Antioxidant and Antimicrobial Potentials of Nicotiana glauca Graham Leaves Extracts and Synthesized Silver Nanoparticles: A Phytochemical Approach
DOI:
https://doi.org/10.35516/jjps.v18i1.2180Keywords:
Antimicrobial, antioxidant activity, Nicotiana glauca, Phytochemical, Silver nanoparticleAbstract
Nicotiana glauca is a medicinal plant that belongs to the genus Nicotiana, traditionally used for the treatment of many diseases. This study aims to screen the phytochemical content of leaf extracts of Nicotiana glauca, synthesize silver nanoparticles using the extracts, and evaluate their antioxidant and antimicrobial activities. The leaf samples were collected, air-dried, and ground into powder. The leaf powder was macerated with distilled water, methanol, n-hexane, and chloroform to extract the phytochemicals. Phytochemical analysis was performed using standard methods. Synthesis of silver nanoparticles was achieved by mixing a 3 mM silver nitrate solution with the plant extract, and the synthesized silver nanoparticles were characterized by X-ray diffraction and scanning electron microscopy. The antioxidant activities of the extracts and the synthesized silver nanoparticles were evaluated by the DPPH scavenging assay, while the in vitro antimicrobial activities were evaluated using the agar disc diffusion method against selected bacterial and fungal strains. The results of the phytochemical analysis indicated the presence of alkaloids, saponins, flavonoids, terpenoids, tannins, phenolics, steroids, and glycosides. The results of the antioxidant activity evaluation of AgNPs, methanol extract, chloroform extract, and n-hexane extract showed that they possess remarkable antioxidant activities. The antioxidant activity analysis also indicated that percentage inhibition and IC50 were dose-dependent. Synthesized silver nanoparticles showed the highest antioxidant activity with an IC50 value of 78 μg/mL, while the methanol extract gave an IC50 value of 170 μg/mL. The results of the antimicrobial activity evaluation showed that the plant extract and the synthesized silver nanoparticles exhibited antimicrobial activities. The highest zone of inhibition observed was 16.33±1.155 mm for synthesized silver nanoparticles and 15.33±1.155 mm for the plant extract. The lowest zone of inhibition observed was 9.67±0.577 mm for synthesized silver nanoparticles and 7.33±0.577 mm for the plant extract. Generally, the plant extracts and synthesized silver nanoparticles exhibited strong antioxidant and antimicrobial activities. Further studies should be conducted on the phytochemical constituents, antioxidant, and antimicrobial activities of this plant.
References
Rasool H.B. Medicinal Plants. Importance and Uses. Pharmaceut. Anal. Acta. 2012, 3:e139. https://doi.org/10.4172/2153-2435.1000e139 DOI: https://doi.org/10.4172/2153-2435.1000e139
Abate, L., Tadesse, M. G., Bachheti, A. and Bachheti, R. K. Traditional and Phytochemical Bases of Herbs, Shrubs, Climbers, and Trees from Ethiopia for Their Anticancer Response. BioMed Research International. 2022, 27. https://doi.org/10.1155/2022/1589877 DOI: https://doi.org/10.1155/2022/1589877
Bekele E. Study on actual situation of medicinal plants in Ethiopia. 2007:54-60. http://www.endashaw.com
Abate, L., Bachheti, R. K., Tadesse, M. G. and Bachheti, A. Ethnobotanical Uses, Chemical Constituents, and Application of Plantago lanceolata L. Journal of Chemistry. 2022, 17. https://doi.org/10.1155/2022/1532031 DOI: https://doi.org/10.1155/2022/1532031
Aneesh, T., Hisham, M., Sekhar, M., Madhu, M. and Deepa, T. International market scenario of traditional Indian herbal drugs - India declining. International Journal of Green Pharmacy. 2009; 3(3):184–190. https://doi.org/10.4103/0973-8258.56271 DOI: https://doi.org/10.4103/0973-8258.56271
Madhu, M., Sailaja, V., Satyadev, T. and Satyanarayana, M. V. Quantitative phytochemical analysis of selected medicinal plant species by using various organic solvents. Journal of Pharmacognosy and Phytochemistry. 2016;5(2): 25–29.
