Effect of Lignin and other Biopolymers on Hyperlipidemia and Gut Microbiota

Authors

  • Amira Abu-Omar Department of Pharmaceutical Sciences and Pharmaceutics, Faculty of Pharmacy Applied Science Private University, Jordan
  • Eliza Hasan Department of Pharmaceutical Sciences and Pharmaceutics, Faculty of Pharmacy Applied Science Private University, Jordan
  • Joana Gil-Chávez Institute of Thermal Separation Processes, Hamburg University of Technology, Hamburg, Germany
  • Tamara Athamneh Nanotechnology center, Jordan University of Science and Technology, Irbid, Jordan
  • Husam Abazid Department of Clinical Pharmacy the Therapeutic, Faculty of Pharmacy Applied Science Private University, Amman, Jordan
  • Pavel Gurikov Laboratory for Development and Modelling of Novel Nanoporous Materials, Hamburg University of Technology, Hamburg, Germany.
  • Mohammad A. A. Al-Najjar Department of Pharmaceutical Sciences and Pharmaceutics, Faculty of Pharmacy Applied Science Private University, Jordan

DOI:

https://doi.org/10.35516/jjps.v18i3.2077

Keywords:

Lignin, biopolymers, gut microbiota, hyperlipidemia

Abstract

So far, dietary fibers such as lignin, cellulose, pectin, guar gum, and psyllium have been well-studied for their preventive and therapeutical potential using animal and human models, especially for their beneficial effects on chronic metabolic conditions like dyslipidemia and related disorders. Dyslipidemia is a dangerous metabolic disorder related to hypercholesterolemia, coronary artery disease, and coronary heart disease. Earlier research has demonstrated that these dietary fibers can lower high serum lipid levels through different mechanisms. One of the most important mechanisms is the modification of gut microbiota. Increasing the abundance of lactic acid bacteria (LAB), which can metabolize different dietary fibers like lignin, may potentially reduce the cholesterol level. This review aims to provide useful insights and comprehensive discussions about current knowledge related to the properties, and the effects of dietary fibers mainly lignin in controlling hyperlipidemia and their effects on gut microbiota. Google Scholar, Research Gate, and Scopus are the search engines exploited to collect data by using lignin, biopolymers, gut microbiota, and hyperlipidemia as search terms.

Author Biography

Tamara Athamneh, Nanotechnology center, Jordan University of Science and Technology, Irbid, Jordan

Nanotechnology center, Jordan University of Science and Technology, Irbid, Jordan

References

Căpriţă A., et al. Dietary fiber: chemical and functional properties. J. Agroaliment. Process. Technol. 2010; 16:406-416.

Hillman L., et al. Effects of the fibre components pectin, cellulose, and lignin on bile salt metabolism and biliary lipid composition in man. Gut. 1986; 27:29-36. DOI: https://doi.org/10.1136/gut.27.1.29

Osfor M.M., et al. Effect of wheat bran consumption on serum lipid profile of hypercholesterolemia patients resident in Holly Makah. Asian J. Nat. Appl. Sci. 2016; 5:1.

Rodriguez-Gutierrez G., et al. Properties of lignin, cellulose, and hemicelluloses isolated from olive cake and olive stones: binding of water, oil, bile acids, and glucose. J. Agric. Food Chem. 2014; 62:8973-8981. DOI: https://doi.org/10.1021/jf502062b

Boutlelis D.A., et al. The remedial effect of Ziziphus lotus extract against oxidative stress induced by deltamethrin pesticide in rats. Jordan J. Pharm. Sci. 2025; 18:483-495. DOI: https://doi.org/10.35516/jjps.v18i2.2445

Madgulkar A.R., Rao M.R., Warrier D. Characterization of psyllium (Plantago ovata) polysaccharide and its uses. Polysaccharides. 2015; 871-890. DOI: https://doi.org/10.1007/978-3-319-16298-0_49

Al-Abd A.M., et al. Anti-angiogenic agents for the treatment of solid tumors: potential pathways, therapy and current strategies–a review. J. Adv. Res. 2017; 8:591-605. DOI: https://doi.org/10.1016/j.jare.2017.06.006

