., Botez, C. E., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2014). Exposure Studies Of Core–Shell Fe/Fe₃O₄ And Cu/CuO NPs To Lettuce (Lactuca sativa) Plants: Are They A Potential Physiological And Nutritional Hazard? J. Hazard. Mater., 267: 255–263. https://doi.org/10.1016/j.jhazmat.2013.11.067

Trujillo-Reyes, J., Vilchis-Nestor, A. R., Majumdar, S., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2013). Citric Acid Modifies Surface Properties of Commercial CeO₂ Nanoparticles Reducing Their Toxicity and Cerium Uptake In Radish (Raphanus sativus) Seedlings. J. Hazard. Mater., 263: 677−684. https://doi.org/10.1016/j.jhazmat.2013.10.030

UNIDO & IFDC. (1998). Fertilizer Manual. Kluwer Academic Publisher. Netherland.

Unrine, J. M., Shoults-Wilson, W. A., Zhurbich, O., Bertsch, P. M., & Tsyusko, O. V. (2012). Trophic Transfer Of Au Nanoparticles From Soil Along A Simulated Terrestrial Food Chain. Environ. Sci. Technol., 46: 9753–9760. https://doi.org/10.1021/es3025325

Unrine, J. M., Tsyusko, O. V., Hunyadi, S. E., Judy, J. D., & Bertsch, P. M. (2010). Effects Of Particle Size on Chemical Speciation and Bioavailability of Copper To Earthworms (Eisenia fetida) Exposed To Copper Nanoparticles. J. Environ. Qual., 39: 1942–1953. https://doi.org/10.2134/jeq2009.0387

Usman, M., Martin, S., Cimetière, N., Giraudet, S., Chatain, V., & Hanna, K. (2014). Sorption of Nalidixic Acid onto Micrometric and Nanometric Magnetites: Experimental Study and Modeling. Appl. Surf. Sci., 299C: 136–145. https://doi.org/10.1016/j.apsusc.2014.01.197

Vega-Vásquez, P., Mosier, N. S., & Irudayaraj, J. (2020). Nanoscale Drug Delivery Systems: From Medicine To Agriculture. Front. Bioeng. Biotechnol., 8: 79. https://doi.org/10.3389/fbioe.2020.00079

Volova, T. G., Shishatskaya, E. I., Prudnikova, S. V., Zhila, N. O., & Boyandin, A. N. (2020). New Generation Formulations of Agrochemicals: Current Trends and Future Priorities. Apple Academic Press: Boca Raton, FL, USA.

Wang, L., Zhao, X., Gao, J., Butterly, C. R., Chen, Q., Liu, M., Yang, Y. W., Xi, Y. G., & Xiao, X. (2019). Effects of Fertilizer Types on Nitrogen and Phosphorous Loss From Rice-Wheat Rotation System in The Taihu Lake Region of China. Agric. Ecosyst. Environ., 285: 106605. https://doi.org/10.1016/j.agee.2019.106605

Wang, Q., Li, F., Zhao, L., Zhang, E., Shi, S., Zhao, W., Song, W., & Vance, M. M. (2010). Effects of Irrigation and Nitrogen Application Rates on Nitrate Nitrogen Distribution and Fertilizer Nitrogen Loss, Wheat Yield and Nitrogen Uptake on A Recently Reclaimed Sandy Farmland. Plant Soil, 337(1–2): 325–339. https://doi.org/10.1007/s11104-010-0530-z

Wang, X., Han, H., Liu, X., Gu, X., Chen, K., & Lu, D. (2012). Multi-Walled Carbon Nanotubes Can Enhance Root Elongation of Wheat (Triticum aestivum) Plants. J. Nanopart. Res., 14: 841. https://doi.org/10.1007/s11051-012-0841-5

Wang, Y., O’Connor, D., Shen, Z., Lo, I. M. C., Tsang, D. C. W., Pehkonen, S., Pu, S., & Hou, D. (2019). Green Synthesis of Nanoparticles for The Remediation of Contaminated Waters and Soils: Constituents, Synthesizing Methods, And Influencing Factors. J. Clean. Prod., 226: 540–549. https://doi.org/10.1016/j.jclepro.2019.04.128

Wu, C., Qiao, X., Chen, J., Wang, H., Tan, F., & Li, S. (2006). A Novel Chemical Route to Prepare ZnO Nanoparticles. Mater. Lett., 60: 1828−1832. https://doi.org/10.1016/j.matlet.2005.12.046

Wu, P., Cui, P. X., Du, H., Alves, M. E., Zhou, D. M., & Wang, Y. J. (2021). Long-Term Dissolution And Transformation Of ZnO In Soils: The Roles of Soil pH and ZnO Particle Size. J. Hazard. Mater., 415: 125604. https://doi.org/10.1016/j.jhazmat.2021.125604

Wu, S. G., Huang, L., Head, J., Chen, D. R., Kong, I. C., & Tang, Y. J. (2012). Phytotoxicity of Metal Oxide Nanoparticles is Related to Both Dissolved Metals Ions and Adsorption of Particles on Seed Surfaces. Journal of Petroleum & Environmental Biotechnology, 3: 126–130. https://doi.org/10.4172/2157-7463.1000126

