إضافة بذور الكتان إلى العلف لتعزيز الإنتاجية وإثراء أحماض أوميغا-3 الدهنية في الدجاج البياض

المؤلفون

  • Ala'a Abu Al dabaat School of Agriculture, The University of Jordan, Amman, Jordan
  • Mohannad abuajamieh School of Agriculture, The University of Jordan, Amman , Jordan https://orcid.org/0000-0003-4341-2761
  • Mohammad A. R. Jalal School of Agriculture, The University of Jordan, Amman, Jordan https://orcid.org/0000-0002-3303-6435

DOI:

https://doi.org/10.35516/JJAS.5087

الكلمات المفتاحية:

بذور الكتان، أوميغا-3، أوميغا-6، الأداء، الدواجن

الملخص

تعرف بذور الكتان بشكل متزايد كمكمل غذائي وظيفي فعال في تغذية الدواجن، وذلك لاحتوائه على نسبة عالية من حمض ألفا لينولينيك (ALA) ومكونات حيوية نشطة متنوعة. تشير الأدلة الحالية إلى أن إضافة بذور الكتان إلى علائق الدواجن تُحسّن بشكل ملحوظ القيمة الغذائية للمنتجات الحيوانية، وذلك عن طريق خفض نسبة أحماض أوميغا-6 إلى أوميغا-3 الدهنية بشكل كبير، مما يُحسّن توازن الدهون ويُساهم في فوائد صحية محتملة للمستهلكين. علاوة على ذلك، أظهرت الدراسات أن إضافة بذور الكتان لا تُؤثر سلبًا على أداء الإنتاج؛ بل قد تُحسّن مؤشرات رئيسية مثل معدل إنتاج البيض، ووزن البيض، وجودة البيض الداخلية. تُعزى هذه التحسينات إلى تأثيراته المضادة للأكسدة والمُعدِّلة للمناعة، بالإضافة إلى تنظيمه الإيجابي للجينات المُشاركة في استقلاب الدهون. تؤكد النتائج مجتمعةً على أهمية بذور الكتان كعنصر غذائي مستدام قادر على إثراء منتجات الدواجن، ودعم أداء الحيوانات، والمساهمة في تحسين الصحة العامة.

التنزيلات

بيانات التنزيل غير متوفرة بعد.

السير الشخصية للمؤلفين

Ala'a Abu Al dabaat، School of Agriculture, The University of Jordan, Amman, Jordan

Department of Animal Production, School of Agriculture, The University of Jordan, Amman 11942, Jordan

Mohannad abuajamieh، School of Agriculture, The University of Jordan, Amman , Jordan

Department of Animal Production, School of Agriculture, The University of Jordan, Amman 11942, Jordan

Mohammad A. R. Jalal، School of Agriculture, The University of Jordan, Amman, Jordan

 Department of Animal Production, School of Agriculture, The University of Jordan, Amman 11942, Jordan

المراجع

Alagawany, M., Elnesr, S. S., Farag, M. R., El-Sabrout, K., Alqaisi, O., Dawood, M. A., & Abdelnour, S. A. (2022). Nutritional significance and health benefits of omega-3, -6, and -9 fatty acids in animals. Animal Biotechnology, 33(7), 1678–1690.

Al-Madhagy, S., Ashmawy, N. S., Mamdouh, A., Eldahshan, O. A., & Farag, M. A. (2023). A comprehensive review of the health benefits of flaxseed oil in relation to its chemical composition and comparison with other omega-3-rich oils. European Journal of Medical Research, 28(1), 240.

Al-Nasser, A. Y., Al-Saffar, A. E., Abdullah, F. K., Al-Bahouh, M. E., Ragheb, G., & Mashaly, M. M. (2011). Effect of adding flaxseed in the diet of laying hens on both production of omega-3 enriched eggs and on production performance. International Journal of Poultry Science, 10(10), 825–831.

Antony, B., Benny, M., Jose, S., Jacob, S., Nedumpilly, V., & Abraham, G. (2024). Development of omega-3-enriched egg using fish oil-based fowl feed supplement. Journal of Applied Poultry Research, 33(3), 100429.

Antruejo, A., Azcona, J. O., Garcia, P. T., Gallinger, C., Rosmini, M., Ayerza, R., Coates, W., & Perez, C. D. (2011). Omega-3 enriched egg production: The effect of alpha-linolenic omega-3 fatty acid sources on laying hen performance and yolk lipid content and fatty acid composition. British Poultry Science, 52, 750–760.