Shanmugam M.K., et al. Potential role of natural compounds as anti-angiogenic agents in cancer. Curr. Vasc. Pharmacol. 2017; 15:503-519. DOI: https://doi.org/10.2174/1570161115666170713094319

Moreyra A.E., Wilson A.C., Koraym A. Effect of combining psyllium fiber with simvastatin in lowering cholesterol. Arch. Intern. Med. 2005; 165:1161-1166. DOI: https://doi.org/10.1001/archinte.165.10.1161

Rajendhiran N., Bhattacharyya S. Preparation and evaluation of nanolipid carriers of bedaquiline: in vitro evaluation and in silico prediction. Jordan J. Pharm. Sci. 2024; 17:450-467. DOI: https://doi.org/10.35516/jjps.v17i3.1970

Austin A.T., Ballaré C.L. Dual role of lignin in plant litter decomposition in terrestrial ecosystems. Proc. Natl. Acad. Sci. 2010; 107:4618-4622. DOI: https://doi.org/10.1073/pnas.0909396107

Brebu M., Vasile C. Thermal degradation of lignin—a review. Cellulose Chem. Technol. 2010; 44:353.

Norikura T., et al. Lignophenols decrease oleate-induced apolipoprotein-B secretion in HepG2 cells. Basic Clin. Pharmacol. Toxicol. 2010; 107:813-817. DOI: https://doi.org/10.1111/j.1742-7843.2010.00575.x

Pollegioni L., Tonin F., Rosini E. Lignin-degrading enzymes. FEBS J. 2015; 282:1190-1213. DOI: https://doi.org/10.1111/febs.13224

Samfira I., et al. Structural investigation of mistletoe plants from various hosts exhibiting diverse lignin phenotypes. Digest J. Nanomater. Biostruct. 2013; 8.

Espinoza-Acosta J.L., et al. Antioxidant, antimicrobial, and antimutagenic properties of technical lignins and their applications. BioResources. 2016; 11:5452-5481. DOI: https://doi.org/10.15376/biores.11.2.Espinoza_Acosta

Leisola M., Pastinen O., Axe D.D. Lignin—designed randomness. Bio-complexity. 2012; 2012. DOI: https://doi.org/10.5048/BIO-C.2012.3

Rotstein O.D., et al. Prevention of cholesterol gallstones by lignin and lactulose in the hamster. Gastroenterology. 1981; 81:1098-1103. DOI: https://doi.org/10.1016/S0016-5085(81)80018-2

Tolba R., Wu G., Chen A. Adsorption of dietary oils onto lignin for promising pharmaceutical and nutritional applications. BioResources. 2011; 6:1322-1335. DOI: https://doi.org/10.15376/biores.6.2.1322-1335

Watkins D., et al. Extraction and characterization of lignin from different biomass resources. J. Mater. Res. Technol. 2015; 4:26-32. DOI: https://doi.org/10.1016/j.jmrt.2014.10.009

Moura J.C.M.S., et al. Abiotic and biotic stresses and changes in the lignin content and composition in plants. J. Integr. Plant Biol. 2010; 52:360-376. DOI: https://doi.org/10.1111/j.1744-7909.2010.00892.x

Datta R., et al. Enzymatic degradation of lignin in soil: a review. Sustainability. 2017; 9:1163. DOI: https://doi.org/10.3390/su9071163

Janusz G., et al. Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol. Rev. 2017; 41:941-962. DOI: https://doi.org/10.1093/femsre/fux049

Novaes E., et al. Lignin and biomass: a negative correlation for wood formation and lignin content in trees. Plant Physiol. 2010; 154:555-561. DOI: https://doi.org/10.1104/pp.110.161281

Vinardell M.P., Mitjans M. Lignins and their derivatives with beneficial effects on human health. Int. J. Mol. Sci. 2017; 18:1219. DOI: https://doi.org/10.3390/ijms18061219