Wulff, F., Schulz, V., Jungk, A., & Claassen, N. (1998). Potassium Fertilization on Sandy Soils in Relation to Soil Test, Crop Yield and K-Leaching. Z. Pflanzenernaehr. Bodenkd., 161: 591–599. https://doi.org/10.1002/jpln.1998.3581610514

Xi, S., Chu, H., Zhou, Z., Li, T., Zhang, S., Xu, X., Pu, Y., Wang, G., Jia, Y., & Liu, X. (2023). Effect Of Potassium Fertilizer on Tea Yield and Quality: A Meta Analysis. Eur. J. Agron., 144: 126767. https://doi.org/10.1016/j.eja.2023.126767

Xiong, L., Wang, P., Hunter, M. N., & Kopittke, P. M. (2018). Bioavailability and Movement of Hydroxyapatite Nanoparticles (HA-Nps) Applied as A Phosphorus Fertiliser in Soils. Environ. Sci. Nano, 5: 2888–2898.

Xu, M.-Z., Wang, Y.-H., Nie, C.-E., Song, G.-P., Xin, S.-N., Lu, Y.-L., Bai, Y.-L., Zhang, Y.-J., & Wang, L. (2023). Identifying the Critical Phosphorus Balance for Optimizing Phosphorus Input and Regulating Soil Phosphorus Effectiveness in a Typical Winter Wheat-Summer Maize Rotation System in North China. J. Inter. Agric., 22(12): 3769–3782. https://doi.org/10.1016/j.jia.2023.05.030

Xu, S., Chen, X., & Zhuang, J. (2019). Opposite Influences of Mineral-Associated and Dissolved Organic Matter on The Transport of Hydroxyapatite Nanoparticles Through Soil and Aggregates. Environ. Res., 171: 153–160. https://doi.org/10.1016/j.envres.2019.01.020

Yan, S., Zhao, L., Li, H., Zhang, Q., Tan, J., Huang, M., He, S., & Li, L. (2013). Single-Walled Carbon Nanotubes Selectively Influence Maize Root Tissue Development Accompanied by The Change in The Related Gene Expression. J. Hazard. Mater., 246: 110–118. https://doi.org/10.1016/j.jhazmat.2012.12.013

Yang, F., Hong, F., You, W., Liu, C., Gao, F., Wu, C., & Yang, P. (2006). Influence of Nano-Anatase TiO₂ On The Nitrogen Metabolism of Growing Spinach. Biol. Trace Elem. Res., 110: 179–190. https://doi.org/10.1385/bter:110:2:179

Yang, X., Pan, H., Wang, P., & Zhao, F. J. (2017). Particle-Specific Toxicity and Bioavailability of Cerium Oxide (CeO₂) Nanoparticles To Arabidopsis thaliana. J. Hazard. Mater., 322: 292–300. https://doi.org/10.1016/j.jhazmat.2016.03.054

Yin, L., Cheng, Y., Espinasse, B., Colman, B. P., Auffan, M., Wiesner, M., Rose, J., Liu, J., & Bernhardt, E. S. (2011). More Than The Ions: The Effects of Silver Nanoparticles on Lolium multiflorum. Environ. Sci. Technol., 45: 2360–2367. https://doi.org/10.1021/es103995x

Yusuf, A., Almotairy, A. R. Z., Henidi, H., Alshehri, O. Y., & Aldughaim, M. S. (2023). Nanoparticles As Drug Delivery Systems: A Review of The Implication of Nanoparticles’ Physicochemical Properties on Responses in Biological Systems. Polymers, 15: 1596. https://doi.org/10.3390/polym15071596

Yusefi-Tanha, E., Fallah, S., Rostamnejadi, A., & Pokhrel, L. R. (2020). Particle Size and Concentration Dependent Toxicity of Copper Oxide Nanoparticles (CuO-NPs) On Seed Yield and Antioxidant Defense System in Soil Grown Soybean (Glycine max Cv. Kowsar). Sci. Total. Environ., 715: 136994. https://doi.org/10.1016/j.scitotenv.2020.136994

Zheng, L., Hong, F., Lu, S., & Liu, C. (2005). Effect Of Nano-TiO₂ on Strength of Naturally Aged Seeds and Growth of Spinach. Biol. Trace Elem. Res., 104: 83–91. https://doi.org/10.1385/BTER:104:1:083

Zhu, H., Han, J., Xiao, J. Q., & Jin, Y. (2008). Uptake, Translocation, And Accumulation of Manufactured Iron Oxide Nanoparticles by Pumpkin Plants. J. Environ. Monit., 10: 713–717. https://doi.org/10.1039/b805998e

التنزيلات

منشور

2025-06-01

كيفية الاقتباس

Alkhatib, L., Al-Shiyab , S. ., & Sawan, J. (2025). التطورات الحديثة في تكنولوجيا اسمدة النباتات. المجلة الأردنية في العلوم الزراعية, 21(2), 94–118. https://doi.org/10.35516/jjas.v21i2.3472

إصدار

القسم

Articles
##plugins.generic.dates.received## 2024-10-01
##plugins.generic.dates.accepted## 2024-12-11
##plugins.generic.dates.published## 2025-06-01