Tadeg, H., Mohammed, E., Asres, K. and Gebre-Mariam, T. Antimicrobial activities of some selected traditional Ethiopian medicinal plants used in the treatment of skin disorders. Journal of Ethnopharmacology. 2005; 100(1–2),168–175. https://doi.org/10.1016/j.jep.2005.02.031 DOI: https://doi.org/10.1016/j.jep.2005.02.031
Mulata, H. N., Gnanasekaran, N., Melaku, U. and Daniel, S. Phytochemical Screening and Assessment of In Vitro Antioxidant Activities of Calpurnia Aurea Seeds and Leaves. International Journal of Pharmacy and Pharmaceutical Research. 2015;2(2):1–12.
Chinemerem Nwobodo, D., Ugwu, M. C., Oliseloke Anie, C., Al-Ouqaili, M. T. S., Chinedu Ikem, J., Victor Chigozie, U. and Saki, M. Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. Journal of Clinical Laboratory Analysis. 2022; 36(9):1–10. https://doi.org/10.1002/jcla.24655 DOI: https://doi.org/10.1002/jcla.24655
Maroyi, A. Traditional use of medicinal plants in south-central Zimbabwe: Review and perspectives. In Journal of Ethnobiology and Ethnomedicine. 2013;9(1). https://doi.org/10.1186/1746-4269-9-31 DOI: https://doi.org/10.1186/1746-4269-9-31
Kumar, A., Kalia, A. N. and Singh, H. In Vitro Antioxidant Potential of Polyherbal Formulation of Three Different Herbal Drugs. 2020;10(4):70–76. DOI: https://doi.org/10.35652/IGJPS.2020.104010
Killedar, S., More, H., Mali, S., Nadaf, S., Salunkhe, S. and Karade, R. Research Article Phytochemical Screening and in Vitro Antioxidant Potential of Memecylon umbellatum Burm Leaf Extracts. Journal of Drug Delivery & Therapeutics. 2014;4(2):30–35. DOI: https://doi.org/10.22270/jddt.v4i2.788
Valko, M., Rhodes, C. J., Moncol, J., Izakovic, M. and Mazur, M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chemico-Biological Interactions. 2006;160(1):1–40.
https://doi.org/10.1016/j.cbi.2005.12.009 DOI: https://doi.org/10.1016/j.cbi.2005.12.009
Vivekananthan, D. P., Penn, M. S., Sapp, S. K., Hsu, A. and Topol, E. J. Erratum: Use of antioxidant vitamins for the prevention of cardiovascular disease: Metaanalysis of randomized trials. 2004; 361 (9374): 2017-2023. https://doi.org/10.1016/S0140-6736(04)15614-6 DOI: https://doi.org/10.1016/S0140-6736(03)13637-9
Ashraf, J. M., Ansari, M. A., Khan, H. M., Alzohairy, M. A. and Choi, I. Green synthesis of silver nanoparticles and characterization of their inhibitory effects on AGEs formation using biophysical techniques. Scientific Reports. 2016;6(6):1–10.
https://doi.org/10.1038/srep20414 DOI: https://doi.org/10.1038/srep20414
Siddiqi, K. S., Husen, A. and Rao, R. A. . A review on the biosynthesis of silver nanoparticles and their biocidal properties. Journal of Nanobiotechnology. 2018; 16(1):14. https://doi.org/10.1186/s12951-018-0334-5
Asma, R. Assessment of the antifungal activity of Nicotiana glauca Graham aqueous and organic extracts against some pathogenic and antagonistic fungi. African Journal of Microbiology Research. 2012; 6(22):4655–4661. https://doi.org/10.5897/ajmr11.979 DOI: https://doi.org/10.5897/AJMR11.979
Tabana, Y. M., Dahham, S. S., Hassan, L. E. A., Al-mansoub, M. A., Taleb-agha, M. and Majid, A. M. S. A. In Vitro Anti-Metastatic and Antioxidant Activity of Nicotiana glauca Fraction Against Breast Cancer Cells EMAN Research and Testing Laboratory, School of Pharmaceutical Sciences. 2015; 9(2):95–102. https://doi.org/10.5829/idosi.abr.2015.9.2.9521
Yirga Haile, Y. M., Tadesse, T. and Bekuma, A. Coprological Study on Lungworm Infection of Small Ruminants. American-Eurasian Journal of Scientific Research. 2018; 13(3):47–52.