Berlin A., Balakshin M. Industrial lignins: analysis, properties, and applications. Bioenergy Res. 2014; 315-336. DOI: https://doi.org/10.1016/B978-0-444-59561-4.00018-8

Lora J. Industrial commercial lignins: sources, properties and applications. Monomers Polym. Compos. from Renew. Resour. 2008; 225-241. DOI: https://doi.org/10.1016/B978-0-08-045316-3.00010-7

Brodeur G., et al. Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Res. 2011; 2011. DOI: https://doi.org/10.4061/2011/787532

Laurichesse S., Avérous L. Chemical modification of lignins: towards biobased polymers. Prog. Polym. Sci. 2014; 39:1266-1290. DOI: https://doi.org/10.1016/j.progpolymsci.2013.11.004

Perez-Cantu L., Liebner F., Smirnova I. Preparation of aerogels from wheat straw lignin by cross-linking with oligo (alkylene glycol)-α, ω-diglycidyl ethers. Microporous Mesoporous Mater. 2014; 195:303-310. DOI: https://doi.org/10.1016/j.micromeso.2014.04.018

Prakash A., et al. Thermochemical valorization of lignin, in Recent advances in thermo-chemical conversion of biomass. Elsevier. 2015; 455-478. DOI: https://doi.org/10.1016/B978-0-444-63289-0.00016-8

El Hage R., et al. Characterization of milled wood lignin and ethanol organosolv lignin from miscanthus. Polym. Degrad. Stab. 2009; 94:1632-1638. DOI: https://doi.org/10.1016/j.polymdegradstab.2009.07.007

Zhao X., Cheng K., Liu D. Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl. Microbiol. Biotechnol. 2009; 82:815-827. DOI: https://doi.org/10.1007/s00253-009-1883-1

Ingram T., et al. Comparison of different pretreatment methods for lignocellulosic materials. Part I: conversion of rye straw to valuable products. Bioresour. Technol. 2011; 102:5221-5228. DOI: https://doi.org/10.1016/j.biortech.2011.02.005

Perez-Cantu L., et al. Comparison of pretreatment methods for rye straw in the second generation biorefinery: effect on cellulose, hemicellulose and lignin recovery. Bioresour. Technol. 2013; 142:428-435. DOI: https://doi.org/10.1016/j.biortech.2013.05.054

Zhuang X., et al. Liquid hot water pretreatment of lignocellulosic biomass for bioethanol production accompanying with high valuable products. Bioresour. Technol. 2016; 199:68-75. DOI: https://doi.org/10.1016/j.biortech.2015.08.051

Chi Z., et al. The innovative application of organosolv lignin for nanomaterial modification to boost its heavy metal detoxification performance in the aquatic environment. Chem. Eng. J. 2020; 382:122789. DOI: https://doi.org/10.1016/j.cej.2019.122789

Abraham B., et al. Lignin-based nanomaterials for food and pharmaceutical applications: recent trends and future outlook. Sci. Total Environ. 2023; 881:163316. DOI: https://doi.org/10.1016/j.scitotenv.2023.163316

Vasile C., Baican M. Lignins as promising renewable biopolymers and bioactive compounds for high-performance materials. Polymers (Basel). 2023; 15:15. DOI: https://doi.org/10.3390/polym15153177

Karagoz P., et al. Pharmaceutical applications of lignin-derived chemicals and lignin-based materials: linking lignin source and processing with clinical indication. Biomass Convers. Biorefin. 2023. DOI: https://doi.org/10.1007/s13399-023-03745-5

Kumar R., et al. Lignin: drug/gene delivery and tissue engineering applications. Int. J. Nanomedicine. 2021; 16:2419-2441. DOI: https://doi.org/10.2147/IJN.S303462

Jiménez-Escrig A., Sánchez-Muniz F. Dietary fibre from edible seaweeds: chemical structure, physicochemical properties and effects on cholesterol metabolism. Nutr. Res. 2000; 20:585-598. DOI: https://doi.org/10.1016/S0271-5317(00)00149-4

Samarghandian S., et al. Reduction of serum cholesterol in hypercholesterolemic rats by Guar gum. Avicenna J. Phytomed. 2011; 1:36-42.

