تأثير اللجنين والبوليمرات الحيوية الأخرى على فرط شحميات الدم وميكروبات الأمعاء
DOI:
https://doi.org/10.35516/jjps.v18i3.2077الكلمات المفتاحية:
اللجنين، البوليمرات الحيوية، ميكروبات الأمعاء، فرط شحميات الدمالملخص
حتى الآن، دُرست الألياف الغذائية، مثل اللجنين والسليلوز والبكتين وصمغ الغوار والسيليوم، بشكلٍ مُكثّف لإمكاناتها الوقائية والعلاجية باستخدام نماذج حيوانية وبشرية، وخاصةً لتأثيراتها الإيجابية على الحالات الأيضية المزمنة، مثل اضطراب شحميات الدم والاضطرابات المُرتبطة به. يُعدّ اضطراب شحميات الدم اضطرابًا أيضيًا خطيرًا يرتبط بارتفاع كوليسترول الدم، ومرض الشريان التاجي، وأمراض القلب التاجية. أظهرت أبحاث سابقة أن هذه الألياف الغذائية قادرة على خفض مستويات الدهون المرتفعة في المصل من خلال آليات مختلفة. ومن أهم هذه الآليات تعديل ميكروبات الأمعاء. فزيادة بكتيريا حمض اللاكتيك (LAB)، القادرة على استقلاب أنواع مختلفة من الألياف الغذائية مثل اللجنين، قد تُخفض مستوى الكوليسترول. تهدف هذه المراجعة إلى تقديم رؤى مفيدة ومناقشات شاملة حول المعارف الحالية المتعلقة بخصائص وتأثيرات الألياف الغذائية، وخاصةً اللجنين، في التحكم بفرط شحميات الدم وتأثيراتها على ميكروبات الأمعاء. تُستخدم محركات البحث جوجل سكولار، وبوابة الأبحاث، وسكوبس لجمع البيانات باستخدام اللجنين، والبوليمرات الحيوية، وميكروبات الأمعاء، وفرط شحميات الدم كمصطلحات بحث.
المراجع
Căpriţă A., et al. Dietary fiber: chemical and functional properties. J. Agroaliment. Process. Technol. 2010; 16:406-416.
Hillman L., et al. Effects of the fibre components pectin, cellulose, and lignin on bile salt metabolism and biliary lipid composition in man. Gut. 1986; 27:29-36. DOI: https://doi.org/10.1136/gut.27.1.29
Osfor M.M., et al. Effect of wheat bran consumption on serum lipid profile of hypercholesterolemia patients resident in Holly Makah. Asian J. Nat. Appl. Sci. 2016; 5:1.
Rodriguez-Gutierrez G., et al. Properties of lignin, cellulose, and hemicelluloses isolated from olive cake and olive stones: binding of water, oil, bile acids, and glucose. J. Agric. Food Chem. 2014; 62:8973-8981. DOI: https://doi.org/10.1021/jf502062b
Boutlelis D.A., et al. The remedial effect of Ziziphus lotus extract against oxidative stress induced by deltamethrin pesticide in rats. Jordan J. Pharm. Sci. 2025; 18:483-495. DOI: https://doi.org/10.35516/jjps.v18i2.2445
Madgulkar A.R., Rao M.R., Warrier D. Characterization of psyllium (Plantago ovata) polysaccharide and its uses. Polysaccharides. 2015; 871-890. DOI: https://doi.org/10.1007/978-3-319-16298-0_49
Al-Abd A.M., et al. Anti-angiogenic agents for the treatment of solid tumors: potential pathways, therapy and current strategies–a review. J. Adv. Res. 2017; 8:591-605. DOI: https://doi.org/10.1016/j.jare.2017.06.006
Shanmugam M.K., et al. Potential role of natural compounds as anti-angiogenic agents in cancer. Curr. Vasc. Pharmacol. 2017; 15:503-519. DOI: https://doi.org/10.2174/1570161115666170713094319
Moreyra A.E., Wilson A.C., Koraym A. Effect of combining psyllium fiber with simvastatin in lowering cholesterol. Arch. Intern. Med. 2005; 165:1161-1166. DOI: https://doi.org/10.1001/archinte.165.10.1161
Rajendhiran N., Bhattacharyya S. Preparation and evaluation of nanolipid carriers of bedaquiline: in vitro evaluation and in silico prediction. Jordan J. Pharm. Sci. 2024; 17:450-467. DOI: https://doi.org/10.35516/jjps.v17i3.1970
Austin A.T., Ballaré C.L. Dual role of lignin in plant litter decomposition in terrestrial ecosystems. Proc. Natl. Acad. Sci. 2010; 107:4618-4622. DOI: https://doi.org/10.1073/pnas.0909396107
Brebu M., Vasile C. Thermal degradation of lignin—a review. Cellulose Chem. Technol. 2010; 44:353.