https://doi.org/10.5829/idosi.aejsr.2018.47.52
Asfaw Geresu, M., Assefa Wayuo, B., and Mamo Kassa, G. Occurrence and antimicrobial susceptibility profile of salmonella isolates from animal origin food items in selected areas of Arsi zone, southeastern Ethiopia, 2018/19. International Journal of Microbiology. 2021. https://doi.org/10.1155/2021/6633522 DOI: https://doi.org/10.1155/2021/6633522
Kero Jemal, B. V. Sandeep, and Sudhakar Pola. Synthesis, Characterization, and Evaluation of the Antibacterial Activity of Allophylus serratus Leaf and Leaf Derived Callus Extracts Mediated Silver Nanoparticles. Journal of Nanomaterials. 2017.
https://doi.org/10.1155/2017/4213275 DOI: https://doi.org/10.1155/2017/4213275
Karthikeyan, G. and Vidya, A. K. Phytochemical Analysis, Antioxidant and Antibacterial Activity of Pomegranate Peel. Life Science Informatics Publication. 2019; 5(218):218–231.
https://doi.org/10.26479/2019.0501.22 DOI: https://doi.org/10.26479/2019.0501.22
Kumar, A., Ilavarasan, R., Jayachandran, T., Decaraman, M., Aravindhan, P., Padmanabhan, N. and Krishnan, M. R. V. Phytochemicals investigation on a tropical plant, Syzygium cumini from Kattuppalayam, Erode District, Tamil Nadu, South India. Pakistan Journal of Nutrition. 2009; 8(1):83–85. https://doi.org/10.3923/pjn.2009.83.85 DOI: https://doi.org/10.3923/pjn.2009.83.85
Santhi, K. and Sengottuvel, R. Qualitative and Quantitative Phytochemical Analysis of Moringa concanensis Nimmo. International Journal of Current Microbiology and Applied Sciences. 2016; 5(1):633–640. https://doi.org/10.20546/ijcmas.2016.501.064 DOI: https://doi.org/10.20546/ijcmas.2016.501.064
Trifa, W., Akkal, S., Lefahal, M., Benmekhebi, L. and Khennouf, S. Preliminary screening of Nicotiana glauca extracts for determination of antioxidant activity by different methods. Current Issues in Pharmacy and Medical Sciences. 2020; 33(1):32–37.
https://doi.org/10.2478/cipms-2020-0007 DOI: https://doi.org/10.2478/cipms-2020-0007
Ukoha, P. O., Cemaluk, E. A. C., Nnamdi, O. L. and Madus, E. P. Tannins and other phytochemical of the Samanaea saman pods and their antimicrobial activities. African Journal of Pure and Applied Chemistry. 2011; 5(8):237–244. http://www.academicjournals.org/AJPAC
Auwal, M. S., Saka, S., Mairiga, I. A., Sanda, K. A., Shuaibu, A. and Ibrahim, A. Preliminary phytochemical and elemental analysis of aqueous and fractionated pod extracts of Acacia nilotica (Thorn mimosa). Veterinary Research Forum : An International Quarterly Journal. 2014;5(2):95–100.
Longbap, B., Ushie, O. A., Ogah, E., Kendenson, A. C. and Nyikyaa, J. T. Phytochemical Screening and Quantitative Determination of Phytochemicals in Leaf Extracts of Hannoa undulata. International Journal of Medicinal Plants and Natural Products. 2018; 4(2):32–38. https://doi.org/10.20431/2454-7999.0402005 DOI: https://doi.org/10.20431/2454-7999.0402005
Mohsen, M.S. and Ammar, S.M.A. Total phenoliccontents and antioxidant activity of corn tassel extracts. Food Chem. 2008; 112:595-598. DOI: https://doi.org/10.1016/j.foodchem.2008.06.014
Adedapo, A. A., Jimoh, F. O., Koduru, S., Afolayan, A. J. and Masika, P. J. Antibacterial and antioxidant properties of the methanol extracts of the leaves and stems of Calpurnia aurea. BMC Complementary and Alternative Medicine. 2008; 8,1–8. https://doi.org/10.1186/1472-6882-8-53 DOI: https://doi.org/10.1186/1472-6882-8-53
Mahomoodally, M. F., Gurib-Fakim, A. and Subratty, A. H. Antimicrobial activities and phytochemical profiles of endemic medicinal plants of Mauritius. Pharmaceutical Biology. 2005; 43(3):237–242.