Choi Y.-S., et al. Effects of soluble dietary fibers on lipid metabolism and activities of intestinal disaccharidases in rats. J. Nutr. Sci. Vitaminol. 1998; 44:591-600. DOI: https://doi.org/10.3177/jnsv.44.591

Memon R.A., Gilani A.H. An update on hyperlipidemia and its management. 1995.

Otunola G.A., et al. Effects of diet-induced hypercholesterolemia on the lipid profile and some enzyme activities in female Wistar rats. Afr. J. Biochem. Res. 2010; 4:149-154.

Willey J.Z., et al. Lipid profile components and risk of ischemic stroke: the Northern Manhattan Study (NOMAS). Arch. Neurol. 2009; 66:1400-1406. DOI: https://doi.org/10.1001/archneurol.2009.210

Wang J., et al. Selection of potential probiotic lactobacilli for cholesterol-lowering properties and their effect on cholesterol metabolism in rats fed a high-lipid diet. J. Dairy Sci. 2012; 95:1645-1654. DOI: https://doi.org/10.3168/jds.2011-4768

Yang X., Yang L., Zheng H. Hypolipidemic and antioxidant effects of mulberry (Morus alba L.) fruit in hyperlipidaemia rats. Food Chem. Toxicol. 2010; 48:2374-2379. DOI: https://doi.org/10.1016/j.fct.2010.05.074

Matos S.L., et al. Dietary models for inducing hypercholesterolemia in rats. Braz. Arch. Biol. Technol. 2005; 48:203-209. DOI: https://doi.org/10.1590/S1516-89132005000200006

Xie N., et al. Effects of two Lactobacillus strains on lipid metabolism and intestinal microflora in rats fed a high-cholesterol diet. BMC Complement. Altern. Med. 2011; 11:1-11. DOI: https://doi.org/10.1186/1472-6882-11-53

Hayek T., et al. Dietary fat increases high density lipoprotein (HDL) levels both by increasing the transport rates and decreasing the fractional catabolic rates of HDL cholesterol ester and apolipoprotein (Apo) AI: presentation of a new animal model and mechanistic studies in human Apo AI transgenic and control mice. J. Clin. Invest. 1993; 91:1665-1671. DOI: https://doi.org/10.1172/JCI116375

Rader D.J. Molecular regulation of HDL metabolism and function: implications for novel therapies. J. Clin. Invest. 2006; 116:3090-3100. DOI: https://doi.org/10.1172/JCI30163

Hexeberg S., et al. A study on lipid metabolism in heart and liver of cholesterol- and pectin-fed rats. Br. J. Nutr. 1994; 71:181-192. DOI: https://doi.org/10.1079/BJN19940125

Qanwil T., et al. Hypolipidemic and vasoprotective potential of Caralluma edulis: a histological and biochemical study. Jordan J. Pharm. Sci. 2025; 18:21-35. DOI: https://doi.org/10.35516/jjps.v18i1.2464

Kiortsis D., et al. Statin-associated adverse effects beyond muscle and liver toxicity. Atherosclerosis. 2007; 195:7-16. DOI: https://doi.org/10.1016/j.atherosclerosis.2006.10.001

Thompson P.D., et al. Statin-associated side effects. J. Am. Coll. Cardiol. 2016; 67:2395-2410. DOI: https://doi.org/10.1016/j.jacc.2016.02.071

Stancu C., Sima A. Statins: mechanism of action and effects. J. Cell. Mol. Med. 2001; 5:378-387. DOI: https://doi.org/10.1111/j.1582-4934.2001.tb00172.x

Famularo G., et al. Liver toxicity of rosuvastatin therapy. World J. Gastroenterol. 2007; 13:1286. DOI: https://doi.org/10.3748/wjg.v13.i8.1286

Olson B.H., et al. Psyllium-enriched cereals lower blood total cholesterol and LDL cholesterol, but not HDL cholesterol, in hypercholesterolemic adults: results of a meta-analysis. J. Nutr. 1997; 127:1973-1980. DOI: https://doi.org/10.1093/jn/127.10.1973