Norikura T., et al. Lignophenols decrease oleate-induced apolipoprotein-B secretion in HepG2 cells. Basic Clin. Pharmacol. Toxicol. 2010; 107:813-817. DOI: https://doi.org/10.1111/j.1742-7843.2010.00575.x
Pollegioni L., Tonin F., Rosini E. Lignin-degrading enzymes. FEBS J. 2015; 282:1190-1213. DOI: https://doi.org/10.1111/febs.13224
Samfira I., et al. Structural investigation of mistletoe plants from various hosts exhibiting diverse lignin phenotypes. Digest J. Nanomater. Biostruct. 2013; 8.
Espinoza-Acosta J.L., et al. Antioxidant, antimicrobial, and antimutagenic properties of technical lignins and their applications. BioResources. 2016; 11:5452-5481. DOI: https://doi.org/10.15376/biores.11.2.Espinoza_Acosta
Leisola M., Pastinen O., Axe D.D. Lignin—designed randomness. Bio-complexity. 2012; 2012. DOI: https://doi.org/10.5048/BIO-C.2012.3
Rotstein O.D., et al. Prevention of cholesterol gallstones by lignin and lactulose in the hamster. Gastroenterology. 1981; 81:1098-1103. DOI: https://doi.org/10.1016/S0016-5085(81)80018-2
Tolba R., Wu G., Chen A. Adsorption of dietary oils onto lignin for promising pharmaceutical and nutritional applications. BioResources. 2011; 6:1322-1335. DOI: https://doi.org/10.15376/biores.6.2.1322-1335
Watkins D., et al. Extraction and characterization of lignin from different biomass resources. J. Mater. Res. Technol. 2015; 4:26-32. DOI: https://doi.org/10.1016/j.jmrt.2014.10.009
Moura J.C.M.S., et al. Abiotic and biotic stresses and changes in the lignin content and composition in plants. J. Integr. Plant Biol. 2010; 52:360-376. DOI: https://doi.org/10.1111/j.1744-7909.2010.00892.x
Datta R., et al. Enzymatic degradation of lignin in soil: a review. Sustainability. 2017; 9:1163. DOI: https://doi.org/10.3390/su9071163
Janusz G., et al. Lignin degradation: microorganisms, enzymes involved, genomes analysis and evolution. FEMS Microbiol. Rev. 2017; 41:941-962. DOI: https://doi.org/10.1093/femsre/fux049
Novaes E., et al. Lignin and biomass: a negative correlation for wood formation and lignin content in trees. Plant Physiol. 2010; 154:555-561. DOI: https://doi.org/10.1104/pp.110.161281
Vinardell M.P., Mitjans M. Lignins and their derivatives with beneficial effects on human health. Int. J. Mol. Sci. 2017; 18:1219. DOI: https://doi.org/10.3390/ijms18061219
Berlin A., Balakshin M. Industrial lignins: analysis, properties, and applications. Bioenergy Res. 2014; 315-336. DOI: https://doi.org/10.1016/B978-0-444-59561-4.00018-8
Lora J. Industrial commercial lignins: sources, properties and applications. Monomers Polym. Compos. from Renew. Resour. 2008; 225-241. DOI: https://doi.org/10.1016/B978-0-08-045316-3.00010-7
Brodeur G., et al. Chemical and physicochemical pretreatment of lignocellulosic biomass: a review. Enzyme Res. 2011; 2011. DOI: https://doi.org/10.4061/2011/787532
Laurichesse S., Avérous L. Chemical modification of lignins: towards biobased polymers. Prog. Polym. Sci. 2014; 39:1266-1290. DOI: https://doi.org/10.1016/j.progpolymsci.2013.11.004