https://doi.org/10.1080/13880200590928825 DOI: https://doi.org/10.1080/13880200590928825
Birhan, M., Tessema, T., Kenubih, A. and Yayeh, M. In Vitro Antimicrobial Evaluation of Aqueus Methanol Extract from Calpurina Aurea (Fabaceae) Leaves. In Vitro Antimicrobial Evaluation of Aqueus Methanol Extract from Calpurina Aurea (Fabaceae) Leaves. Asian J. Med. Pharm. Res. 2018, 8(4):33–43.
Abdi, M. I., Hassan, A. A., Abdirahman, F. A., and Weldegebriel, S. In-Vitro Evaluation of Antibacterial Activity of Nerium oleander, Solanum. OIRT Journal of Scientific Research. 2022; 2(5):50-59.
Mergia, E., Shibeshi, W., Terefe, G. and Teklehaymanot, T. Clinical & Experimental Pathology Phytochemical Screening and In Vitro Antitrypanosomal Activity of Aqueous and Methanol Leaf Extract of Verbascum sinaiticum (Scrophulariaceae) against. 2014; 4(4). https://doi.org/10.4172/2161-0681.1000183 DOI: https://doi.org/10.4172/2161-0681.1000183
Mergia, E., Shibeshi, W., Terefe, G. and Teklehaymanot, T. Antitrypanosomal activity of Verbascum sinaiticum Benth. (Scrophulariaceae) against Trypanosoma congolense isolates. BMC Complementary and Alternative Medicine. 2016; 1–9.
https://doi.org/10.1186/s12906-016-1346-z DOI: https://doi.org/10.1186/s12906-016-1346-z
Najah, Z., M. Elsherif, K., Kawan, E. and Farah, N. Phytochemical Screening and Heavy Metals Contents of Nicotiana glauca Plant. International Journal of Pharmacy and Pharmaceutical Research. 2015; 4(3):82–91. www.ijppr.humanjournals.com
Hassan E. Hassan, Turk Z. Abd El-Ham E. and Elfek Y. A. Nasr. Ecological and Phytochemic Al Studies on Nicotiana Glauca from Egypt. Egypt. J. Exp. Biol. (Bot.). 2014; 10(1): 87–95. http://www.egyseb.org
Gutiérrez A. D. M., Bah, M., Garduño R, M. L., Mendoza D, S. O. and Serrano C. V. Anti-inflammatory and antioxidant activities of methanol extracts and alkaloid fractions of four Mexican medicinal plants of Solanaceae. African Journal of Traditional, Complementary, and Alternative Medicines: AJTCAM / African Networks on Ethnomedicines. 2014; 11(3):259–267.
https://doi.org/10.4314/ajtcam.v11i3.36 DOI: https://doi.org/10.4314/ajtcam.v11i3.36
Abeysinghe, D. T., Kumara, K. A. H., Kaushalya, K. A. D., Chandrika, U. G. and Alwis, D. D. D. H . Phytochemical screening, total polyphenol, flavonoid content, in vitro antioxidant and antibacterial activities of Sri Lankan varieties of Murraya koenigii and Micromelum minutum leaves. Heliyon. 2021; 7(7):e07449. https://doi.org/10.1016/j.heliyon.2021.e07449 DOI: https://doi.org/10.1016/j.heliyon.2021.e07449
Lidia Al-Halaseh, Reem Issa, Rana Said and Rawan Al-suhaimat. Antioxidant Activity, Phytochemical Screening, and LC/MS-MS Characterization of Polyphenol Content of Jordanian Habitat of Pennisetum Setaceum Aqueous Leaf Extract. Jordan Journal of Pharmaceutical Sciences. 2024;17(4). https://doi.org/10.35516/jjps.v17i4.2442 DOI: https://doi.org/10.35516/jjps.v17i4.2442
Tungmunnithum, D., Thongboonyou, A., Pholboon, A., and Yangsabai, A. Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. Medicines. 2018; 5(3):93. https://doi.org/10.3390/medicines5030093 DOI: https://doi.org/10.3390/medicines5030093
Prosberg, M., Bendtsen, F., Vind, I., Petersen, A. M. and Gluud, L. L. The association between the gut microbiota and the inflammatory bowel disease activity: a systematic review and meta-analysis. Scandinavian Journal of Gastroenterology. 2016; 51(12):1407–1415.