Arnardottir, H., Pawelzik, S. C., Wistbacka, U. O., Artiach, G., Hofmann, R., Reinholdsson, I., Braunschweig, F., Tornvall, P., Religa, D., & Bäck, M. (2021). Stimulating the resolution of inflammation through omega-3 polyunsaturated fatty acids in COVID-19: Rationale for the COVID-omega-F trial. Frontiers in Physiology, 11, 624657. https://doi.org/10.3389/fphys.2020.624657

Attia, Y. A., Al-Sagan, A. A., Hussein, E. S. O., Olal, M. J., Ebeid, T. A., Al-Abdullatif, A. A., & Tufarelli, V. (2024). Dietary flaxseed cake influences on performance, quality, and sensory attributes of eggs, serum, and egg trace minerals of laying hens. Tropical Animal Health and Production, 56(2), 50.

Banaszak, M., Dobrzyńska, M., Kawka, A., Górna, I., Woźniak, D., Przysławski, J., & Drzymała-Czyż, S. (2024). Role of omega-3 fatty acids eicosapentaenoic (EPA) and docosahexaenoic (DHA) as modulatory and anti-inflammatory agents in noncommunicable diet-related diseases – Reports from the last 10 years. Clinical Nutrition ESPEN, 63, 240–258.

Cherian, G. (2016). Supplemental flax and impact on n-3 and n-6 polyunsaturated fatty acids in eggs. In Egg innovations and strategies for improvements (pp. 365–372). Academic Press.

Dinarello, C. A. (2000). Proinflammatory cytokines. Chest, 118(2), 503–508.

El-Zenary, A. S., Elkin, R. G., & Harvatine, K. J. (2023). Comparison of Ahiflower oil containing stearidonic acid to a high-alpha-linolenic acid flaxseed oil at two dietary levels on omega-3 enrichment of egg yolk and tissues in laying hens. Lipids, 58(3), 139–155.

Fabro, C., Romanzin, A., & Spanghero, M. (2021). Fatty acid profile of table eggs from laying hens fed hempseed products: A meta-analysis. Livestock Science, 254, 104748.

Fox-Skelly, J. (2024). The omega balance. New Scientist, 262(3488), 40–43.

Gao, Z., Zhang, J., Li, F., Zheng, J., & Xu, G. (2021). Effect of oils in feed on the production performance and egg quality of laying hens. Animals, 11(12), 3482.

Gjerlaug-Enger, E., Haug, A., Gaarder, M., Ljøkjel, K., Stenseth, R. S., Sigfridson, K., & Berg, P. (2015). Pig feeds rich in rapeseed products and organic selenium increased omega-3 fatty acids and selenium in pork meat and backfat. Food Science & Nutrition, 3(2), 120–128.

Greene, E. R., Huang, S., Serhan, C. N., & Panigrahy, D. (2011). Regulation of inflammation in cancer by eicosanoids. Prostaglandins & Other Lipid Mediators, 96(1–4), 27–36.

Hallisey, V. M., Kipper, F. C., Moore, J., Gartung, A., Bielenberg, D. R., Petrik, J., Lawler, J., Panigrahy, D., & Serhan, C. N. (2020). Pro-resolving lipid mediators and antiangiogenic therapy exhibit synergistic anti-tumor activity via resolvin receptor activation. FASEB Journal, 34(S1), 1.

Head, B., Bionaz, M., & Cherian, G. (2019). Flaxseed and carbohydrase enzyme supplementation alters hepatic n-3 polyunsaturated fatty acid molecular species and expression of genes associated with lipid metabolism in broiler chickens. Veterinary Sciences, 6(1), 25.

Javed, A., Imran, M., Saad Hashmi, M., Javaid, U., Estella Odoh, U., & Amjad, R. (2025). Chicken egg: A comprehensive overview regarding feed sources and human health aspects. World's Poultry Science Journal, 1–36.

Jiang, M., Hu, Z., Huang, Y., Chen, X. D., & Wu, P. (2024). Impact of wall materials and DHA sources on the release, digestion, and absorption of DHA microcapsules: Advancements, challenges, and future directions. Food Research International, 114646.

Kartikasari, L. R., Geier, M. S., Hughes, R. J., Bastian, S. E., & Gibson, R. A. (2024). Assessment of omega-3 and omega-6 fatty acid profiles and ratio of omega-6/omega-3 of white eggs produced by laying hens fed diets enriched with omega-3-rich vegetable oil. Open Agriculture, 9(1).

Kazempoor, R., Ghorbanzadeh, A., Mokhtarian, M., & Rasoulinezhad, S. (2021). Laying hens’ diet modification with flaxseed and fish oils to enrich egg yolks with omega-3 fatty acids and vitamin D3.

Kopacz, M., Drażbo, A. A., Śmiecińska, K., & Ognik, K. (2021). Performance and egg quality of laying hens fed diets containing raw, hydrobarothermally-treated, and fermented rapeseed cake. Animals, 11(11), 3083.

Kumar, A., Saini, S. K., & Singh, D. (2025). Embryonic exposure to flaxseed oil during early development protects against seizures in zebrafish larvae via targeting BDNF/TrkB-mediated GABAergic inhibition. Food Bioscience, 106701.

