Hypolipidemic and Vasoprotective Potential of Caralluma edulis: A Histological and Biochemical Study
DOI:
https://doi.org/10.35516/jjps.v18i1.2464Keywords:
Lipofundin, fructose-induced hyperlipidemia, atorvastatin, vasorelaxant studies, serum cholesterolAbstract
Caralluma edulis (Apocynaceae) is well known for its medicinal properties, including antioxidant, anti-inflammatory, antimicrobial, and hypoglycemic activities, and has been used as a valuable remedy in various cultures. This scientific study aimed to validate the efficacy of C. edulis in lowering lipid profiles using two hyperlipidemic animal models: lipofundin-induced rabbits and fructose-induced rats. Lipofundin was administered intravenously at 2 mL/kg for 23 days, while fructose (25% w/v) was given for 28 consecutive days by dissolving it in drinking water to induce dyslipidemia and vascular dysfunction. The hydroalcoholic extract of C. edulis was orally administered (250 and 500 mg/kg) to experimental groups, while atorvastatin (10 mg/kg p.o.) was given only to the standard control group. Blood samples were collected to assess various biochemical parameters. Furthermore, histological examinations of liver and thoracic aorta tissues from fructose-fed rats were conducted, along with an evaluation of their vasorelaxant properties. The hydro-methanolic extract of C. edulis demonstrated dose-dependent hypolipidemic effects, significantly reducing serum cholesterol, triglycerides, and low-density lipoproteins at a dose of 500 mg/kg in both models, comparable to atorvastatin. Additionally, the hydroalcoholic extract exhibited significant endothelium-dependent vasorelaxant activity and hepatoprotective effects in fructose-fed rats. C. edulis also displayed antioxidant potential through free radical scavenging activity. These findings suggest that C. edulis possesses hypolipidemic and vasoprotective properties, likely attributed to its active pharmacological constituents, supporting its traditional use.
References
Goff Jr D.C., Bertoni A.G., Kramer H., Bonds D., Blumenthal R.S., Tsai M.Y. and Psaty B.M., Dyslipidemia prevalence, treatment, and control in the multi-ethnic study of atherosclerosis (MESA) gender, ethnicity, and coronary artery calcium. Circulation. 2006; 113(5):647-656. DOI: https://doi.org/10.1161/CIRCULATIONAHA.105.552737
Jafar T.H., Jafary F.H., Jessani S. and Chaturvedi N., Heart disease epidemic in Pakistan: women and men at equal risk. Am. Heart J. 2005; 150(2):221-226. DOI: https://doi.org/10.1016/j.ahj.2004.09.025
Valenzuela P.L., Ruilope L.M., Santos-Lozano A., Wilhelm M., Kränkel N., Fiuza-Luces C. and Lucia A., Exercise benefits in cardiovascular diseases: from mechanisms to clinical implementation. Eur. Heart J. 2023; 44(21):1874-1889. DOI: https://doi.org/10.1093/eurheartj/ehad170
Al-Rawi N.H. and Shahid A.M., Oxidative stress, antioxidants, and lipid profile in the serum and saliva of individuals with coronary heart disease: is there a link with periodontal health. Minerva Stomatol. 2017; 66(5):212-25. DOI: https://doi.org/10.23736/S0026-4970.17.04062-6
Dhingra D., Lamba D., Kumar R., Nath P. and Gauttam S., Antihyperlipidemic activity of Aloe succotrina in rats: possibly mediated by inhibition of HMG-CoA Reductase. ISRN Pharmacol. 2014; 2014. DOI: https://doi.org/10.1155/2014/243575
Navar-Boggan A.M., Peterson E.D., D’Agostino Sr R.B., Neely B., Sniderman A.D. and Pencina M.J., Hyperlipidemia in early adulthood increases long-term risk of coronary heart disease. Circulation. 2015; 131(5):451-458. DOI: https://doi.org/10.1161/CIRCULATIONAHA.114.012477
Nelson R.H., Hyperlipidemia as a risk factor for cardiovascular disease. Prim. Care. 2013; 40(1):195-211. DOI: https://doi.org/10.1016/j.pop.2012.11.003
Abdelrahman A.M., Al Suleimani Y.M., Ashique M., Manoj P. and Ali B.H., Effect of infliximab and tocilizumab on fructose-induced hyperinsulinemia and hypertension in rats. Biomed. Pharmacother. 2018; 105:182-186. DOI: https://doi.org/10.1016/j.biopha.2018.05.118
Schelleman H., Bilker W.B., Brensinger C.M., Wan F., Yang Y.-X. and Hennessy S., Fibrate/Statin initiation in warfarin users and gastrointestinal bleeding risk. Am. J. Med. 2010; 123(2):151-157. DOI: https://doi.org/10.1016/j.amjmed.2009.07.020