Perez-Cantu L., Liebner F., Smirnova I. Preparation of aerogels from wheat straw lignin by cross-linking with oligo (alkylene glycol)-α, ω-diglycidyl ethers. Microporous Mesoporous Mater. 2014; 195:303-310. DOI: https://doi.org/10.1016/j.micromeso.2014.04.018
Prakash A., et al. Thermochemical valorization of lignin, in Recent advances in thermo-chemical conversion of biomass. Elsevier. 2015; 455-478. DOI: https://doi.org/10.1016/B978-0-444-63289-0.00016-8
El Hage R., et al. Characterization of milled wood lignin and ethanol organosolv lignin from miscanthus. Polym. Degrad. Stab. 2009; 94:1632-1638. DOI: https://doi.org/10.1016/j.polymdegradstab.2009.07.007
Zhao X., Cheng K., Liu D. Organosolv pretreatment of lignocellulosic biomass for enzymatic hydrolysis. Appl. Microbiol. Biotechnol. 2009; 82:815-827. DOI: https://doi.org/10.1007/s00253-009-1883-1
Ingram T., et al. Comparison of different pretreatment methods for lignocellulosic materials. Part I: conversion of rye straw to valuable products. Bioresour. Technol. 2011; 102:5221-5228. DOI: https://doi.org/10.1016/j.biortech.2011.02.005
Perez-Cantu L., et al. Comparison of pretreatment methods for rye straw in the second generation biorefinery: effect on cellulose, hemicellulose and lignin recovery. Bioresour. Technol. 2013; 142:428-435. DOI: https://doi.org/10.1016/j.biortech.2013.05.054
Zhuang X., et al. Liquid hot water pretreatment of lignocellulosic biomass for bioethanol production accompanying with high valuable products. Bioresour. Technol. 2016; 199:68-75. DOI: https://doi.org/10.1016/j.biortech.2015.08.051
Chi Z., et al. The innovative application of organosolv lignin for nanomaterial modification to boost its heavy metal detoxification performance in the aquatic environment. Chem. Eng. J. 2020; 382:122789. DOI: https://doi.org/10.1016/j.cej.2019.122789
Abraham B., et al. Lignin-based nanomaterials for food and pharmaceutical applications: recent trends and future outlook. Sci. Total Environ. 2023; 881:163316. DOI: https://doi.org/10.1016/j.scitotenv.2023.163316
Vasile C., Baican M. Lignins as promising renewable biopolymers and bioactive compounds for high-performance materials. Polymers (Basel). 2023; 15:15. DOI: https://doi.org/10.3390/polym15153177
Karagoz P., et al. Pharmaceutical applications of lignin-derived chemicals and lignin-based materials: linking lignin source and processing with clinical indication. Biomass Convers. Biorefin. 2023. DOI: https://doi.org/10.1007/s13399-023-03745-5
Kumar R., et al. Lignin: drug/gene delivery and tissue engineering applications. Int. J. Nanomedicine. 2021; 16:2419-2441. DOI: https://doi.org/10.2147/IJN.S303462
Jiménez-Escrig A., Sánchez-Muniz F. Dietary fibre from edible seaweeds: chemical structure, physicochemical properties and effects on cholesterol metabolism. Nutr. Res. 2000; 20:585-598. DOI: https://doi.org/10.1016/S0271-5317(00)00149-4
Samarghandian S., et al. Reduction of serum cholesterol in hypercholesterolemic rats by Guar gum. Avicenna J. Phytomed. 2011; 1:36-42.