Lanza, M., Battelli, M., Gallo, L., Soglia, F., Bovera, F., Giunta, F., & Crovetto, G. M. (2025). Sustainability of animal production chains: Alternative protein sources as an ecological driver in animal feeding: A review. Animals, 15(22), 3245.

Lee, K. H., Qi, G. H., & Sim, J. S. (1995). Metabolizable energy and amino acid availability of full-fat seeds, meals, and oils of flax and canola. Poultry Science, 74(8), 1341–1348.

Lee, S. M., Kim, H. K., Lee, H. B., Kwon, O. D., Lee, E. B., Bok, J. D., & Kang, S. K. (2021). Effects of flaxseed supplementation on omega-6 to omega-3 fatty acid ratio, lipid mediator profile, proinflammatory cytokines, and stress indices in laying hens. Journal of Applied Animal Research, 49(1), 460–471.

Mattioli, S., Ruggeri, S., Sebastiani, B., Brecchia, G., Dal Bosco, A., Mancinelli, A. C., & Castellini, C. (2017). Performance and egg quality of laying hens fed flaxseed: Highlights on n-3 fatty acids, cholesterol, lignans, and isoflavones. Animal, 11(4), 705–712.

Moghadam, M. B., & Cherian, G. (2017). Use of flaxseed in poultry feeds to meet the human need for n-3 fatty acids. World’s Poultry Science Journal, 73(4), 803–812.

Nakandakari, S. C. B. R., Gaspar, R. C., Kuga, G. K., de Oliveira Ramos, C., Vieira, R. F., da Silva Rios, T., & Cintra, D. E. (2023). Short-term flaxseed oil, rich in omega-3, protects mice against metabolic damage caused by a high-fat diet, but not inflammation. The Journal of Nutritional Biochemistry, 114, 109270.

Nayda, N. C., Thomas, J. M., Delaney, C. L., & Miller, M. D. (2023). The effect of omega-3 polyunsaturated fatty acid intake on blood levels of omega-3s in people with chronic atherosclerotic disease: A systematic review. Nutrition Reviews, 81(11), 1447–1461.

Nemeth, M., Eisenschenk, I., Engelmann, A., Esser, F. M., Kokodynska, M., Szewczak, V. F., & Millesi, E. (2021). Flaxseed oil as an omega-3 polyunsaturated fatty acid source modulates cortisol concentrations and social dominance in male and female guinea pigs. Hormones and Behavior, 134, 105025.

Ngo Njembe, M. T., Dejonghe, L., Verstraelen, E., Mignolet, E., Leclercq, M., Dailly, H., & Larondelle, Y. (2021). The egg yolk content in ω-3 and conjugated fatty acids can be sustainably increased upon long-term feeding of laying hens with a diet containing flaxseed and pomegranate seed oil. Foods, 10(5), 1134.

Perić, J., & Drinić, M. (2021). Enriching table eggs with omega-3 fatty acids by using ground flaxseed or a combination of flax cake and flaxseed oil in the diet of laying hens. Veterinarski Arhiv, 91(4), 399–409.

Ponnampalam, E. N., Sinclair, A. J., & Holman, B. W. (2021). The sources, synthesis, and biological actions of omega-3 and omega-6 fatty acids in red meat: An overview. Foods, 10(6), 1358.

Parveen, R., Muhammad, I. K., Muhammad, I. K., Faqir, A., & Sheikh, M. A. (2016). Investigating potential roles of extruded flaxseed and α-tocopherol acetate supplementation for production of healthier broiler meat. British Poultry Science, 57(4).* https://doi.org/10.1080/00071668.2016.1180669

Rizzo, G., Baroni, L., & Lombardo, M. (2023). Promising sources of plant-derived polyunsaturated fatty acids: A narrative review. International Journal of Environmental Research and Public Health, 20(3), 1683.

Sepehr, A., Kashani, R. B., Esmaeili, N., Safari, O., & Rombenso, A. (2021). Effects of extruded, milled, and whole flaxseed (Linum usitatissimum) on egg performance, lipid components, and fatty acids concentrations in yolk and blood, and the antioxidant system of commercial laying hens. Animal Feed Science and Technology, 276, 114877.

Serhan, C. N., Chiang, N., Dalli, J., & Levy, B. D. (2014). Lipid mediators in the resolution of inflammation. Cold Spring Harbor Perspectives in Biology, 7, a016311.

Serhan, C. N., Chiang, N., Dalli, J., & Levy, B. D. (2015). Lipid mediators in the resolution of inflammation. Cold Spring Harbor Perspectives in Biology, 7(2), a016311.