Akoglu H., Yilmaz R., Kirkpantur A., Arici M., Altun B. and Turgan C., Combined organ failure with combination antihyperlipidemic treatment: a case of hepatic injury and acute renal failure. Ann. Pharmacother. 2007; 41(1):143-147. DOI: https://doi.org/10.1345/aph.1H251
Thomas K.J., Nicholl J. and Coleman P., Use and expenditure on complementary medicine in England: a population based survey. Complement Ther. Med. 2001, 9(1)2-11. DOI: https://doi.org/10.1054/ctim.2000.0407
Adnan M., Jan S., Mussarat S., Tariq A., Begum S., Afroz A. and Shinwari Z.K., A review on ethnobotany, phytochemistry and pharmacology of plant genus C aralluma R. Br. J. Pharm. Pharmacol. 2014; 66(10):1351-1368. DOI: https://doi.org/10.1111/jphp.12265
Waheed A., Barker J., Barton S.J., Khan G.-M., Najm-us-Saqib Q., Hussain M., Ahmed S., Owen C. and Carew M.A., Novel acylated steroidal glycosides from Caralluma tuberculata induce caspase-dependent apoptosis in cancer cells. J. Ethnopharmacol. 2011; 137(3):1189-1196. DOI: https://doi.org/10.1016/j.jep.2011.07.049
Ghuffar A., Ahmad T. and Mushtaq M.N., Antihyperlipidemic effect of Berberis orthobotrys in hyperlipidemic animal models. Bangladesh J. Pharmacol. 2014; 9(3):377-382. DOI: https://doi.org/10.3329/bjp.v9i3.19922
Chou C.-L., Pang C.-Y., Lee T.J. and Fang T.-C., Direct renin inhibitor prevents and ameliorates insulin resistance, aortic endothelial dysfunction and vascular remodeling in fructose-fed hypertensive rats. Hypertens. Res. 2013; 36(2):123-128. DOI: https://doi.org/10.1038/hr.2012.124
Pramyothin P., Samosorn P., Poungshompoo S. and Chaichantipyuth C., The protective effects of Phyllanthus emblica Linn. extract on ethanol induced rat hepatic injury. J. Ethnopharmacol. 2006; 107(3):361-364. DOI: https://doi.org/10.1016/j.jep.2006.03.035
Apaydin F.G., Baş H., Kalender S. and Kalender Y., Bendiocarb induced histopathological and biochemical alterations in rat liver and preventive role of vitamins C and E. Environ. Toxicol. Pharmacol. 2017; 49:148-155. DOI: https://doi.org/10.1016/j.etap.2016.11.018
Sirivibulkovit K., Nouanthavong S. and Sameenoi Y., based DPPH assay for antioxidant activity analysis. Anal. Sci. 2018; 34(7):795-800. DOI: https://doi.org/10.2116/analsci.18P014
Lu Y., Cui X., Zhang L., Wang X., Xu Y., Qin Z., Liu G., Wang Q., Tian K. and Lim K.S., The functional role of lipoproteins in atherosclerosis: Novel directions for diagnosis and targeting therapy. Aging Dis. 2022; 13(2):491. DOI: https://doi.org/10.14336/AD.2021.0929
Balakumar P., Maung-U K. and Jagadeesh G., Prevalence and prevention of cardiovascular disease and diabetes mellitus. Pharmacol. Res. 2016; 113:600-609. DOI: https://doi.org/10.1016/j.phrs.2016.09.040
Lai P., Du J.-R., Zhang M.-X., Kuang X., Li Y.-J., Chen Y.-S. and He Y., Aqueous extract of Gleditsia sinensis Lam. fruits improves serum and liver lipid profiles and attenuates atherosclerosis in rabbits fed a high-fat diet. J. Ethnopharmacol. 2011; 137(3):1061-1066. DOI: https://doi.org/10.1016/j.jep.2011.06.023
Roche L.D. and Pérez Á.F., Protective Effects of Mangifera indica L. Extract Against Lipofundininduced Oxidative Stress in Rats. Pharm. Crop. 2012; 3(1). DOI: https://doi.org/10.2174/2210290601203010094
Ali I., Ahmed W., Tariq M., Asghar R. and Hussain M.A., 10. Therapeutic potential of ethanolic extract of Solanum nigrum for lipofundin-induced hyperlipidemia in Rabbits. Pure Appl. Biol.. 2021; 5(1):85-90. DOI: https://doi.org/10.19045/bspab.2016.50011
Pandey K.B. and Rizvi S.I., Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Medi and Cell. Longev. 2009; 2:270-278. DOI: https://doi.org/10.4161/oxim.2.5.9498
Arulmozhi V., Krishnaveni M., Karthishwaran K., Dhamodharan G. and Mirunalini S., Antioxidant and antihyperlipidemic effect of Solanum nigrum fruit extract on the experimental model against chronic ethanol toxicity. Pharmacogn. Mag.. 2010; 6(21):42. DOI: https://doi.org/10.4103/0973-1296.59965
Subasini U., Thenmozhi S., Sathyamurthy D. and Rajamanickam G.V., Attenuation of fructose induced hyperlipidemia of Enicostemma axillare. Int. J. Pharm. Phytopharmacol. Res. 2012; 1(5):306-312.