Choi Y.-S., et al. Effects of soluble dietary fibers on lipid metabolism and activities of intestinal disaccharidases in rats. J. Nutr. Sci. Vitaminol. 1998; 44:591-600. DOI: https://doi.org/10.3177/jnsv.44.591
Memon R.A., Gilani A.H. An update on hyperlipidemia and its management. 1995.
Otunola G.A., et al. Effects of diet-induced hypercholesterolemia on the lipid profile and some enzyme activities in female Wistar rats. Afr. J. Biochem. Res. 2010; 4:149-154.
Willey J.Z., et al. Lipid profile components and risk of ischemic stroke: the Northern Manhattan Study (NOMAS). Arch. Neurol. 2009; 66:1400-1406. DOI: https://doi.org/10.1001/archneurol.2009.210
Wang J., et al. Selection of potential probiotic lactobacilli for cholesterol-lowering properties and their effect on cholesterol metabolism in rats fed a high-lipid diet. J. Dairy Sci. 2012; 95:1645-1654. DOI: https://doi.org/10.3168/jds.2011-4768
Yang X., Yang L., Zheng H. Hypolipidemic and antioxidant effects of mulberry (Morus alba L.) fruit in hyperlipidaemia rats. Food Chem. Toxicol. 2010; 48:2374-2379. DOI: https://doi.org/10.1016/j.fct.2010.05.074
Matos S.L., et al. Dietary models for inducing hypercholesterolemia in rats. Braz. Arch. Biol. Technol. 2005; 48:203-209. DOI: https://doi.org/10.1590/S1516-89132005000200006
Xie N., et al. Effects of two Lactobacillus strains on lipid metabolism and intestinal microflora in rats fed a high-cholesterol diet. BMC Complement. Altern. Med. 2011; 11:1-11. DOI: https://doi.org/10.1186/1472-6882-11-53
Hayek T., et al. Dietary fat increases high density lipoprotein (HDL) levels both by increasing the transport rates and decreasing the fractional catabolic rates of HDL cholesterol ester and apolipoprotein (Apo) AI: presentation of a new animal model and mechanistic studies in human Apo AI transgenic and control mice. J. Clin. Invest. 1993; 91:1665-1671. DOI: https://doi.org/10.1172/JCI116375
Rader D.J. Molecular regulation of HDL metabolism and function: implications for novel therapies. J. Clin. Invest. 2006; 116:3090-3100. DOI: https://doi.org/10.1172/JCI30163
Hexeberg S., et al. A study on lipid metabolism in heart and liver of cholesterol- and pectin-fed rats. Br. J. Nutr. 1994; 71:181-192. DOI: https://doi.org/10.1079/BJN19940125
Qanwil T., et al. Hypolipidemic and vasoprotective potential of Caralluma edulis: a histological and biochemical study. Jordan J. Pharm. Sci. 2025; 18:21-35. DOI: https://doi.org/10.35516/jjps.v18i1.2464
Kiortsis D., et al. Statin-associated adverse effects beyond muscle and liver toxicity. Atherosclerosis. 2007; 195:7-16. DOI: https://doi.org/10.1016/j.atherosclerosis.2006.10.001
Thompson P.D., et al. Statin-associated side effects. J. Am. Coll. Cardiol. 2016; 67:2395-2410. DOI: https://doi.org/10.1016/j.jacc.2016.02.071
Stancu C., Sima A. Statins: mechanism of action and effects. J. Cell. Mol. Med. 2001; 5:378-387. DOI: https://doi.org/10.1111/j.1582-4934.2001.tb00172.x
Famularo G., et al. Liver toxicity of rosuvastatin therapy. World J. Gastroenterol. 2007; 13:1286. DOI: https://doi.org/10.3748/wjg.v13.i8.1286