Shahid, M. S., Zhou, S., Nie, W., Wang, L., Lv, H., & Yuan, J. (2022). Phytogenic antioxidants prolong n-3 fatty acid-enriched eggs’ shelf life by activating the Nrf-2 pathway through phosphorylation of MAPK. Foods, 11, 3158. https://doi.org/10.3390/foods11203158

Shearer, G. C., & Walker, R. E. (2018). An overview of the biologic effects of omega-6 oxylipins in humans. Prostaglandins, Leukotrienes and Essential Fatty Acids, 137, 26–38.

Simopoulos, A. P. (2010). The omega-6/omega-3 fatty acid ratio: Health implications. Oléagineux, Corps Gras, Lipides, 17(5), 267–275.

Singh, K. K., Mridula, D., Rehal, J., & Barnwal, P. (2011). Flaxseed: A potential source of food, feed, and fiber. Critical Reviews in Food Science and Nutrition, 51(3), 210–222.

Szmek, J., Englmaierová, M., Skřivan, M., & Pěchoučková, E. (2025). Evaluation of hemp seeds (Cannabis sativa L.) and flax seeds (Linum usitatissimum L.) as feed ingredients in laying hen diets: Effects on the performance, egg quality, and n-3 fatty acid composition of egg yolks. Frontiers in Animal Science, 6, 1685765.

Yamashita, T., Sano, T., Hashimoto, T., & Kanazawa, K. (2007). Development of a method to remove cyanogen glycosides from flaxseed meal. International Journal of Food Science and Technology, 42(1), 70–75. https://doi.org/10.1111/j.1365-2621.2006.01212.x

Teneva, O. T., Petkova, Z. Y., Ivanova, P. H., Petrov, P. B., Keranova, N. T., Antova, G. A., & Gerzilov, V. T. (2025). Influence of dietary vegetable oils supplementation on egg quality of laying hens. Discover Food, 5(1), 119.

Usturoi, M. G., Rațu, R. N., Crivei, I. C., Veleșcu, I. D., Usturoi, A., Stoica, F., & Radu Rusu, R. M. (2025). Unlocking the power of eggs: Nutritional insights, bioactive compounds, and the advantages of omega-3 and omega-6 enriched varieties. Agriculture, 15(3), 242.

Vlaicu, P. A., Panaite, T. D., & Turcu, R. P. (2021). Enriching laying hens' eggs by feeding diets with different fatty acid compositions and antioxidants. Scientific Reports, 11(1), 20707.

Whittle, R. (2023). The effect of maternal-fed omega-3 fatty acids on the cognition and fearfulness of their offspring: A study of broiler and egg-laying chickens (Doctoral dissertation, University of Guelph).

Wood, J. D., Giromini, C., & Givens, D. I. (2024). Animal-derived foods: Consumption, composition and effects on health and the environment: An overview. Frontiers in Animal Science, 5, 1332694.

Xu, L., Wei, Z., Guo, B., Bai, R., Liu, J., Li, Y., & Pi, Y. (2022). Flaxseed meal and its application in animal husbandry: A review. Agriculture, 12(12), 2027.

Zachut, M., Arieli, A., Lehrer, H., Livshitz, L., Yakoby, S., & Moallem, U. (2010). Effects of increased supplementation of n-3 fatty acids to transition dairy cows on performance and fatty acid profile in plasma, adipose tissue, and milk fat. Journal of Dairy Science, 93(12), 5877–5889.

Zaki, U. K. H., Fryganas, C., Trijsburg, L., Feskens, E. J., & Capuano, E. (2022). In vitro gastrointestinal bioaccessibility and colonic fermentation of lignans from fresh, fermented, and germinated flaxseed. Food & Function, 13, 10737–10747. https://doi.org/10.1039/D2FO02559K

Zárate, R., Jaber-Vazdekis, N., Tejera, N., Pérez, J. A., & Rodríguez, C. (2017). Significance of long-chain polyunsaturated fatty acids in human health. Clinical and Translational Medicine, 6, 1–19.

Zhang, Y., Sun, Y., Yu, Q., Song, S., Brenna, J. T., Shen, Y., & Ye, K. (2024). Higher ratio of plasma omega-6/omega-3 fatty acids is associated with greater risk of all-cause, cancer, and cardiovascular mortality: A population-based cohort study in UK Biobank. eLife, 12, RP90132.

التنزيلات

منشور

2025-12-01

كيفية الاقتباس

Abu Al dabaat, A., abuajamieh, M., & Jalal, M. A. R. . (2025). إضافة بذور الكتان إلى العلف لتعزيز الإنتاجية وإثراء أحماض أوميغا-3 الدهنية في الدجاج البياض. المجلة الأردنية في العلوم الزراعية, 21(4), 326–338. https://doi.org/10.35516/JJAS.5087

إصدار

القسم

Articles
##plugins.generic.dates.received## 2025-09-23
##plugins.generic.dates.accepted## 2025-12-13
##plugins.generic.dates.published## 2025-12-01