https://doi.org/10.1080/00365521.2016.1216587 DOI: https://doi.org/10.1080/00365521.2016.1216587
Puspitasari E., Triatmoko B., Dianasari D., Muslichah S. and Nugraha A. S. Assessment of Extraction Methods Effects on the Biological Activities (Antioxidant and Antiamylase) and Chemistry (Total Phenolics and Flavonoids) of Guazuma ulmifolia Leaves. Jordan Journal of Pharmaceutical Sciences. 2024; 17(1). DOI: https://doi.org/10.35516/jjps.v17i1.1171
Naskar A., Dasgupta A. andAcharya K. Antioxidant and cytotoxic activity of Lentinus fasciatus. Jordan Journal of Pharmaceutical Sciences. 2023; 16(1):72-81. DOI: https://doi.org/10.35516/jjps.v16i1.1064
Gopalakrishnan, S., Kaupa, P., Lakshmi, S. Y. S. and Banu, F. Antimicrobial activity of synthesized silver nanoparticles and phytochemical screening of the aqueous extract of Antiaris toxicaria. Indian Journal of Nanoscience. 2015; 4(1):2–5.
Sarsar, V., Selwal, M. K. and Selwal, K. K. Significant parameters in the optimization of biosynthesis of silver nanoparticles using Psidium guajava leaf extract and evaluation of their antimicrobial activity against human pathogenic bacteria. Pharmanest. 2014; 5(1):1769–1775.
Ali Alghamdi, A. Phytoconstituents screening and antimicrobial activity of the invasive species Nicotiana glauca collected from Al-Baha region of Saudi Arabia. Saudi Journal of Biological Sciences. 2021; 28(3);1544–1547. https://doi.org/10.1016/j.sjbs.2020.12.034 DOI: https://doi.org/10.1016/j.sjbs.2020.12.034
Jyoti, K., Baunthiyal, M. and Singh, A. Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. J. Radiat. Res. Appl. Sci. 2016; 9(3):217–227. https://doi.org/10.1016/j.jrras.2015.10.002 DOI: https://doi.org/10.1016/j.jrras.2015.10.002
Siddiqi, K. S., Husen, A. and Rao, R. A. K. A review on biosynthesis of silver nanoparticles and their biocidal properties. J. Nanobiotechnol. 2018.
https://doi.org/10.1186/s12951-018-0334-5 DOI: https://doi.org/10.1186/s12951-018-0334-5
Banala, R. R., Nagati, V. B. and Karnati, P. R. Green synthesis and characterization of Carica papaya leaf extract coated silver nanoparticles through X-ray diffraction, electron microscopy and evaluation of bactericidal properties. Saudi J. Biol. Sci. 2015; 22(5):637–644. https://doi.org/10.1016/j.sjbs.2015.01.007 DOI: https://doi.org/10.1016/j.sjbs.2015.01.007
Sümengen Özdenefe, M., Mercimek Takcı, A., and Büyükkaya Kayış, F.. Antibacterial, Antioxidant, Antidiabetic Potentials and Chemical Composition of Nicotiana glauca Graham Leaf Extract. Journal of Anatolian Environmental and Animal Sciences. 2023; 8(4):700-706. https://doi.org/10.35229/jaes.1325678 DOI: https://doi.org/10.35229/jaes.1325678