Olson B.H., et al. Psyllium-enriched cereals lower blood total cholesterol and LDL cholesterol, but not HDL cholesterol, in hypercholesterolemic adults: results of a meta-analysis. J. Nutr. 1997; 127:1973-1980. DOI: https://doi.org/10.1093/jn/127.10.1973
Williams R.D., et al. The effect of cellulose, hemicellulose and lignin on the weight of the stool: a contribution to the study of laxation in man. J. Nutr. 1936; 11:433-449. DOI: https://doi.org/10.1093/jn/11.5.433
Hillman L., et al. Differing effects of pectin, cellulose and lignin on stool pH, transit time and weight. Br. J. Nutr. 1983; 50:189-195. DOI: https://doi.org/10.1079/BJN19830088
Hillman L.C., et al. The effects of the fiber components pectin, cellulose and lignin on serum cholesterol levels. Am. J. Clin. Nutr. 1985; 42:207-213. DOI: https://doi.org/10.1093/ajcn/42.2.207
Gades M.D., Stern J.S. Chitosan supplementation and fecal fat excretion in men. Obes. Res. 2003; 11:683-688. DOI: https://doi.org/10.1038/oby.2003.97
Vigne J.L., et al. Effect of pectin, wheat bran and cellulose on serum lipids and lipoproteins in rats fed on a low- or high-fat diet. Br. J. Nutr. 1987; 58:405-413. DOI: https://doi.org/10.1079/BJN19870109
Eastwood M., et al. Effects of dietary supplements of wheat bran and cellulose on faeces and bowel function. Br. Med. J. 1973; 4:392-394. DOI: https://doi.org/10.1136/bmj.4.5889.392
van Bennekum A.M., et al. Mechanisms of cholesterol-lowering effects of dietary insoluble fibres: relationships with intestinal and hepatic cholesterol parameters. Br. J. Nutr. 2005; 94:331-337. DOI: https://doi.org/10.1079/BJN20051498
Kadajji V.G., Betageri G.V. Water soluble polymers for pharmaceutical applications. Polymers. 2011; 3:1972-2009. DOI: https://doi.org/10.3390/polym3041972
Kay R.M. Effects of dietary fibre on serum lipid levels and fecal bile acid excretion. Can. Med. Assoc. J. 1980; 123:1213.
Brouns F., et al. Cholesterol-lowering properties of different pectin types in mildly hyper-cholesterolemic men and women. Eur. J. Clin. Nutr. 2012; 66:591-599. DOI: https://doi.org/10.1038/ejcn.2011.208
Judd P.A., Truswell A. Comparison of the effects of high- and low-methoxyl pectins on blood and faecal lipids in man. Br. J. Nutr. 1982; 48:451-458. DOI: https://doi.org/10.1079/BJN19820130
Judd P.A., Truswell A. The hypocholesterolaemic effects of pectins in rats. Br. J. Nutr. 1985; 53:409-425. DOI: https://doi.org/10.1079/BJN19850051
Cara L., et al. Plasma lipid lowering effects of wheat germ in hypercholesterolemic subjects. Plant Foods Hum. Nutr. 1991; 41:135-150. DOI: https://doi.org/10.1007/BF02194082
Mosa-Al-Reza H., Sadat D.A., Marziyeh A. Comparison of the beneficial effects of guar gum on lipid profile in hyperlipidemic and normal rats. J. Med. Plants Res. 2012; 6:1567-1575. DOI: https://doi.org/10.5897/JMPR11.887
Shaikh T., Kumar S.S. Pharmaceutical and pharmacological profile of guar gum: an overview. Int. J. Pharm. Pharm. Sci. 2011; 3(suppl. 5):38-40.