Williams R.D., et al. The effect of cellulose, hemicellulose and lignin on the weight of the stool: a contribution to the study of laxation in man. J. Nutr. 1936; 11:433-449. DOI: https://doi.org/10.1093/jn/11.5.433

Hillman L., et al. Differing effects of pectin, cellulose and lignin on stool pH, transit time and weight. Br. J. Nutr. 1983; 50:189-195. DOI: https://doi.org/10.1079/BJN19830088

Hillman L.C., et al. The effects of the fiber components pectin, cellulose and lignin on serum cholesterol levels. Am. J. Clin. Nutr. 1985; 42:207-213. DOI: https://doi.org/10.1093/ajcn/42.2.207

Gades M.D., Stern J.S. Chitosan supplementation and fecal fat excretion in men. Obes. Res. 2003; 11:683-688. DOI: https://doi.org/10.1038/oby.2003.97

Vigne J.L., et al. Effect of pectin, wheat bran and cellulose on serum lipids and lipoproteins in rats fed on a low- or high-fat diet. Br. J. Nutr. 1987; 58:405-413. DOI: https://doi.org/10.1079/BJN19870109

Eastwood M., et al. Effects of dietary supplements of wheat bran and cellulose on faeces and bowel function. Br. Med. J. 1973; 4:392-394. DOI: https://doi.org/10.1136/bmj.4.5889.392

van Bennekum A.M., et al. Mechanisms of cholesterol-lowering effects of dietary insoluble fibres: relationships with intestinal and hepatic cholesterol parameters. Br. J. Nutr. 2005; 94:331-337. DOI: https://doi.org/10.1079/BJN20051498

Kadajji V.G., Betageri G.V. Water soluble polymers for pharmaceutical applications. Polymers. 2011; 3:1972-2009. DOI: https://doi.org/10.3390/polym3041972

Kay R.M. Effects of dietary fibre on serum lipid levels and fecal bile acid excretion. Can. Med. Assoc. J. 1980; 123:1213.

Brouns F., et al. Cholesterol-lowering properties of different pectin types in mildly hyper-cholesterolemic men and women. Eur. J. Clin. Nutr. 2012; 66:591-599. DOI: https://doi.org/10.1038/ejcn.2011.208

Judd P.A., Truswell A. Comparison of the effects of high- and low-methoxyl pectins on blood and faecal lipids in man. Br. J. Nutr. 1982; 48:451-458. DOI: https://doi.org/10.1079/BJN19820130

Judd P.A., Truswell A. The hypocholesterolaemic effects of pectins in rats. Br. J. Nutr. 1985; 53:409-425. DOI: https://doi.org/10.1079/BJN19850051

Cara L., et al. Plasma lipid lowering effects of wheat germ in hypercholesterolemic subjects. Plant Foods Hum. Nutr. 1991; 41:135-150. DOI: https://doi.org/10.1007/BF02194082

Mosa-Al-Reza H., Sadat D.A., Marziyeh A. Comparison of the beneficial effects of guar gum on lipid profile in hyperlipidemic and normal rats. J. Med. Plants Res. 2012; 6:1567-1575. DOI: https://doi.org/10.5897/JMPR11.887

Shaikh T., Kumar S.S. Pharmaceutical and pharmacological profile of guar gum: an overview. Int. J. Pharm. Pharm. Sci. 2011; 3(suppl. 5):38-40.

Gee J.M., Blackburn N., Johnson I. The influence of guar gum on intestinal cholesterol transport in the rat. Br. J. Nutr. 1983; 50:215-224. DOI: https://doi.org/10.1079/BJN19830091

Overton P., et al. The effects of dietary sugar-beet fibre and guar gum on lipid metabolism in Wistar rats. Br. J. Nutr. 1994; 72:385-395. DOI: https://doi.org/10.1079/BJN19940041

Marlett J.A., Fischer M.H. The active fraction of psyllium seed husk. Proc. Nutr. Soc. 2003; 62:207-209. DOI: https://doi.org/10.1079/PNS2002201

Gold K.V., Davidson D.M. Oat bran as a cholesterol-reducing dietary adjunct in a young, healthy population. West. J. Med. 1988; 148:299.