Huang F., Lezama M.A.R., Ontiveros J.A.P., Bravo G., Villafaña S., del-Rio-Navarro B.E. and Hong E., Effect of losartan on vascular function in fructose-fed rats: the role of perivascular adipose tissue. Clin. Exp. Hypertens. 2010; 32(2):98-104. DOI: https://doi.org/10.3109/10641960902993129
Katakam P.V., Ujhelyi M.R., Hoenig M.E. and Miller A.W., Endothelial dysfunction precedes hypertension in diet-induced insulin resistance. Am. J. Physio. 1998; 275(3):R788-R792. DOI: https://doi.org/10.1152/ajpregu.1998.275.3.R788
Kumar N., Mudgal J., Parihar V.K., Nayak P.G., Kutty N.G. and Rao C.M., Sesamol treatment reduces plasma cholesterol and triacylglycerol levels in mouse models of acute and chronic hyperlipidemia. Lipids. 2013; 48:633-638. DOI: https://doi.org/10.1007/s11745-013-3778-2
Abdel-Sattar E., Harraz F.M., Ghareib S.A., Elberry A.A., Gabr S. and Suliaman M.I., Antihyperglycaemic and hypolipidaemic effects of the methanolic extract of Caralluma tuberculata in streptozotocin-induced diabetic rats. Nat. Prod. Res. 2011; 25(12):1171-1179. DOI: https://doi.org/10.1080/14786419.2010.490782
Rauf A., Jan M., Rehman W. and Muhammad N., Phytochemical, phytotoxic and antioxidant profile of Caralluma tuberculata NE Brown. Wudpecker Journal of Pharmacy and Pharmacology. 2013; 2(2):21-25.
Maheshu V., Priyadarsini D.T. and Sasikumar J.M., Antioxidant capacity and amino acid analysis of Caralluma adscendens (Roxb.) Haw var. fimbriata (wall.) Grav. & Mayur. aerial parts. J. Food Sci Technol. 2014; 51:2415-2424. DOI: https://doi.org/10.1007/s13197-012-0761-5
Tao X., Jing-Bo P., Wen-Tong Z., Xin Z., Tao-Tao Z., Shi-Jun Y., Lei F., Zhong-Mei Z. and Da-Yong C., Antiatherogenic and anti-ischemic properties of traditional Chinese medicine Xinkeshu via endothelial protecting function. Evid. Based Complement Alternat. Med. 2012; 2012. DOI: https://doi.org/10.1155/2012/302137
Jamshed H. and Gilani A.H., Almonds inhibit dyslipidemia and vascular dysfunction in rats through multiple pathways. J. Nutr. 2014; 144(11):1768-1774. DOI: https://doi.org/10.3945/jn.114.198721
Akram A., Jamshed A., Anwaar M., Rasheed H.F.M., Haider S.I. Aslam N. and Jabeen Q., Evaluation of Caralluma edulis for its potential against obesity, atherosclerosis and hypertension. Dose Response. 2023; 12(21): 1-12. DOI: https://doi.org/10.1177/15593258231152112
Ashfaq A., Khan A.U., Minhas A.M., Aqeel T., Asseri A.M.,and Bukhari I.A., Anti-hyperlipidemic effects of Caralluma edulis (Asclepiadaceae) and Verbena officinalis (Verbenaceae) whole plants against high-fat diet-induced hyperlipidemia in mice. Trop. J. Pharm. Res. 2017; 16(10): 2417-2423. DOI: https://doi.org/10.4314/tjpr.v16i10.15
Pavithra K. and Manimaran V., A Review of Safety, Quality, Regulation, and Delivery Approaches for Phytopharmaceuticals. JJPS. 2024: 17(2): 316-332. DOI: https://doi.org/10.35516/jjps.v17i2.1768
AlKhoury R. and AlKhatib R., Rumex conglomeratus Murr. Grown Wild in Syria: Phytochemical Analysis and in Vitro Antioxidant Activities of Aerial Parts and Rhizomes Extracts. JJPS. 2024; 17(4):659-674. DOI: https://doi.org/10.35516/jjps.v17i4.2448
Abu-Darwish D., Shibli R. and Al-Abdallat A.M., Phenolic Compounds and Antioxidant Activity of Chiliadenus montanus (Vhal.) Brullo. grown in vitro. JJPS. 2024; 17(3):611-628. DOI: https://doi.org/10.35516/jjps.v17i3.2248