Gee J.M., Blackburn N., Johnson I. The influence of guar gum on intestinal cholesterol transport in the rat. Br. J. Nutr. 1983; 50:215-224. DOI: https://doi.org/10.1079/BJN19830091
Overton P., et al. The effects of dietary sugar-beet fibre and guar gum on lipid metabolism in Wistar rats. Br. J. Nutr. 1994; 72:385-395. DOI: https://doi.org/10.1079/BJN19940041
Marlett J.A., Fischer M.H. The active fraction of psyllium seed husk. Proc. Nutr. Soc. 2003; 62:207-209. DOI: https://doi.org/10.1079/PNS2002201
Gold K.V., Davidson D.M. Oat bran as a cholesterol-reducing dietary adjunct in a young, healthy population. West. J. Med. 1988; 148:299.
Borel P., et al. Wheat bran and wheat germ: effect on digestion and intestinal absorption of dietary lipids in the rat. Am. J. Clin. Nutr. 1989; 49:1192-1202. DOI: https://doi.org/10.1093/ajcn/49.6.1192
Chen H.-L., et al. Mechanisms by which wheat bran and oat bran increase stool weight in humans. Am. J. Clin. Nutr. 1998; 68:711-719. DOI: https://doi.org/10.1093/ajcn/68.3.711
Marlett J.A., et al. Mechanism of serum cholesterol reduction by oat bran. Hepatology. 1994; 20:1450-1457. DOI: https://doi.org/10.1002/hep.1840200612
Prakash S., et al. The gut microbiota and human health with an emphasis on the use of microencapsulated bacterial cells. J. Biomed. Biotechnol. 2011; 2011:1-12. DOI: https://doi.org/10.1155/2011/981214
Walsh C.J., et al. Beneficial modulation of the gut microbiota. FEBS Lett. 2014; 588:4120-4130. DOI: https://doi.org/10.1016/j.febslet.2014.03.035
Ohashi Y., et al. Faecal fermentation of partially hydrolyzed guar gum. J. Funct. Foods. 2012; 4:398-402. DOI: https://doi.org/10.1016/j.jff.2011.09.007
Shatha A., et al. Changes in gut microbiota of alloxan-induced diabetic rats in response to orally administered combined aqueous extracts of olive leaves and ginger. J. Appl. Pharm. Sci. 2022; 12:1-10. DOI: https://doi.org/10.7324/JAPS.2022.120316
Fisher A.B., Fong S.S. Lignin biodegradation and industrial implications. AIMS Bioeng. 2014; 1:92-112. DOI: https://doi.org/10.3934/bioeng.2014.2.92
Ohra-aho T., et al. Structure of brewer’s spent grain lignin and its interactions with gut microbiota in vitro. J. Agric. Food Chem. 2016; 64:812-820. DOI: https://doi.org/10.1021/acs.jafc.5b05535
Cragg S.M., et al. Lignocellulose degradation mechanisms across the Tree of Life. Curr. Opin. Chem. Biol. 2015; 29:108-119. DOI: https://doi.org/10.1016/j.cbpa.2015.10.018
Varma A., et al. Lignocellulose degradation by microorganisms from termite hills and termite guts: a survey on the present state of art. FEMS Microbiol. Rev. 1994; 15:9-28. DOI: https://doi.org/10.1016/0168-6445(94)90024-8
Brune A., Miambi E., Breznak J.A. Roles of oxygen and the intestinal microflora in the metabolism of lignin-derived phenylpropanoids and other monoaromatic compounds by termites. Appl. Environ. Microbiol. 1995; 61:2688-2695. DOI: https://doi.org/10.1128/aem.61.7.2688-2695.1995
Kudo T. Termite-microbe symbiotic system and its efficient degradation of lignocellulose. Biosci. Biotechnol. Biochem. 2009; 73:1-6. DOI: https://doi.org/10.1271/bbb.90304
Krizsan S., Huhtanen P. Effect of diet composition and incubation time on feed indigestible neutral detergent fiber concentration in dairy cows. J. Dairy Sci. 2013; 96:1715-1726. DOI: https://doi.org/10.3168/jds.2012-5752
Kajikawa H., et al. Degradation of benzyl ether bonds of lignin by ruminal microbes. FEMS Microbiol. Lett. 2000; 187:15-20. DOI: https://doi.org/10.1016/S0378-1097(00)00171-3
Abbott T.P., Wicklow D.T. Degradation of lignin by Cyathus species. Appl. Environ. Microbiol. 1984; 47:585-587. DOI: https://doi.org/10.1128/aem.47.3.585-587.1984
Wicklow D.T., Detroy R.W., Jessee B. Decomposition of lignocellulose by Cyathus stercoreus (Schw.) de Toni NRRL 6473, a “white rot” fungus from cattle dung. Appl. Environ. Microbiol. 1980; 40:169-170. DOI: https://doi.org/10.1128/aem.40.1.169-170.1980
Sasikumar V., et al. Isolation and preliminary screening of lignin degrading microbes. J. Acad. Ind. Res. 2014; 3:291-294.