Borel P., et al. Wheat bran and wheat germ: effect on digestion and intestinal absorption of dietary lipids in the rat. Am. J. Clin. Nutr. 1989; 49:1192-1202. DOI: https://doi.org/10.1093/ajcn/49.6.1192

Chen H.-L., et al. Mechanisms by which wheat bran and oat bran increase stool weight in humans. Am. J. Clin. Nutr. 1998; 68:711-719. DOI: https://doi.org/10.1093/ajcn/68.3.711

Marlett J.A., et al. Mechanism of serum cholesterol reduction by oat bran. Hepatology. 1994; 20:1450-1457. DOI: https://doi.org/10.1002/hep.1840200612

Prakash S., et al. The gut microbiota and human health with an emphasis on the use of microencapsulated bacterial cells. J. Biomed. Biotechnol. 2011; 2011:1-12. DOI: https://doi.org/10.1155/2011/981214

Walsh C.J., et al. Beneficial modulation of the gut microbiota. FEBS Lett. 2014; 588:4120-4130. DOI: https://doi.org/10.1016/j.febslet.2014.03.035

Ohashi Y., et al. Faecal fermentation of partially hydrolyzed guar gum. J. Funct. Foods. 2012; 4:398-402. DOI: https://doi.org/10.1016/j.jff.2011.09.007

Shatha A., et al. Changes in gut microbiota of alloxan-induced diabetic rats in response to orally administered combined aqueous extracts of olive leaves and ginger. J. Appl. Pharm. Sci. 2022; 12:1-10. DOI: https://doi.org/10.7324/JAPS.2022.120316

Fisher A.B., Fong S.S. Lignin biodegradation and industrial implications. AIMS Bioeng. 2014; 1:92-112. DOI: https://doi.org/10.3934/bioeng.2014.2.92

Ohra-aho T., et al. Structure of brewer’s spent grain lignin and its interactions with gut microbiota in vitro. J. Agric. Food Chem. 2016; 64:812-820. DOI: https://doi.org/10.1021/acs.jafc.5b05535

Cragg S.M., et al. Lignocellulose degradation mechanisms across the Tree of Life. Curr. Opin. Chem. Biol. 2015; 29:108-119. DOI: https://doi.org/10.1016/j.cbpa.2015.10.018

Varma A., et al. Lignocellulose degradation by microorganisms from termite hills and termite guts: a survey on the present state of art. FEMS Microbiol. Rev. 1994; 15:9-28. DOI: https://doi.org/10.1016/0168-6445(94)90024-8

Brune A., Miambi E., Breznak J.A. Roles of oxygen and the intestinal microflora in the metabolism of lignin-derived phenylpropanoids and other monoaromatic compounds by termites. Appl. Environ. Microbiol. 1995; 61:2688-2695. DOI: https://doi.org/10.1128/aem.61.7.2688-2695.1995

Kudo T. Termite-microbe symbiotic system and its efficient degradation of lignocellulose. Biosci. Biotechnol. Biochem. 2009; 73:1-6. DOI: https://doi.org/10.1271/bbb.90304

Krizsan S., Huhtanen P. Effect of diet composition and incubation time on feed indigestible neutral detergent fiber concentration in dairy cows. J. Dairy Sci. 2013; 96:1715-1726. DOI: https://doi.org/10.3168/jds.2012-5752

Kajikawa H., et al. Degradation of benzyl ether bonds of lignin by ruminal microbes. FEMS Microbiol. Lett. 2000; 187:15-20. DOI: https://doi.org/10.1016/S0378-1097(00)00171-3

Abbott T.P., Wicklow D.T. Degradation of lignin by Cyathus species. Appl. Environ. Microbiol. 1984; 47:585-587. DOI: https://doi.org/10.1128/aem.47.3.585-587.1984

Wicklow D.T., Detroy R.W., Jessee B. Decomposition of lignocellulose by Cyathus stercoreus (Schw.) de Toni NRRL 6473, a “white rot” fungus from cattle dung. Appl. Environ. Microbiol. 1980; 40:169-170. DOI: https://doi.org/10.1128/aem.40.1.169-170.1980

Sasikumar V., et al. Isolation and preliminary screening of lignin degrading microbes. J. Acad. Ind. Res. 2014; 3:291-294.