Fang W., et al. Evidence for lignin oxidation by the giant panda fecal microbiome. PLoS One. 2012; 7:e50312. DOI: https://doi.org/10.1371/journal.pone.0050312
Fåk F., et al. The physico-chemical properties of dietary fibre determine metabolic responses, short-chain fatty acid profiles and gut microbiota composition in rats fed low- and high-fat diets. PLoS One. 2015; 10:e0127252. DOI: https://doi.org/10.1371/journal.pone.0127252
Kim Y., et al. Dietary cellulose prevents gut inflammation by modulating lipid metabolism and gut microbiota. Gut Microbes. 2020; 11:944-961. DOI: https://doi.org/10.1080/19490976.2020.1730149
Naas A.E., et al. Do rumen Bacteroidetes utilize an alternative mechanism for cellulose degradation? mBio. 2014; 5:e01401-14. DOI: https://doi.org/10.1128/mBio.01401-14
Zhu L., et al. Evidence of cellulose metabolism by the giant panda gut microbiome. Proc. Natl. Acad. Sci. U.S.A. 2011; 108:17714-17719. DOI: https://doi.org/10.1073/pnas.1017956108
Ringø E., et al. Effect of dietary components on the gut microbiota of aquatic animals. A never‐ending story? Aquac. Nutr. 2016; 22:219-282. DOI: https://doi.org/10.1111/anu.12346
Bang S.-J., et al. The influence of in vitro pectin fermentation on the human fecal microbiome. AMB Express. 2018; 8:1-9. DOI: https://doi.org/10.1186/s13568-018-0629-9
Ferrario C., et al. How to feed the mammalian gut microbiota: bacterial and metabolic modulation by dietary fibers. Front. Microbiol. 2017; 8:1749. DOI: https://doi.org/10.3389/fmicb.2017.01749
Jiang T., et al. Apple-derived pectin modulates gut microbiota, improves gut barrier function, and attenuates metabolic endotoxemia in rats with diet-induced obesity. Nutrients. 2016; 8:126. DOI: https://doi.org/10.3390/nu8030126
Yasukawa Z., et al. Effect of repeated consumption of partially hydrolyzed guar gum on fecal characteristics and gut microbiota: A randomized, double-blind, placebo-controlled, and parallel-group clinical trial. Nutrients. 2019; 11:2170. DOI: https://doi.org/10.3390/nu11092170
Takagi T., et al. Partially hydrolysed guar gum ameliorates murine intestinal inflammation in association with modulating luminal microbiota and SCFA. Br. J. Nutr. 2016; 116:1199-1205. DOI: https://doi.org/10.1017/S0007114516003068
Jalanka J., et al. The effect of psyllium husk on intestinal microbiota in constipated patients and healthy controls. Int. J. Mol. Sci. 2019; 20:433. DOI: https://doi.org/10.3390/ijms20020433
Jefferson A., Adolphus K. The effects of intact cereal grain fibers, including wheat bran on the gut microbiota composition of healthy adults: a systematic review. Front. Nutr. 2019; 6:33. DOI: https://doi.org/10.3389/fnut.2019.00033