Fang W., et al. Evidence for lignin oxidation by the giant panda fecal microbiome. PLoS One. 2012; 7:e50312. DOI: https://doi.org/10.1371/journal.pone.0050312

Fåk F., et al. The physico-chemical properties of dietary fibre determine metabolic responses, short-chain fatty acid profiles and gut microbiota composition in rats fed low- and high-fat diets. PLoS One. 2015; 10:e0127252. DOI: https://doi.org/10.1371/journal.pone.0127252

Kim Y., et al. Dietary cellulose prevents gut inflammation by modulating lipid metabolism and gut microbiota. Gut Microbes. 2020; 11:944-961. DOI: https://doi.org/10.1080/19490976.2020.1730149

Naas A.E., et al. Do rumen Bacteroidetes utilize an alternative mechanism for cellulose degradation? mBio. 2014; 5:e01401-14. DOI: https://doi.org/10.1128/mBio.01401-14

Zhu L., et al. Evidence of cellulose metabolism by the giant panda gut microbiome. Proc. Natl. Acad. Sci. U.S.A. 2011; 108:17714-17719. DOI: https://doi.org/10.1073/pnas.1017956108

Ringø E., et al. Effect of dietary components on the gut microbiota of aquatic animals. A never‐ending story? Aquac. Nutr. 2016; 22:219-282. DOI: https://doi.org/10.1111/anu.12346

Bang S.-J., et al. The influence of in vitro pectin fermentation on the human fecal microbiome. AMB Express. 2018; 8:1-9. DOI: https://doi.org/10.1186/s13568-018-0629-9

Ferrario C., et al. How to feed the mammalian gut microbiota: bacterial and metabolic modulation by dietary fibers. Front. Microbiol. 2017; 8:1749. DOI: https://doi.org/10.3389/fmicb.2017.01749

Jiang T., et al. Apple-derived pectin modulates gut microbiota, improves gut barrier function, and attenuates metabolic endotoxemia in rats with diet-induced obesity. Nutrients. 2016; 8:126. DOI: https://doi.org/10.3390/nu8030126

Yasukawa Z., et al. Effect of repeated consumption of partially hydrolyzed guar gum on fecal characteristics and gut microbiota: A randomized, double-blind, placebo-controlled, and parallel-group clinical trial. Nutrients. 2019; 11:2170. DOI: https://doi.org/10.3390/nu11092170

Takagi T., et al. Partially hydrolysed guar gum ameliorates murine intestinal inflammation in association with modulating luminal microbiota and SCFA. Br. J. Nutr. 2016; 116:1199-1205. DOI: https://doi.org/10.1017/S0007114516003068

Jalanka J., et al. The effect of psyllium husk on intestinal microbiota in constipated patients and healthy controls. Int. J. Mol. Sci. 2019; 20:433. DOI: https://doi.org/10.3390/ijms20020433

Jefferson A., Adolphus K. The effects of intact cereal grain fibers, including wheat bran on the gut microbiota composition of healthy adults: a systematic review. Front. Nutr. 2019; 6:33. DOI: https://doi.org/10.3389/fnut.2019.00033

Downloads

Published

2025-09-24

How to Cite

Abu-Omar, A., Hasan, E., Gil-Chávez, J., Athamneh, T., Abazid, H., Gurikov, P., & Al-Najjar, M. A. A. (2025). Effect of Lignin and other Biopolymers on Hyperlipidemia and Gut Microbiota. Jordan Journal of Pharmaceutical Sciences, 18(3), 759–776. https://doi.org/10.35516/jjps.v18i3.2077

Issue

Section

Articles